
Available on CMS information server CMS CR -2018/318

The Compact Muon Solenoid Experiment

Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Conference Report
28 October 2018

Using Big Data Technologies for HEP analysis

Matteo Cremonesi for the CMS Collaboration

Abstract

The HEP community is approaching an era were the excellent performances of the particle accelerators
in delivering collision at high rate will force the experiments to record a large amount of information.
The growing size of the datasets could potentially become a limiting factor in the capability to produce
scientific results timely and efficiently.Recently, new technologies and new approaches have been de-
veloped in industry to answer to the necessity to retrieve information as quick as possible by analyzing
PB and EB datasets. Providing the scientists with more modern computing tools will lead to rethink-
ing the principles of data analysis in HEP, making the overall scientific process faster and smoother.
In this talk, we are presenting the latest developments and the most recent results on the usage of
Apache Spark for HEP analysis. The study aims at evaluating the efficiency of the application of the
new tools both quantitatively, by measuring the performances, and qualitatively, focusing on the user
experience. The first goal is achieved by developing a data reduction facility working together with
CERN Openlab and Intel, CMS replicates a real physics search using Spark-based technologies, with
the ambition of reducing 1 PB of public data collected by the CMS experiment to 1 TB of data in a
format suitable for physics analysis in 5 hours. The second goal is achieved by implementing multiple
physics use-cases in Apache Spark using in input preprocessed datasets derived from official CMS
data and simulation. By performing different end-analyses up to the publication plots on different
hardware, feasibility, usability and portability are compared to the ones of a traditional ROOT-based
workflow.

Presented at CHEP 2018 Computing in High-Energy Physics 2018



Using Big Data Technologies for HEP Analysis

Oliver Gutsche2, Luca Canali1, Illia Cremer4, Matteo Cremonesi2,
Vasileios Dimakopoulos1, Peter Elmer5, Ian Fisk3, Maria Girone1,
Siew-Yan Hoh7, Bo Jayatilaka2, Jim Kowalkowski2, Viktor
Khristenko1, Andrew Melo6, Evangelos Motesnitsalis1, Jacopo
Pazzini7, Jim Pivarski5, Saba Sehrish2, Kacper Surdy1, Alexey
Svyatkovskiy5, Marco Zanetti7

1European Organization for Nuclear Research CERN, Geneva, Switzerland
2Fermi National Accelerator Laboratory, Batavia, IL, USA
3Flatiron Institute of the Sions Foundation, New York, NY, USA
4Intel Corp.
5Princeton University, Princeton, NJ, USA
6Vanderbilt University, Nashville, TN, USA
7University of Padova, Padova, Italy

E-mail: matteoc@fnal.gov

Abstract. The HEP community is approaching an era were the excellent performances of
the particle accelerators in delivering collision at high rate will force the experiments to record
a large amount of information. The growing size of the datasets could potentially become a
limiting factor in the capability to produce scientific results timely and efficiently. Recently, new
technologies and new approaches have been developed in industry to answer to the necessity
to retrieve information as quick as possible by analyzing PB and EB datasets. Providing the
scientists with more modern computing tools will lead to rethinking the principles of data
analysis in HEP, making the overall scientific process faster and smoother.

In this talk, we are presenting the latest developments and the most recent results on
the usage of Apache Spark for HEP analysis. The study aims at evaluating the efficiency
of the application of the new tools both quantitatively, by measuring the performances, and
qualitatively, focusing on the user experience. The first goal is achieved by developing a data
reduction facility: working together with CERN Openlab and Intel, CMS replicates a real
physics search using Spark-based technologies, with the ambition of reducing 1 PB of public
data collected by the CMS experiment to 1 TB of data in a format suitable for physics analysis
in 5 hours.

The second goal is achieved by implementing multiple physics use-cases in Apache Spark
using in input preprocessed datasets derived from official CMS data and simulation. By
performing different end-analyses up to the publication plots on different hardware, feasibility,
usability and portability are compared to the ones of a traditional ROOT-based workflow.

1. Introduction
The scientific method is based on comparing predictions to experimental data, in order to confirm
or disprove new theories. In high energy physics (HEP), such data are collected by experiments
that can detect fundamental particles once they are produced in the collision of beams provided
by accelerators like the LHC at CERN.



Particle detection is an extremely complicated process. It consists in recording the physics
quantities (like energy or flight path) of the particles generated in a collision. Such quantities are
measured by the interaction of the particles with the different components of the detector used
to perform the experiment. Given the complexity of the detector design, this process involves
performing almost one hundred million independent measurements. All the measurements that
happen in a single collision are collectively called event.

The event is the unit which the whole HEP analysis process is based on. Event by event,
detector signals (as well as simulated signals) must be converted into the physics properties
associated to the particles that produced them. Complex algorithms are applied in order to
reconstruct such information. This step is computationally expensive and it is usually organized
centrally by each experiment, in order to make the best use of the available resources and to
best serve the need of the researchers and the priorities of the experiment. The reconstructed
events are provided to the collaboration of physicists in a shared format that is the input to the
final analysis.

