
Viktor Khristenko (CERN Openlab)

HEP Data Processing with Apache Spark

1

• HEP Data Processing
• ROOT I/O
• Apache Spark
• Data Ingestion
• Data Processing
• What’s supported?!
• Internals and Optimizations
• Summary
• General Outlook

Outline

2

• This talk is not about comparing ROOT File Format vs others (hdf5, parquet,
avro, etc.).

• The goal of this work is to experiment with the available off-shell general
purpose processing engines.

Important Note

3

• DEEP - Extreme Scale Technologies.

• European Project aiming to build Modular Supercomputing Architecture.

• Exascale HPC.

• CERN Openlab is a collaborating partner.

DEEP-EST Project

4

• c++ / python based

• ROOT I/O

• ROOT Histogramming Functionality

• Batch Processing - Custom Workload Distribution

HEP Data Processing

5

• Columnar Data Format

• Very flexible and efficient!

• Self-descriptive - takes very few classes to bootstrap

• Storage of Arbitrary UDF classes

• Has both vector (SoA) and object (AoS) like layout for AoS depending on the
internals.

ROOT I/O

6

• General Purpose Processing Engine for both Batch and Streaming Processing

• lazy execution.
• JVM bytecode codegen and execution per query.

• scala / java / python / R APIs

• Very similar API to TDataFrame, Panda’s Dataframes.

• Easy scale-out of workflows.

• No additional boiler plate for managing batches.
• Important for ML usually.

Apache Spark

7

• ROOT I/O for JVM.
• A completely separate code base. Huge Thanks to ROOT Team: Axel/Danilo/Philippe!
• There is almost 20-25 years old history of the JVM code base…

• Extends Spark’s Data Source API.

• Represents ROOT TTree as DataFrame (Dataset[Row]) upon entry.
• A single TTree => Dataset[Row]

• Parallelization = # files
• Partitioning could be improved

• Implementation (Data Source) is modeled after parquet implementation.

Data Ingestion: spark-root 0.1.15 on Maven Central!

8

Data Ingestion: spark-root 0.1.15 on Maven Central!

• Download spark’s tar: https://spark.apache.org/downloads.html and unzip

• Start a scala shell:
• ./bin/spark-shell --packages org.diana-hep:spark-root_2.11:0.1.15

• Or start a python shell:
• ./bin/pyspark --packages org.diana-hep:spark-root_2.11:0.1.15

• Start analyzing/processing

• Straight-forward integration with Jupyter/Zeppelin Notebooks (any other ones..)
9

https://spark.apache.org/downloads.html

Scala

// import the implicit DataFrameReader
import org.dianahep.sparkroot.experimental._

// read in a ROOT file
// select a TTree by name [optional]
// infer the schema
// Actual Data in the TTree is not read!
val df = spark

.sqlContext

.read

.option(“tree”, “<treeName>”)

.root(“<file,hdfs,root>:/path/to/files/*.root”)
//.parquet()
//.csv()
//…….

Data Ingestion: spark-root 0.1.15 on Maven Central!

Python

read in a ROOT file
select a TTree by name [optional]
infer the schema
Actual Data in the TTree is not read!
df = sqlContext\

.read\

.format(“org.dianahep.sparkroot.experimental”)\

.load(“<file,hdfs,root>:/path/to/files/*.root”)

10

Scala

// pretty print of the schema
df.printSchema

|-- Particle: array (nullable = true)
 | |-- element: struct (containsNull = true)
 | | |-- fUniqueID: integer (nullable = true)
 | | |-- fBits: integer (nullable = true)
 | | |-- PID: integer (nullable = true)
 | | |-- Status: integer (nullable = true)
 | | |-- IsPU: integer (nullable = true)
 | | |-- M1: integer (nullable = true)
 | | |-- M2: integer (nullable = true)
 | | |-- D1: integer (nullable = true)
 | | |-- D2: integer (nullable = true)
 | | |-- Charge: integer (nullable = true)
 | | |-- Mass: float (nullable = true)
 | | |-- E: float (nullable = true)
 | | |-- Px: float (nullable = true)
 | | |-- Py: float (nullable = true)
 | | |-- Pz: float (nullable = true)
 | | |-- PT: float (nullable = true)
 | | |-- Eta: float (nullable = true)
 | | |-- Phi: float (nullable = true)
 | | |-- Rapidity: float (nullable = true)
 | | |-- T: float (nullable = true)
 | | |-- X: float (nullable = true)
 | | |-- Y: float (nullable = true)
 | | |-- Z: float (nullable = true)
 |-- Particle_size: integer (nullable = true)

