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• This talk is not about comparing ROOT File Format vs others (hdf5, parquet, 
avro, etc.). 

• The goal of this work is to experiment with the available off-shell general 
purpose processing engines.

Important Note
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• DEEP - Extreme Scale Technologies. 

• European Project aiming to build Modular Supercomputing Architecture. 

• Exascale HPC. 

• CERN Openlab is a collaborating partner.

DEEP-EST Project
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• c++ / python based 

• ROOT I/O  

• ROOT Histogramming Functionality 

• Batch Processing - Custom Workload Distribution

HEP Data Processing
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• Columnar Data Format 

• Very flexible and efficient! 

• Self-descriptive - takes very few classes to bootstrap 

• Storage of Arbitrary UDF classes 

• Has both vector (SoA) and object (AoS) like layout for AoS depending on the 
internals.

ROOT I/O
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• General Purpose Processing Engine for both Batch and Streaming Processing 

• lazy execution.  
• JVM bytecode codegen and execution per query. 

• scala / java / python / R APIs 

• Very similar API to TDataFrame, Panda’s Dataframes. 

• Easy scale-out of workflows. 

• No additional boiler plate for managing batches. 
• Important for ML usually.

Apache Spark
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• ROOT I/O for JVM. 
• A completely separate code base. Huge Thanks to ROOT Team: Axel/Danilo/Philippe! 
• There is almost 20-25 years old history of the JVM code base… 

• Extends Spark’s Data Source API. 

• Represents ROOT TTree as DataFrame (Dataset[Row]) upon entry. 
• A single TTree => Dataset[Row] 

• Parallelization = # files 
• Partitioning could be improved 

• Implementation (Data Source) is modeled after parquet implementation.

Data Ingestion: spark-root 0.1.15 on Maven Central!
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Data Ingestion: spark-root 0.1.15 on Maven Central!

• Download spark’s tar: https://spark.apache.org/downloads.html and unzip  

• Start a scala shell: 
• ./bin/spark-shell --packages org.diana-hep:spark-root_2.11:0.1.15 

• Or start a python shell: 
• ./bin/pyspark --packages org.diana-hep:spark-root_2.11:0.1.15 

• Start analyzing/processing 

• Straight-forward integration with Jupyter/Zeppelin Notebooks (any other ones..)
9

https://spark.apache.org/downloads.html


Scala 

// import the implicit DataFrameReader 
import org.dianahep.sparkroot.experimental._ 

// read in a ROOT file 
// select a TTree by name [optional] 
// infer the schema 
// Actual Data in the TTree is not read! 
val df = spark 

.sqlContext 

.read 

.option(“tree”, “<treeName>”) 

.root(“<file,hdfs,root>:/path/to/files/*.root”) 
//.parquet() 
//.csv() 
//……. 

Data Ingestion: spark-root 0.1.15 on Maven Central!

Python 

# read in a ROOT file 
# select a TTree by name [optional] 
# infer the schema 
# Actual Data in the TTree is not read! 
df = sqlContext\ 

.read\ 

.format(“org.dianahep.sparkroot.experimental”)\ 

.load(“<file,hdfs,root>:/path/to/files/*.root”) 
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Scala 

// pretty print of the schema 
df.printSchema 

|-- Particle: array (nullable = true)
 |    |-- element: struct (containsNull = true)
 |    |    |-- fUniqueID: integer (nullable = true)
 |    |    |-- fBits: integer (nullable = true)
 |    |    |-- PID: integer (nullable = true)
 |    |    |-- Status: integer (nullable = true)
 |    |    |-- IsPU: integer (nullable = true)
 |    |    |-- M1: integer (nullable = true)
 |    |    |-- M2: integer (nullable = true)
 |    |    |-- D1: integer (nullable = true)
 |    |    |-- D2: integer (nullable = true)
 |    |    |-- Charge: integer (nullable = true)
 |    |    |-- Mass: float (nullable = true)
 |    |    |-- E: float (nullable = true)
 |    |    |-- Px: float (nullable = true)
 |    |    |-- Py: float (nullable = true)
 |    |    |-- Pz: float (nullable = true)
 |    |    |-- PT: float (nullable = true)
 |    |    |-- Eta: float (nullable = true)
 |    |    |-- Phi: float (nullable = true)
 |    |    |-- Rapidity: float (nullable = true)
 |    |    |-- T: float (nullable = true)
 |    |    |-- X: float (nullable = true)
 |    |    |-- Y: float (nullable = true)
 |    |    |-- Z: float (nullable = true)
 |-- Particle_size: integer (nullable = true)

