IIDEEP

Projects

HEP Data Processing with Apache Spark

Viktor Khristenko (CERN Openlab)

Outline LIDEEP

Projects

HEP Data Processing
ROOT I/O

Apache Spark

Data Ingestion

Data Processing
 What's supported?!

* Internals and Optimizations
e Summary
* General Outlook

Important Note LDEEP

 This talk is not about comparing ROOT File Format vs others (hdf5, parquet,
avro, etc.).

* The goal of this work is to experiment with the available off-shell general
purpose processing engines.

DEEP-EST Project LIDEEP

DEEP - Extreme Scale Technologies.

European Project aiming to build Modular Supercomputing Architecture.

Exascale HPC.

CERN Openlab is a collaborating partner.

HEP Data Processing LDEEP

c++ / python based

ROOT I/O

ROOT Histogramming Functionality

Batch Processing - Custom Workload Distribution

ROOT I/0 (IDEEP

Projects

* Columnar Data Format
 Very flexible and efficient!
« Self-descriptive - takes very few classes to bootstrap

« Storage of Arbitrary UDF classes

» Has both vector (SoA) and object (AoS) like layout for AoS depending on the
internals.

Apache Spark LDEEP

* General Purpose Processing Engine for both Batch and Streaming Processing

* lazy execution.
« JVM bytecode codegen and execution per query.

scala / java / python / R APIs

Very similar APl to TDataFrame, Panda’s Dataframes.

Easy scale-out of workflows.

No additional boiler plate for managing batches.
* Important for ML usually.

Data |ngeSti0n: Spark-root 0.1.15 on Maven Central! ///’,55?
« ROOT I/O for JVM.

» A completely separate code base. Huge Thanks to ROOT Team: Axel/Danilo/Philippe!
» There is almost 20-25 years old history of the JVM code base...

» Extends Spark’s Data Source API.

» Represents ROOT TTree as DataFrame (Dataset[Row]) upon entry.

* Asingle TTree => Dataset[Row]

« Parallelization = # files
« Partitioning could be improved

* Implementation (Data Source) is modeled after parquet implementation.

Data Ingestion: spark-root 0.1.15 on Maven Central! IIDEEP

Projects

* Download spark’s tar: https://spark.apache.org/downloads.html and unzip

« Start a scala shell:
+ ./bin/spark-shell --packages org.diana-hep:spark-root_2.11:0.1.15

 Or start a python shell:
« ./bin/pyspark --packages org.diana-hep:spark-root 2.11:0.1.15

« Start analyzing/processing

« Straight-forward integration with Jupyter/Zeppelin Notebooks (any other ones..)
.

https://spark.apache.org/downloads.html

Data Ingestion: spark-root 0.1.15 on Maven Centralt IIDEEP

Scala

/[import the implicit DataFrameReader

// read in a ROOT file
/] select a TTree by name [optional]
/[infer the schema

// Actual Data in the TTree is not read!

//.parquet()

Projects

Python

read in a ROQOT file

select a TTree by name [optional]

infer the schema

Actual Data in the TTree is not read!

Data IngeStiOn: Spark-root 0.1.15 on Maven Central! ///Dlgqgsp

/I pretty print of the schema # pretty print of the schema

| -- Particle: array (nullable = true)

| -- element: struct (containsNull = true)

| | -- fUniqueID: integer (nullable = true)
| | -- f£Bits: integer (nullable = true)
| | -- PID: integer (nullable = true)

| | -- Status: integer (nullable = true)
| | -- IsPU: integer (nullable = true)

| |-- M1l: integer (nullable = true)

| | -- M2: integer (nullable = true)

| | -- D1: integer (nullable = true)

| | -- D2: integer (nullable = true)

| | -- Charge: integer (nullable = true)
| | -- Mass: float (nullable = true)

| |-- E: float (nullable = true)
|

|

|

|

|

|

|

|

|

|

| -- Particle: array (nullable = true)
| | -- element: struct (containsNull = true) |
| fUniqueID: integer (nullable = true) |
| fBits: integer (nullable = true) |
| PID: integer (nullable = true) |
| Status: integer (nullable = true) |
| IsPU: integer (nullable = true) |
| Ml: integer (nullable = true) |
| M2: integer (nullable = true) |
| Dl: integer (nullable = true) |
| D2: integer (nullable = true) |
| Charge: integer (nullable = true) |
| Mass: float (nullable = true) |
| E: float (nullable = true)
| Px: float (nullable = true)
| Py: float (nullable = true)
| Pz: float (nullable = true)
| PT: float (nullable = true)
| Eta: float (nullable = true)
| Phi: float (nullable = true) |
| Rapidity: float (nullable = true) |
| |-- T: float (nullable = true)
| |-- X: float (nullable = true)
| |-- Y: float (nullable = true)
| |-- z: float (nullable = true)
-- Particle size: integer (nullable = true) |

| -- Px: float (nullable = true)
| -- Py: float (nullable = true)
| -- Pz: float (nullable = true)
| -- PT: float (nullable = true)
| -- Eta: float (nullable = true)
| -- Phi: float (nullable = true)
| -- Rapidity: float (nullable = true)
|-- T: float (nullable = true)
| -- X: float (nullable = true)
|-- Y: float (nullable = true)

| |-- z: float (nullable = true)