Data Ingestion: spark-root 0.1.15 on Maven Central!
Python

pretty print of the schema
df.printSchema()

|-- Particle: array (nullable = true)
 | |-- element: struct (containsNull = true)
 | | |-- fUniqueID: integer (nullable = true)
 | | |-- fBits: integer (nullable = true)
 | | |-- PID: integer (nullable = true)
 | | |-- Status: integer (nullable = true)
 | | |-- IsPU: integer (nullable = true)
 | | |-- M1: integer (nullable = true)
 | | |-- M2: integer (nullable = true)
 | | |-- D1: integer (nullable = true)
 | | |-- D2: integer (nullable = true)
 | | |-- Charge: integer (nullable = true)
 | | |-- Mass: float (nullable = true)
 | | |-- E: float (nullable = true)
 | | |-- Px: float (nullable = true)
 | | |-- Py: float (nullable = true)
 | | |-- Pz: float (nullable = true)
 | | |-- PT: float (nullable = true)
 | | |-- Eta: float (nullable = true)
 | | |-- Phi: float (nullable = true)
 | | |-- Rapidity: float (nullable = true)
 | | |-- T: float (nullable = true)
 | | |-- X: float (nullable = true)
 | | |-- Y: float (nullable = true)
 | | |-- Z: float (nullable = true)
 |-- Particle_size: integer (nullable = true)

11

Scala

import org.dianahep.sparkroot.experimental._

// read in the file
val df = spark.sqlContext.read.root(inputFileName)

// cast each Row to a 2D Array
val ds = df.as[Seq[Seq[Double]]]

// Perform the reduction
ds.flatMap({case l => l.flatMap({case v => v})})

.reduce(_ + _)

Data Processing: Simple Example

Python
read in the file
df = sqlContext.read\

.format(“org.dianahep.sparkroot.experimental”)\

.load(fileName)
define a function to sum up
def sumUp(row):
 total = 0
 for arr in row.darr:
 total += sum(arr)
 return total
perform map (transformation) and reduce (action)
df.rdd.map(sumUp).reduce(lambda x,y: x+y)

• 50K events (rows) of 100 x 100 matrix
• Perform a total reduction
• 4GB uncompressed. ROOT file is ~106MB!

root
 |-- darr: array (nullable = true)
 | |-- element: array (containsNull = true)
 | | |-- element: double (containsNull = true)

12

Data Processing: CMS Open Data Example

|-- patMuons_slimmedMuons__RECO_: struct (nullable = true)
 | |-- present: boolean (nullable = true)
 | |-- patMuons_slimmedMuons__RECO_obj: array (nullable = true)
 | | |-- element: struct (containsNull = true)
 | | | |-- m_state: struct (nullable = true)
 | | | | |-- vertex_: struct (nullable = true)
 | | | | | |-- fCoordinates: struct (nullable = true)
 | | | | | | |-- fX: float (nullable = true)
 | | | | | | |-- fY: float (nullable = true)
 | | | | | | |-- fZ: float (nullable = true)
 | | | | |-- p4Polar_: struct (nullable = true)
 | | | | | |-- fCoordinates: struct (nullable = true)
 | | | | | | |-- fPt: float (nullable = true)
 | | | | | | |-- fEta: float (nullable = true)
 | | | | | | |-- fPhi: float (nullable = true)
 | | | | | | |-- fM: float (nullable = true)
 | | | | |-- qx3_: integer (nullable = true)
 | | | | |-- pdgId_: integer (nullable = true)
 | | | | |-- status_: integer (nullable = true)

• CMS Public 2010 Muonia Dataset
• Hundreds of top columns
• Very complicated nestedness: AoS of AoS
• Tested on TBs of data across > 1K input files