Data Ingestion: spark-root 0.1.15 on Maven Central!
Python 

# pretty print of the schema 
df.printSchema() 

|-- Particle: array (nullable = true)
 |    |-- element: struct (containsNull = true)
 |    |    |-- fUniqueID: integer (nullable = true)
 |    |    |-- fBits: integer (nullable = true)
 |    |    |-- PID: integer (nullable = true)
 |    |    |-- Status: integer (nullable = true)
 |    |    |-- IsPU: integer (nullable = true)
 |    |    |-- M1: integer (nullable = true)
 |    |    |-- M2: integer (nullable = true)
 |    |    |-- D1: integer (nullable = true)
 |    |    |-- D2: integer (nullable = true)
 |    |    |-- Charge: integer (nullable = true)
 |    |    |-- Mass: float (nullable = true)
 |    |    |-- E: float (nullable = true)
 |    |    |-- Px: float (nullable = true)
 |    |    |-- Py: float (nullable = true)
 |    |    |-- Pz: float (nullable = true)
 |    |    |-- PT: float (nullable = true)
 |    |    |-- Eta: float (nullable = true)
 |    |    |-- Phi: float (nullable = true)
 |    |    |-- Rapidity: float (nullable = true)
 |    |    |-- T: float (nullable = true)
 |    |    |-- X: float (nullable = true)
 |    |    |-- Y: float (nullable = true)
 |    |    |-- Z: float (nullable = true)
 |-- Particle_size: integer (nullable = true)
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Scala 

import org.dianahep.sparkroot.experimental._ 

// read in the file 
val df = spark.sqlContext.read.root(inputFileName) 

// cast each Row to a 2D Array 
val ds = df.as[Seq[Seq[Double]]] 

// Perform the reduction 
ds.flatMap({case l => l.flatMap({case v => v})}) 

.reduce(_ + _)

Data Processing: Simple Example

Python 
# read in the file 
df = sqlContext.read\ 

.format(“org.dianahep.sparkroot.experimental”)\ 

.load(fileName) 
# define a function to sum up 
def sumUp(row): 
    total = 0 
    for arr in row.darr: 
        total += sum(arr) 
    return total 
# perform map (transformation) and reduce (action) 
df.rdd.map(sumUp).reduce(lambda x,y: x+y)

• 50K events (rows) of 100 x 100 matrix 
• Perform a total reduction 
• 4GB uncompressed. ROOT file is ~106MB!

root
 |-- darr: array (nullable = true)
 |    |-- element: array (containsNull = true)
 |    |    |-- element: double (containsNull = true)
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Data Processing: CMS Open Data Example

|-- patMuons_slimmedMuons__RECO_: struct (nullable = true)
 |    |-- present: boolean (nullable = true)
 |    |-- patMuons_slimmedMuons__RECO_obj: array (nullable = true)
 |    |    |-- element: struct (containsNull = true)
 |    |    |    |-- m_state: struct (nullable = true)
 |    |    |    |    |-- vertex_: struct (nullable = true)
 |    |    |    |    |    |-- fCoordinates: struct (nullable = true)
 |    |    |    |    |    |    |-- fX: float (nullable = true)
 |    |    |    |    |    |    |-- fY: float (nullable = true)
 |    |    |    |    |    |    |-- fZ: float (nullable = true)
 |    |    |    |    |-- p4Polar_: struct (nullable = true)
 |    |    |    |    |    |-- fCoordinates: struct (nullable = true)
 |    |    |    |    |    |    |-- fPt: float (nullable = true)
 |    |    |    |    |    |    |-- fEta: float (nullable = true)
 |    |    |    |    |    |    |-- fPhi: float (nullable = true)
 |    |    |    |    |    |    |-- fM: float (nullable = true)
 |    |    |    |    |-- qx3_: integer (nullable = true)
 |    |    |    |    |-- pdgId_: integer (nullable = true)
 |    |    |    |    |-- status_: integer (nullable = true)