—- Particle size: integer (nullable = true)

Data Processing: Simple Example LIDEEP

* 50K events (rows) of 100 x 100 matrix

 Perform a total reduction |-- darr: array (nullable = true)

| | -- element: array (containsNull = true)

* 4GB uncompressed. ROOT file is ~106MB! - stement: doudie (Containstuil s true

read in the file

// read in the file
define a function to sum up

/[cast each Row to a 2D Array

// Perform the reduction
perform map (transformation) and reduce (action)

Data Processing: CMS Open Data Example LDEEP

* CMS Public 2010 Muonia Dataset
» Hundreds of top columns
* Very complicated nestedness: AoS of AoS
» Tested on TBs of data across > 1K input files
« on CERN’s Analytix Cluster
» Transparent for scale-out. Just a glob operation
* http://opendata.cern.ch/record/10

» Calculate the invariant mass of a di-muon system
and histogram

| -- patMuons slimmedMuons RECO : struct (nullable = true)

|-- present: boolean (nullable = true)
| -- patMuons_ slimmedMuons RECO obj: array (nullable = true)

|-- element: struct (containsNull = true)

| | -- m state: struct (nullable = true)

| | -- vertex : struct (nullable = true)

| | -- fCoordinates: struct (nullable = true)
| | |-- £X: float (nullable = true)

| | |-- fY: float (nullable = true)

| | |-- £Z: float (nullable = true)

| -- p4Polar : struct (nullable = true)

| | -- fCoordinates: struct (nullable = true)
| | -- fPt: float (nullable = true)

| |-- fEta: float (nullable = true)

| | -- fPhi: float (nullable = true)

| |-- £M: float (nullable = true)

| _: integer (nullable = true)

| _: integer (nullable = true)

| -- status_: integer (nullable = true)

http://opendata.cern.ch/record/10

L
Data Processing: CMS Open Data Example LDEEP

Histogram of the Types present in the Schema

 CMS Public 2010 Muonia Dataset

* Hundreds of top columns

» Very complicated nestedness: AoS of AoS

« Tested on TBs of data across > 1K input files
« on CERN'’s Analytix Cluster

« Transparent for scale-out. Just a glob operation

» http://opendata.cern.ch/record/10

e Calculate the invariant mass of a di-muon
system and histogram

1.3k 4

1.2k

data type

http://opendata.cern.ch/record/10

Data Processing: CMS Open Data Example LDEEP

read in the data

108 mass

count the number of rows:

107 } -

select only muons

map each event to an invariant mass
inv_masses = muons.rdd.filter(lambda row: row.muons.size==2)

Use histogrammar to perform aggregations

0 50 100 150 200

15
https://github.com/diana-hep/spark-root/blob/master/ipynb/publicCMSMuonia_exampleAnalysis wROOT.ipynb

Data Processing: Feature Engineering LDEEP

« Simulated Events with: * For each event, build a 2D matrix of features from
» Tracks, Hadrons, Photons, Electrons, Muons * N tracks/hadrons/photons/1lepton
» Aglimpse of the input schema: » For each such matrix, build an image and train:

| -- Particle: array (nullable = true) v
| | -- element: struct (containsNull = true)

| fUniqueID: integer (nullable = true) F " =
fBits: integer (nullable = true) ‘ . ”’
P

PID: integer (nullable = true) ',

|

|

| Status: integer (nullable = true)

| IsPU: integer (nullable = true) 0 >
| Ml: integer (nullable = true)

| M2: integer (nullable = true)

| D1: integer (nullable = true)

| D2: integer (nullable = true)

| Charge: integer (nullable = true)

| Mass: float (nullable = true)

| E: float (nullable = true)

| Px: float (nullable = true)
|
|
|
|
|
|
|
|
|

Py: float (nullable true)
Pz: float (nullable true)
PT: float (nullable true)
Eta: float (nullable true)
Phi: float (nullable true)

Rapidity: float (nullable = true)

T: float (nullable
X: float (nullable
Y: float (nullable

: float (nullable

true)
true)
true)
true)

