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Abstract. Machine Learning techniques have been used in different applications by the HEP
community: in this talk, we discuss the case of detector simulation. The need for simulated
events, expected in the future for LHC experiments and their High Luminosity upgrades, is
increasing dramatically and requires new fast simulation solutions. We will present results of
several studies on the application of computer vision techniques to the simulation of detectors,
such as calorimeters. We will also describe a new R&D activity, within the GeantV project,
aimed at providing a configurable tool capable of training a neural network to reproduce the
detector response and replace standard Monte Carlo simulation. This represents a generic
approach in the sense that such a network could be designed and trained to simulate any kind
of detector and, eventually, the whole data processing chain in order to get, directly in one step,
the final reconstructed quantities, in just a small fraction of time. We will present the first
three-dimensional images of energy showers in a high granularity calorimeter, obtained using
Generative Adversarial Networks.

1. Introduction
Particle transport simulation is a building block of any physics experiment from detector design
and R&D to the final steps of analysis and comparison to theoretical models. The traditional
approach is based on Monte Carlo methods, which is a time consuming procedure requiring
a tremendous amount of computation. For the past few years Monte Carlo simulations have
represented more than 50% of the WLCG (LHC Computing Grid) workload and the simulation
demands expected for the High Luminosity LHC runs in 2025 will increase significantly [1].
Unfortunately, WLCG is expected to hit the power consumption limits in several of the current
centres but, at the same time, it is foreseeable that its budget will stay flat at best, or even
decrease. All considered, the LHC experiments expectation is that the exploitation of the High
Luminosity LHC will require a factor of 100 improvement in simulation throughput with the
same computing resources available today [1].

Several initiatives have been trying to approach this problem from different perspectives.
On one hand, techniques that try to reduce the quantity of data that needs to be simulated
are being studied by the experiment. One example is the overlay technique that attempts to
reduce the amount of simulated events needed to correctly describe physics quantities in high
pile-up environment while improving data-simulation comparison. The idea is to mix data and
simulation in order to reduce CPU time and memory usage [2].

On the other hand, different level of optimisations are being studied, in order to speed-up
the existing simulation software and make it better suited to leverage on the latest hardware
advancement. Multi-threading and a task based approach are being introduced in different



frameworks, for example in GaudiMP [3]. Event level parallelism and multi-threading are being
implemented in Geant4 [4]) to improve throughput.

A new prototype for particle transport simulation, GeantV, is being developed to improve
physics accuracy and performance, in particular on modern architectures, such as the Intel
Xeon Phi and (GP)GPUs [5]. It is aimed at introducing fine grained parallelism to achieve a
factor 5 speedup with respect to Geant4 by exploiting vectorisation, concurrency and locality.
The project has raised large interest within different LHC experiments: improved geometry
algorithms such as the VecGeom library [6] and a new SIMD library (VecCore [7]) have been
developed within GeantV and are now used by a much larger community.

It is clear, however that, in order to increase the performance of simulation applications by
two orders of magnitude, new methods and algorithms are to be studied as a complement to the
basic work of parallelizing and optimizing the detailed simulation.

Fast simulation approaches are already used by the HEP community to reduce computation
time, typically for cases in which it is possible to trade-off accuracy for speed (e.g. searches,
upgrade studies, ...). Both the ATLAS and CMS experiments, for example, use pre-simulated
EM-showers libraries to replace the detailed simulation of their forward calorimeters [9] [10].
GFlash [11] simulates electromagnetic and hadronic showers using parametrizations for the
longitudinal and lateral profile. Another example is Delphes [8]: a C++-based framework for fast
simulation of general purpose experiments, capable of simulating tracking systems (in magnetic
field), calorimeters and muon systems. Each of these solutions can reach different performance
in terms of speed improvements (x10 - x1000) and different levels of accuracy (generally around
10% with respect to full simulation). See, for example the figure 1 (left), comparing energy
shower shapes in the FCC electromagnetic calorimeter, simulated using Geant4 and GFlash.