• CMS Public 2010 Muonia Dataset 
• Hundreds of top columns 
• Very complicated nestedness: AoS of AoS 
• Tested on TBs of data across > 1K input files 

• on CERN’s Analytix Cluster 
• Transparent for scale-out. Just a glob operation 
• http://opendata.cern.ch/record/10 

• Calculate the invariant mass of a di-muon system 
and histogram
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Data Processing: CMS Open Data Example

• CMS Public 2010 Muonia Dataset 
• Hundreds of top columns 
• Very complicated nestedness: AoS of AoS 
• Tested on TBs of data across > 1K input files 

• on CERN’s Analytix Cluster 
• Transparent for scale-out. Just a glob operation 
• http://opendata.cern.ch/record/10 

• Calculate the invariant mass of a di-muon 
system and histogram

Histogram of the Types present in the Schema
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# read in the data 
df = sqlContext.read\ 

.format(“org.dianahep.sparkroot.experimental”)\ 

.load(“hdfs:/path/to/files/*.root”) 

# count the number of rows: 
df.count() 

# select only muons 
muons = 
df.select(“patMuons_slimmedMuons__RECO_.patMuons_slimme
dMuons__RECO_obj.m_state”).toDF(“muons”) 

# map each event to an invariant mass 
# inv_masses = muons.rdd.filter(lambda row: row.muons.size==2) 
inv_masses = muons.rdd.map(toInvMass) 

# Use histogrammar to perform aggregations 
empty = histogrammar.Bin(200, 0, 200, lambda row: row.mass) 
h_inv_masses = inv_masses.aggregate(empty,  

histogrammar.increment,  
histogrammar.combine)

Data Processing: CMS Open Data Example

https://github.com/diana-hep/spark-root/blob/master/ipynb/publicCMSMuonia_exampleAnalysis_wROOT.ipynb
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Data Processing: Feature Engineering
• Simulated Events with: 

• Tracks, Hadrons, Photons, Electrons, Muons 

• A glimpse of the input schema:
|-- Particle: array (nullable = true)
 |    |-- element: struct (containsNull = true)
 |    |    |-- fUniqueID: integer (nullable = true)
 |    |    |-- fBits: integer (nullable = true)
 |    |    |-- PID: integer (nullable = true)
 |    |    |-- Status: integer (nullable = true)
 |    |    |-- IsPU: integer (nullable = true)
 |    |    |-- M1: integer (nullable = true)
 |    |    |-- M2: integer (nullable = true)
 |    |    |-- D1: integer (nullable = true)
 |    |    |-- D2: integer (nullable = true)
 |    |    |-- Charge: integer (nullable = true)
 |    |    |-- Mass: float (nullable = true)
 |    |    |-- E: float (nullable = true)
 |    |    |-- Px: float (nullable = true)
 |    |    |-- Py: float (nullable = true)
 |    |    |-- Pz: float (nullable = true)
 |    |    |-- PT: float (nullable = true)
 |    |    |-- Eta: float (nullable = true)
 |    |    |-- Phi: float (nullable = true)
 |    |    |-- Rapidity: float (nullable = true)
 |    |    |-- T: float (nullable = true)
 |    |    |-- X: float (nullable = true)
 |    |    |-- Y: float (nullable = true)
 |    |    |-- Z: float (nullable = true)
 |-- Particle_size: integer (nullable = true)

• For each event, build a 2D matrix of features from 
• N tracks/hadrons/photons/1lepton  

• For each such matrix, build an image and train:

https://github.com/vkhristenko/MPJRPipeline/blob/master/ipynb/preprocessing_python_noudfs.ipynb https://github.com/vkhristenko/MPJRPipeline/blob/master/ipynb/convert2images_python.ipynb
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Data Processing: Feature Engineering
• Simulated Events with: 

• Tracks, Hadrons, Photons, Electrons, Muons 

• Pipeline is quite simple:

features = events\ 
    .limit(1000)\ 
    .rdd\ 
    .map(convert)\ 
    .filter(lambda row: len(row) > 0)\ 
    .toDF() 

• Step1: For each event, build a 2D matrix of features 
from 

• N tracks/hadrons/photons/1lepton  

• Step2: For each such matrix, build an image and train:

https://github.com/vkhristenko/MPJRPipeline/blob/master/ipynb/preprocessing_python_noudfs.ipynb https://github.com/vkhristenko/MPJRPipeline/blob/master/ipynb/convert2images_python.ipynb