Data Processing: Feature Engineering LDEEP

« Simulated Events with: « Step1: For each event, build a 2D matrix of features
from

* N tracks/hadrons/photons/1lepton
« Step2: For each such matrix, build an image and train:

 Tracks, Hadrons, Photons, Electrons, Muons

* Pipeline is quite simple:

What’s __not__ well supported for ROOT I/O LIDEEP

Projects

 Pointers: Anything that requires Run (read time) Time Type Inference!
» e.g. TClonesArray that do not occupy a “splitted" branch

* Most prominent example:
class Base {...};
class Derived : public Base {...};
std::vector<Base*> someP2BaseVector;

* Most of the STL containers are supported (e.g. bitset).
 Apache Spark requires that the schema is known before the actual Query

Plan is built!

Avoiding what’s not supported (IDEEP

« CMSSW RECO/AOD/MINIAQOD are one of the most complex examples of
ROOT files.

 Typical content is a bunch of UDF Classes + STL Containers.
* std::vector<framework::Particle>

» class Particle : public Parent { ... std::map<std::string,
std::vector<framework::Hits> > };

 All of that works!
» Pointers are present but rare.

A set of optimizations were included to prune away _ RunTime _ Types.

Internals: spark-root LIDEEP

Projects

Bootstrapping - a set of classes with predefined streaming logic.
* TKey, TFile...

Byte Code Engineering Library (bcel) is used for JIT compilation of ROOT
classes

root4] is the java code base that implements above

» Created by Tony Johnson
« >20 years of history - very old code base.
Has been revived and bug fixed for proper reading of ROOT files
spark-root builds on top of root4j and implements the proper TTree reading.
 scala code-base.

Optimizations: spark-root LDEEP

* Internally:
« TTree => IR schema => Spark Schema (Struct Type)
« Several Optimizations are performed on the IR schema
* Nested Column Pruning (with https://github.com/apache/spark/pull/16578)
« once this PR is in, we will need to push an update on top to spark’s master.

PR assumes parquet usage only, but has been tested to apply to our Data
Source as well

« Empty Rows Removal (parquet does not allow empty Groups!)
 Flatten out Base Classes

« Removal of Run Time Types (pointers) and Unknown/Null types.

* It's possible that some types are not available: enums, hard-coded streaming
logic.

https://github.com/apache/spark/pull/16578

Anyone using spark-root? (IDEEP

« Given ROOT files => you can use it... no installation of anything.
* No need for Class Dictionaries...
» For Spark Applications - no special compilation procedures.
 Jars are on Maven Central.

« CMS Big Data Project
* Applying Apache Spark for processing of CMS Data
* Open Data Muonia Example Workflow

« Feature Engineering / ML Training
« Experimenting myself with using Apache Spark + ML Frameworks on top
» dist-keras, BigDL - anything that plugs on top.

Summary (IDEEP

Projects

» spark-root - Spark’s Data Source for ROOT File Format.

 \Works!

* but currently has limitations.

* Very easy to use - no special knowledge - just use standard Apache Spark API.

* \Very easy to get started - no installation.
* You do not have to install Scala or SBT!

* Very easy to scale out

General Outlook ///”55?

* Nothing has been said about current_ Apache Spark performance.
» Good scale-out
» Bad single thread performance

» Apache Spark is (seems to be) optimized for simple table structure
* For deeply nested structures like collection of physics objects -> not optimal. A lot of overhead!
 Databricks have additions to SQL for High Order Functions
» But they are not in spark/master...

* Very easy to port python based analyses (w/ or w/o ROOT)
» copy/paste and run!

* On Analytix we could even use ROOT Physics Classes since it’'s visible across all the nodes.
» TLorentzVector...

General Outlook IIDEEP

Projects

« Apache Spark is young technology
 Quite Flexible Codebase

* Flare: flaredata.qithub.io
« Native Compilation of the Query Plan!
* No JVM overheads!

e scala-native: nhttps://github.com/scala-native/scala-native

 scala-native = clang on top of LLVM - FrontEnd Compiler for Scala.
 Runs as fast as c++ based processing.

» Early stages of dev - but does work! Developed by Scala Center at EPFL!

« scala Language -> Multiple Compier FrontEnds: scala-js (JS in Browser) / scala-native (Native Executable) / scala
(JVM)

25

http://flaredata.github.io
https://github.com/scala-native/scala-native

IIDEEP

Projects

The DEEP projects DEEP, DEEP-ER and DEEP-EST have received funding from the European Union’s Seventh Framework Programme for research, technological development
and demonstration under grant agreement no ICT-610476 and no ICT-287530 as well as the Horion2020 funding framework under grand agreement no. 754304.