Figure 1. (left) FCC calorimeter showers GFlash results and comparison to full simulation.
(right) Gaudi framework for integrating fast and full simulation [11]

The shortcoming of most of the fast simulation approaches used so far is the fact that
they remain very specific to individual experiments. Instead, a generic coherent simulation
framework, capable of combining different simulation types, is essential to facilitate and speedup
data analysis and the comparison of the data. The idea behind such a simulation framework
would be to use a single input for the detector geometries needed by the different simulation
types and an identical analysis event data model [13]. Figure 1 shows, on the right, an example of
a generic simulation framework that is being developed for the FCC communities [13], using the
Gaudi architecture [12]. The ATLAS Integrated Simulation Framework is another example of
this approach [16]. Geant4 also has a mechanism sending particles through different simulations
defined in certain detector regions.



A new R&D activity has recently started within GeantV to develop a generic, fully
customizable, fast simulation framework: the structure of GeantV simulation steering allows
to attach different simulation techniques to specific particle types, or energy ranges or single
sub-detectors. This results in the possibility of seamlessly switching from detailed simulation
to fast simulation in order to balance accuracy and speed. GeantV fast simulation framework
is intended to make a varied palette of tools available to the user. Among those tools, a new
deep learning based simulation is being developed. The recent developments in deep learning,
coupled to the advancements of computing hardware, provide, in fact, the opportunity to replace
complex algorithms with deep neural networks capable of reproducing the same results at a much
higher speed.

2. Machine Learning in High Energy Physics
The use of machine learning methodologies in High Energy Physics is not a new approach [17, 18]
and a lot of work has been done in that regard. The highly stochastic and non deterministic
nature of High Energy Physics combined with complex and intricate nature of interactions
makes the traditional approaches very time consuming [19]. One of the pioneering work in the
quest for the elusive Higgs boson through machine learning was undertaken at Fermilab [20].
Further work proved that deep learning replaced the tedious feature engineering procedures and
provided similar performance using low level features [21] as well as discovering novel high level
features providing higher classification accuracy [22]. Image recognition networks employing
convolutional and fully connected layers to classify between jets from single hadronic particles
and overlapping jets from pairs of collimated hadronic particles resulted in modest performance
improvement [23]. Moreover, the work of machine learning for HEP is not just limited to
discrimination but also regression [24] and triggering [25]. A recent work even discussed analogies
between quantum wave function and deep convolutional arithmetic circuits (convolutional layers
with linear activation and pooling layers) [26]. A new frontier is that of physics simulation: only
recently machine learning has been used to replace simulation [24], but the interest in these
techniques is rapidly spreading through the experimental community.

3. Generative Models and Generative Adversarial Networks
Generative models like Generative Stochastic Networks [27], Variational AutoEncoders [28]
and Generative Adversarial Networks [29] seem particularly suited to replace Monte Carlo
simulation. The production of realistic samples is straightforward, as these techniques can
model complicated probability function and deal with multi-modal output. Their ability to
perform interpolation and to recover missing data has been proven several times [30, 31], two
features that are particularly useful when dealing with particle physics simulations.

Introduced by I. Goodfellow in 2014, Generative Adversarial Networks consist of two
networks, a generator and a discriminator, competing against each other [29]. Following the
original implementation, a mathematical formulation of the problem can be expressed as follows.
The generator is designed to learn some data distribution, starting from a prior on input noise
variables pz(z): it can be represented as a differentiable function mapping z to the data space as
G(z; θg) with parameters θg. The discriminator network is represented by a second differentiable
function D(x; θd) that outputs a single scalar: it represents the probability that x came from
the data rather than pz. The value function, V , is defined as:

min
G

max
D

V (D,G) = Ex∼pg(x)[logD(x)] + Ez∼pz(z)[log(1 −D(G(z)))] (1)

The first term on the right hand side in the above equation denotes the loss for real data while
the second term is the loss for generated data. The discriminator tries to maximize V, while
generator tries to minimize it and the problem translates in finding the equilibrium saddle point.