• on CERN’s Analytix Cluster
• Transparent for scale-out. Just a glob operation
• http://opendata.cern.ch/record/10

• Calculate the invariant mass of a di-muon system
and histogram

13

http://opendata.cern.ch/record/10

Data Processing: CMS Open Data Example

• CMS Public 2010 Muonia Dataset
• Hundreds of top columns
• Very complicated nestedness: AoS of AoS
• Tested on TBs of data across > 1K input files

• on CERN’s Analytix Cluster
• Transparent for scale-out. Just a glob operation
• http://opendata.cern.ch/record/10

• Calculate the invariant mass of a di-muon
system and histogram

Histogram of the Types present in the Schema

14

http://opendata.cern.ch/record/10

read in the data
df = sqlContext.read\

.format(“org.dianahep.sparkroot.experimental”)\

.load(“hdfs:/path/to/files/*.root”)

count the number of rows:
df.count()

select only muons
muons =
df.select(“patMuons_slimmedMuons__RECO_.patMuons_slimme
dMuons__RECO_obj.m_state”).toDF(“muons”)

map each event to an invariant mass
inv_masses = muons.rdd.filter(lambda row: row.muons.size==2)
inv_masses = muons.rdd.map(toInvMass)

Use histogrammar to perform aggregations
empty = histogrammar.Bin(200, 0, 200, lambda row: row.mass)
h_inv_masses = inv_masses.aggregate(empty,

histogrammar.increment,
histogrammar.combine)

Data Processing: CMS Open Data Example

https://github.com/diana-hep/spark-root/blob/master/ipynb/publicCMSMuonia_exampleAnalysis_wROOT.ipynb
15

Data Processing: Feature Engineering
• Simulated Events with:

• Tracks, Hadrons, Photons, Electrons, Muons

• A glimpse of the input schema:
|-- Particle: array (nullable = true)
 | |-- element: struct (containsNull = true)
 | | |-- fUniqueID: integer (nullable = true)
 | | |-- fBits: integer (nullable = true)
 | | |-- PID: integer (nullable = true)
 | | |-- Status: integer (nullable = true)
 | | |-- IsPU: integer (nullable = true)
 | | |-- M1: integer (nullable = true)
 | | |-- M2: integer (nullable = true)
 | | |-- D1: integer (nullable = true)
 | | |-- D2: integer (nullable = true)
 | | |-- Charge: integer (nullable = true)
 | | |-- Mass: float (nullable = true)
 | | |-- E: float (nullable = true)
 | | |-- Px: float (nullable = true)
 | | |-- Py: float (nullable = true)
 | | |-- Pz: float (nullable = true)
 | | |-- PT: float (nullable = true)
 | | |-- Eta: float (nullable = true)
 | | |-- Phi: float (nullable = true)
 | | |-- Rapidity: float (nullable = true)
 | | |-- T: float (nullable = true)
 | | |-- X: float (nullable = true)
 | | |-- Y: float (nullable = true)
 | | |-- Z: float (nullable = true)
 |-- Particle_size: integer (nullable = true)

• For each event, build a 2D matrix of features from
• N tracks/hadrons/photons/1lepton

• For each such matrix, build an image and train:

https://github.com/vkhristenko/MPJRPipeline/blob/master/ipynb/preprocessing_python_noudfs.ipynb https://github.com/vkhristenko/MPJRPipeline/blob/master/ipynb/convert2images_python.ipynb

16

Data Processing: Feature Engineering
• Simulated Events with:

• Tracks, Hadrons, Photons, Electrons, Muons

• Pipeline is quite simple:

features = events\
 .limit(1000)\
 .rdd\
 .map(convert)\
 .filter(lambda row: len(row) > 0)\
 .toDF()

• Step1: For each event, build a 2D matrix of features
from

• N tracks/hadrons/photons/1lepton

• Step2: For each such matrix, build an image and train:

https://github.com/vkhristenko/MPJRPipeline/blob/master/ipynb/preprocessing_python_noudfs.ipynb https://github.com/vkhristenko/MPJRPipeline/blob/master/ipynb/convert2images_python.ipynb

Step1:

Step2:
images = features\
 .rdd\
 .map(convert2image)\
 .toDF()

17

What’s __not__ well supported for ROOT I/O

• Pointers: Anything that requires Run (read time) Time Type Inference!
• e.g. TClonesArray that do not occupy a “splitted" branch

• Most prominent example:
class Base {…};
class Derived : public Base {…};
std::vector<Base*> someP2BaseVector;

• Most of the STL containers are supported (e.g. bitset).
• Apache Spark requires that the schema is known before the actual Query

Plan is built!