Step1:

Step2:
images = features\ 
    .rdd\ 
    .map(convert2image)\ 
    .toDF() 
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What’s __not__ well supported for ROOT I/O

• Pointers: Anything that requires Run (read time) Time Type Inference! 
• e.g. TClonesArray that do not occupy a “splitted" branch 

• Most prominent example: 
class Base {…}; 
class Derived : public Base {…}; 
std::vector<Base*> someP2BaseVector; 

• Most of the STL containers are supported (e.g. bitset). 
• Apache Spark requires that the schema is known before the actual Query 

Plan is built!
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Avoiding what’s not supported

• CMSSW RECO/AOD/MINIAOD are one of the most complex examples of  
ROOT files. 

• Typical content is a bunch of UDF Classes + STL Containers. 
• std::vector<framework::Particle>  
• class Particle : public Parent { … std::map<std::string, 

std::vector<framework::Hits> > }; 
• All of that works! 

• Pointers are present but rare. 

• A set of optimizations were included to prune away __RunTime__ Types.
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Internals: spark-root

• Bootstrapping - a set of classes with predefined streaming logic. 
• TKey, TFile… 

• Byte Code Engineering Library (bcel) is used for JIT compilation of ROOT 
classes 

• root4j is the java code base that implements above  
• Created by Tony Johnson 
• >20 years of history - very old code base. 

• Has been revived and bug fixed for proper reading of ROOT files 
• spark-root builds on top of root4j and implements the proper TTree reading. 

• scala code-base. 
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Optimizations: spark-root

• Internally: 
• TTree => IR schema => Spark Schema (Struct Type) 

• Several Optimizations are performed on the IR schema 
• Nested Column Pruning (with https://github.com/apache/spark/pull/16578) 

• once this PR is in, we will need to push an update on top to spark’s master. 
• PR assumes parquet usage only, but has been tested to apply to our Data 

Source as well 
• Empty Rows Removal (parquet does not allow empty Groups!) 
• Flatten out Base Classes 
• Removal of Run Time Types (pointers) and Unknown/Null types. 

• It’s possible that some types are not available: enums, hard-coded streaming 
logic.
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Anyone using spark-root?

• Given ROOT files => you can use it… no installation of anything. 
• No need for Class Dictionaries…  
• For Spark Applications - no special compilation procedures. 

• Jars are on Maven Central. 

• CMS Big Data Project  
• Applying Apache Spark for processing of CMS Data 
• Open Data Muonia Example Workflow 

• Feature Engineering / ML Training 
• Experimenting myself with using Apache Spark + ML Frameworks on top 
• dist-keras, BigDL - anything that plugs on top.
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Summary

• spark-root - Spark’s Data Source for ROOT File Format. 

• Works! 
• but currently has limitations. 

• Very easy to use - no special knowledge - just use standard Apache Spark API. 

• Very easy to get started - no installation.  
•  You do not have to install Scala or SBT! 

• Very easy to scale out
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General Outlook
• Nothing has been said about __current__ Apache Spark performance. 

• Good scale-out 
• Bad single thread performance 

• Apache Spark is (seems to be) optimized for simple table structure 
• For deeply nested structures like collection of physics objects -> not optimal. A lot of overhead! 
• Databricks have additions to SQL for High Order Functions 
• But they are not in spark/master… 

• Very easy to port python based analyses (w/ or w/o ROOT)  
• copy/paste and run!  
• On Analytix we could even use ROOT Physics Classes since it’s visible across all the nodes. 

• TLorentzVector… 
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General Outlook
• Apache Spark is young technology 

• Quite Flexible Codebase 

• Flare: flaredata.github.io 
• Native Compilation of the Query Plan! 
• No JVM overheads! 

• scala-native: https://github.com/scala-native/scala-native 

• scala-native = clang on top of LLVM - FrontEnd Compiler for Scala. 
• Runs as fast as c++ based processing. 
• Early stages of dev - but does work! Developed by Scala Center at EPFL! 
• scala Language -> Multiple Compier FrontEnds: scala-js (JS in Browser) / scala-native (Native Executable) / scala 

(JVM)
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