Initially GANs were introduced as a Multi Layer Perceptron (MLP) networks but these
networks suffered from high rate of non-convergence [29]. GAN shortcomings were further
investigated and improvements were suggested to meet them. LAPGAN presented the idea of
employing convolutional neural networks with the adversarial training [32]. Another version of
GAN, called Deep Convolutional GAN or DCGAN, was also presented exploring unsupervised
learning with Convolutional Neural Networks for discriminator and generator [33]. DCGAN
model was explored in detail and architectural guidelines, like using strided convolutions instead
of upsampling, or deconvolution for avoiding pooling layers, were presented. Batch normalization
was suggested and fully connected layers were completely removed from the networks except the
first layer in Generator and the last in the Discriminator. They also advocated Rectified Linear
Units as most suitable activation functions for Generators and leaky Rectified Linear Units for
Discriminators. Image generation was also conditioned to a label in a number of ways. An MLP
implementation incorporated class labels as one hot vectors mapped to additional hidden dense
layer before being combined with hidden layer generated by latent noise [34]. Another application
of GAN employed Convolutional Neural Networks while both the Generator and Discriminator
were conditioned on the class label implemented as embedding layer [35]. SGAN demonstrated
semi-supervised approach by training the discriminator to predict labels for images and then the
Generator utilizing these labels for generation [37]. Image generation and classification through
GAN was further improved through techniques like feature matching, minibatch discrimination,
historical averaging, label smoothing and batch normalization [36]. ACGAN adopts the semi-
supervised approach and demonstrates that introduction of a label results in faster convergence
and stable performance [38].

4. The LAGAN and CaloGAN applications
In High Energy Physics, some detector outputs can be also be interpreted in the form of
images, thus the same techniques that are used for image recognition can be employed for
detector output analysis. The LAGAN or Location Aware GAN [41] is one of the first
applications of this approach, successfully reconstructing two-dimensional representations of
jet images in calorimeters. To account for the specificity of jet images with respect to typical
image reconstruction problems, namely their sparsity and highly non-linearly location-dependent
data, the LAGAN networks make use of two-dimensional convolutional layers, locally connected
layers and leaky rectified linear units, following work previously done on jet classification [42].
CaloGAN networks [43] extend the LAGAN work to generate images of energy deposited
by particles travelling through a simplified detector geometry resembling the ATLAS LAr
calorimeter: three instrumented layers in the radial (z) direction, with different thicknesses
and different transverse segmentations. As an example, figure 4 represent the three transverse
energy showers, one for each of the layers, created by a 10 GeV e+ incident perpendicular to
the center of the detector. The three images corresponds to the three calorimeter layers.

The CaloGAN architecture implements a LAGAN unit per each calorimeter layer plus a
trainable transfer unit to preserve layer correlations. The result is a concatenation of two-
dimensional images that reproduce the full three-dimensional picture. Figure 3 (left) shows a
comparison of different energy shower shape variables and other event level variables as simulated
by Geant4 and CaloGAN. Different levels of agreement are reached depending on the variables
and particle types and, although not perfect, the results prove that the CaloGAN network can
reproduce successfully the main shower features.

The images are also conditioned on energy: the discriminator calculates the reconstructed
energy per layer as well as the total energy. These quantities are used to build a specific loss
components introduced to penalize the absolute deviation between the nominal energy and the
reconstructed energy. Figure 3 (right), shows the energy response corresponding to different
primary energy values. It is interesting to note that the system was trained over the [0, 100]



Figure 2. The three two-dimensional images, one for each calorimeter layer, represent together
a 10 GeV e+ incident perpendicular to the center of the detector.

Figure 3. (left) Comparison of typical energy shower shape variables for the Geant and
CaloGAN datasets for electrons, photons and pions: total deposited energy, fraction of measured
energy and sparsity in the first and second layer. (right) CaloGAN energy response for primary
particle energies of 1 GeV, 25 GeV, 50 GeV, 100 GeV, and 150 GeV.

GeV energy range, but it was still capable of generating images with energies lying outside
the training range (150 GeV), although with broader width and shifted towards the training
domain. This fact represent a first hint of the network extrapolation capability although the
authors do no investigate the level at the which the extrapolated samples show the expected
shower distributions. At the time of this writing, additional work is needed to fully validate the
quality of the generated images with respect to detailed simulation or existing fast simulation
methods. Nevertheless, CaloGAN represents a milestone in the development of deep learning
application to HEP simulation.

5. The three-dimensional GAN
The GeantV three-dimensional GAN application steps further simulating three-dimensional
calorimeter showers as a whole. It is intended as a first proof of concept to understand the
level of accuracy achievable and to what extend the approach can be generalised to different
detectors. It represent, in fact, the first step towards a fully integrated fast simulation tool
configurable and trainable according to the different user needs in terms of physics and the
nature of the detector.