18

Avoiding what’s not supported

• CMSSW RECO/AOD/MINIAOD are one of the most complex examples of
ROOT files.

• Typical content is a bunch of UDF Classes + STL Containers.
• std::vector<framework::Particle>
• class Particle : public Parent { … std::map<std::string,

std::vector<framework::Hits> > };
• All of that works!

• Pointers are present but rare.

• A set of optimizations were included to prune away __RunTime__ Types.

19

Internals: spark-root

• Bootstrapping - a set of classes with predefined streaming logic.
• TKey, TFile…

• Byte Code Engineering Library (bcel) is used for JIT compilation of ROOT
classes

• root4j is the java code base that implements above
• Created by Tony Johnson
• >20 years of history - very old code base.

• Has been revived and bug fixed for proper reading of ROOT files
• spark-root builds on top of root4j and implements the proper TTree reading.

• scala code-base.

20

Optimizations: spark-root

• Internally:
• TTree => IR schema => Spark Schema (Struct Type)

• Several Optimizations are performed on the IR schema
• Nested Column Pruning (with https://github.com/apache/spark/pull/16578)

• once this PR is in, we will need to push an update on top to spark’s master.
• PR assumes parquet usage only, but has been tested to apply to our Data

Source as well
• Empty Rows Removal (parquet does not allow empty Groups!)
• Flatten out Base Classes
• Removal of Run Time Types (pointers) and Unknown/Null types.

• It’s possible that some types are not available: enums, hard-coded streaming
logic.

21

https://github.com/apache/spark/pull/16578

Anyone using spark-root?

• Given ROOT files => you can use it… no installation of anything.
• No need for Class Dictionaries…
• For Spark Applications - no special compilation procedures.

• Jars are on Maven Central.

• CMS Big Data Project
• Applying Apache Spark for processing of CMS Data
• Open Data Muonia Example Workflow

• Feature Engineering / ML Training
• Experimenting myself with using Apache Spark + ML Frameworks on top
• dist-keras, BigDL - anything that plugs on top.

22

Summary

• spark-root - Spark’s Data Source for ROOT File Format.

• Works!
• but currently has limitations.

• Very easy to use - no special knowledge - just use standard Apache Spark API.

• Very easy to get started - no installation.
• You do not have to install Scala or SBT!

• Very easy to scale out

23

General Outlook
• Nothing has been said about __current__ Apache Spark performance.

• Good scale-out
• Bad single thread performance

• Apache Spark is (seems to be) optimized for simple table structure
• For deeply nested structures like collection of physics objects -> not optimal. A lot of overhead!
• Databricks have additions to SQL for High Order Functions
• But they are not in spark/master…

• Very easy to port python based analyses (w/ or w/o ROOT)
• copy/paste and run!
• On Analytix we could even use ROOT Physics Classes since it’s visible across all the nodes.

• TLorentzVector…

24

General Outlook
• Apache Spark is young technology

• Quite Flexible Codebase

• Flare: flaredata.github.io
• Native Compilation of the Query Plan!
• No JVM overheads!

• scala-native: https://github.com/scala-native/scala-native

• scala-native = clang on top of LLVM - FrontEnd Compiler for Scala.
• Runs as fast as c++ based processing.
• Early stages of dev - but does work! Developed by Scala Center at EPFL!
• scala Language -> Multiple Compier FrontEnds: scala-js (JS in Browser) / scala-native (Native Executable) / scala

(JVM)
25

http://flaredata.github.io
https://github.com/scala-native/scala-native

The DEEP projects DEEP, DEEP-ER and DEEP-EST have received funding from the European Union’s Seventh Framework Programme for research, technological development
and demonstration under grant agreement no ICT-610476 and no ICT-287530 as well as the Horion2020 funding framework under grand agreement no. 754304.

26