Usually the total size of the datasets as provided by central processing is too large to allow
for interactive analysis. Researchers or groups of researchers exploring similar physics questions
rely on several steps of data processing, filtering unnecessary events and eliminating unnecessary
variables from the original datasets to get a manageable sub-sample. The optimization of this
process is left to the individual.

In the next years the experiments at CERN will face a substantial increase in the data
production rate due to a planned major upgrade of the accelerators. In order to ensure continuity
in the production of high quality scientific results, the inefficiencies that are affecting the current
analysis approach must be trimmed. The need to investigate alternative possibilities to perform
physics analysis in a more efficient way is therefore becoming imperative.

Recently, new toolkits and systems have emerged outside of the HEP community to
analyze Petabyte and Exabyte datasets in industry, collectively called ”Big Data.” These new
technologies use different approaches and promise a fresh look at analysis of extremely large
datasets.

In this paper, we focus on the application of Apache Spark [1] to the HEP analysis problem.
We incorporate lessons learned from our previous investigations [2] as well as new tools developed
to enable HEP analysis in Apache Spark. Scalability and usability studies are performed and
the latest findings are presented.

2. The Traditional Analysis Workflow and Its Limitations
The traditional HEP analysis workflow is based on the usage of the ROOT framework [4], a
general, experiment-independent C++ toolkit. It provides statistical tools and a serialization
format to persist reconstructed and transformed objects in files.

The centrally-produced datasets are provided in ROOT format, with a file-based data
representation and a class structure with branches. The data management systems do not allow
to extract branches efficiently from nested ROOT files, therefore physicists set up workflows
that involve several steps of data processing, each one of them staging out intermediate outputs.

A first step of ntupling is performed in order to modify the event content. Immutable branches
are duplicated in a disk-to-disk copy that contains new needed branches, while unused ones are
removed. At this stage, the information is selected to serve a smaller group of researchers
performing similar measurements or searches. Although the total size of the output is smaller,
it is still too big to allow for interactive analysis.

A second step that involves dropping uninteresting events (skimming) or additional unused
branches (slimming) is therefore necessary to limit latencies. The output is a disk-to-disk copy
where the immutable information is once again duplicated, but the class structure is translated
into a ”flat” format, in which events are rows of a table with primitive numbers or arrays of



Table 1. The results of scalability tests for different input size
Input Size Execution Time

22 TB 58 min
44 TB 83 min
66 TB 149 min
88 TB 180 min
110 TB 212 min

numbers as columns. At this stage, the information is usually selected to serve the scope of a
single analysis. The size is reduced by an order of magnitude. Quantities from the final ntuples
are aggregated and plotted as histograms.

These steps require the usage of grid and batch resources to exploit parallelization. Significant
burden of tedious and time-consuming manual bookkeeping and failure re-submission is put
on the individual analyst or analysis groups, that produces an inefficient job splitting, with
suboptimal parallelization. This results in a convoluted approach that limits interactivity. The
analysis frameworks that support such workflows are group- or analysis-specific, often hardware-
specific, limiting the portability and stimulating the multiplication of individual codes with
similar functionalities. The duplication of immutable branches that happens at each stage of
the workflow brings significant usage of storage space, making such an approach not sustainable
on the long run.

3. The Scalability Test
In a previous usability study [2] of Apache Spark, we implemented an analysis workflow by
converting data into the AVRO [7] format and uploaded it to the HDFS [8] file system of our
development cluster. The biggest impediment to use the new technology as identified by the
analysts was the need to convert the data in the new format.

To enable Apache Spark to understand the data structures of the ROOT files more directly,
we developed a library called spark-root [11]. It is based on a Java-only implementation of
the ROOT I/O libraries which offers the ability to translate ROOT data structures into Spark
DataFrames (DFs) and RDDs. This enables Apache Spark to read ROOT files directly from
HDFS and also from the EOS [12] storage system through a new Hadoop-xrootd connector [13].
The EOS is an open source distributed disk storage system in production since 2011 at CERN.
The Hadoop-XRootD Connector allows the communication between the EOS and Hadoop.
Specifically, it is a Java library that access files directly through the xrootd protocol [14] without
the need to import/export to HDFS.

In this paragraph, tests of performance, efficiency and scalability of the new tools are
performed. A Spark workflow that reproduces a real physics measurement is ran on the analytix
cluster at CERN. The infrastructure is comprised of almost 1300 cores and 7TB of RAM. The
input is public data collected by the CMS experiment in 2011, stored as ROOT files on the EOS
at CERN.