The CLIC electromagnetic calorimeter design (ECAL) is chosen as an example of future high
granularity detector [44]. The data is simulated using the DD4hep software framework [45]: it
consists of energy showers produced by incoming particles travelling through the detector. They
are generated with Geant4: each calorimeter cell is characterized by the energy recorded in it
and three indices (iX, iY, iZ), identifying the position of the cell. The ECAL is made of 25
instrumented layers and for each of them, a 25x25 array of cells is considered. The energy of
the incoming particle is sampled from a uniform [0-500 GeV] spectrum, a much larger energy
range than the one tested by CaloGAN. Fig. 4 shows, on the right, an example energy shower,
produced by a 100 GeV electron inside ECAL.

Figure 4. Typical energy showers produced by a 100 GeV electron inside the electromagnetic
calorimeter. The grey lines represent identify the calorimeter cell. The color and hit dimensions
correspond to the amount of energy deposited in the cell.

The GeantV GAN performs three-dimensional image reconstruction: the discriminator as
well as generator exploit three-dimensional convolutional layers: the convolution parameters
are adjusted to match the energy shower shapes. Usage of three-dimensional layers leads
to a large number of training parameters, and therefore we keep the network as simple as
possible. The model has been developed using Keras [47] and Tensorflow [48]. There are four
convolutional layers in both the generator and discriminator with leaky rectified linear units
activation functions. Batch normalization layers are added after the convolutional layers for
improved performance [49]. The input image is mapped to two categorical outputs obtained
by the final flattened layers. The first output denotes whether images are real or generated
while the second output is an auxiliary classifier. Using this basic architecture two different
experiments were conducted. In the first implementation the auxiliary classifier is the particle
type (e.g. electron or photon) and a sigmoidal activation function generated the discriminator
output. In the second version the auxiliary output is the energy of the incoming particle (a
rectified linear unit constitutes the discriminator output). The generator uses a latent noise
vector initialized to a gaussian probability distribution as well as the desired class of the image
to generate the primary particle energy. To assess the performance of the networks a detailed
study of the generated calorimeter response is performed. Figure 4 for example, shows the typical
single cell energy response: the mean and width of the cell energy deposition are compared to
Geant4 prediction. The result is generally better for cells receiving large amount of energy.
The average transverse and longitudinal shower shapes are also compared against the detailed
simulation (see figure 5.) Figure 6 shows instead the discriminator energy response corresponding
to 100, 150 and 300 GeV input energies: the network energy prediction is good both in terms
of central value and the width of the distribution, with average offset and spread well below
10%. Even more promising, from the point of view of designing a reliable simulation engine,



is the fact that the network is capable of correctly describing how the energy shower shape
distributions change depending on the primary particle energy: an example is shown in figure
7: the longitudinal shower shapes generated by GAN are compared to the detailed simulation
predictions for different primary particle energies. Further work is currently ongoing to compare
the three-dimensional GAN results to different fast simulation tools and to study the possibility
to generalise the tool to different detectors via algorithm meta-optimisation and hyper-parameter
scans.

Figure 5. The transverse and longitudinal shower shapes generated for 100 GeV electrons.

Figure 6. The discriminator energy prediction corresponding to 100, 150 and 300 GeV primary
energies.

Figure 7. The longitudinal shower shapes generated by three-dimensional GAN for different
primary particle energies (100, 200, 300, 400) GeV (orange). The GAN shape is compared to
the corresponding detailed simulation results (blue).

6. Conclusion
Monte Carlo production has been so far a major fraction of WLCG computing workload and
the High Luminosity LHC experiments needs will scale up orders of magnitude. A generic



framework with common fast simulation algorithm and strategies for mixing detailed and fast
simulation could bring great benefit to HEP and also to those smaller communities that could
not afford to develop their own simulation framework. In this context generative models, relying
on the possibility to interpret detector response as images, seem natural candidates to speedup
simulation. Generative Adversarial Networks, in particular, require relatively small amount of
data to train and are the subject of many ongoing studies. Their performance as imaging tools
for calorimeter simulation is very promising, and from a computing resources perspective, the
gain in time needed to generate a shower is huge: for example, using the three-dimensional GAN
takes only O(10−3) ms compared to the typical one minute time needed to generate it using the
detailed approach. This corresponds to a speedup of more than 6 orders of magnitude. The
accent should therefore be on optimising the computing resources needed to train the networks,
studying parallelisation on clusters and cross-platform development.
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