The test is performed by executing the workflow for different size of the input data, in order to
understand how the execution time scales with input size. As a second step, the same workflow
is executed for a specific input size while scaling up the available resources (executors/cores).
The tests were repeated for two different instances of the EOS storage, namely EOS Public and
EOS UAT, in order to identify if the network throughput and the storage infrastructure affect
the performances.

Table 1 and Fig. 1 show a linear dependence between the input size and the execution time.
The system is able to reduce 110 TBs in 212 minutes with no further optimization.



Figure 1. Performance for different input size

Table 2. The results from scaling up the memory
Number of Executors/Cores Total Memory Execution Time

74/148 0.5TB 81 min
148/296 1TB 53 min
222/444 1.5TB 52 min
296/592 2TB 51 min
370/740 2.5TB 50 min
444/888 3TB 50 min

Figure 2. Performance for different memory size

Table 2 and Fig. 2 show the results as a function of the allocated memory, obtained by
adjusting the number of executors and fixing the memory per executor to 7GB. A plateau in
the performance is reached at a specific memory value.

Table 3 and Fig. 3 show a similar trend when performances are tested scaling up the number
of cores. This effect is caused by the saturation of the available network bandwidth. It is also
evident when monitoring the total throughput of the network, as shown in Table 4 and Fig. 4.

The network does not seem to be able to fetch files fast enough to adapt to the scaling
computing resources. The new resources are waiting to be used when the files are ready for
processing, resulting in a network bound workflow. This effect has been investigated and a
defect of the Hadoop-XRootD connector in reading files from EOS has been found. The issue



Table 3. The results from scaling up the number of cores
Number of Executors/Cores EOS public EOS UAT HDFS

111/222 81 min 153 min 41 min
222/444 52 min 146 min 35 min
296/592 51 min 144 min 33 min
407/814 50 min 140 min 29 min

Figure 3. Performance for different number of cores

Table 4. Network throughput when scaling the resources

Cores EOS public EOS UAT

222 15GBytes/s 6GBytes/s
444 19GBytes/s 7.5GBytes/s
592 21GBytes/s 7.5GBytes/s
814 21GBytes/s 7.5GBytes/s

Figure 4. Network Throughput while scaling the resources



Table 5. Aggregate results of re-executing tests by scaling up the input data size on EOS
public, EOS UAT

Input EOS PUBLIC EOS UAT

22 TB 16 mins 13 mins
44 TB 30 mins 25 mins
66 TB 38 mins 38 mins
88 TB 48 mins 57 mins
110 TB 56 mins 59 mins

Figure 5. Performance of the tests for different input size with new Hadoop-XRootD connector
configuration on EOS public, UAT

Table 6. Aggregate results of re-executing tests by scaling up the memory on EOS public, EOS
UAT

Input Memory EOS PUBLIC EOS UAT

22 TB 0.5 TB 32 mins 21 mins
22 TB 1 TB 28 mins 16 mins
22 TB 1.5 TB 16 mins 15 mins
22 TB 2 TB 16 mins 13 mins
22 TB 2.5 TB 16 mins 13 mins

was caused by the buffer size used to read the files from the storage service. It was set to 32MB
and it resulted in an unnecesary collection of data from file, increasing the network throughput.
The buffer size was decreased to 128 KB and all the tests re-executed for both the EOS public
and the EOS UAT instances. The final results are summarized in Tables 5-7 and Figs. 5-7.

The dependences are linear as expected, with a smoother scaling and a smaller slope. The
new results show a significant significant improvement, proving the capability to reduce 110 TB
of data in less than an hour.

4. The Usability Study
The main goal of the usability test described in this section is testing the user experience, from
the ability to setup and run a Spark-based analysis workflow to the portability of such workflow



Figure 6. Performance of the tests for different memory with new Hadoop-XRootD Connector
configuration on EOS public, UAT

Table 7. Aggregate results of re-executing tests by scaling up the cores on EOS public, EOS
UAT

Input Cores EOS PUBLIC EOS UAT

22 TB 222 31 mins 17 mins
22 TB 444 19 mins 13 mins
22 TB 592 16 mins 13 mins
22 TB 814 16 mins 13 mins

Figure 7. Performance of the tests for different number of cores with new Hadoop-XRootD
Connector configuration on EOS public, UAT



to different use cases and, most importantly, different hardware.
To perform this test, two similar workflows tuned to run on different clusters were ran. A

Spark cluster at Vanderbilt University was used. It consists in 1000 cores with 5 TB of RAM. A
second cluster hosted at the University of Padova, with 40 cores and 16 GB of RAM, was also
employed in this test. The two workflows shared a similar structure: load standard ROOT files
as Spark DFs making use of the spark-root library, open them over xrootd with the Hadoop-
xrootd connector, use Spark to transform DFs and aggregate them into histograms with the
Histogrammar [10] package, produce plots and tables from the histograms.

The first step of the test consisted in verifying how easily such workflow can be set up by a
newcomer. A first year undergraduate student in computer science, with no physics knowledge
and limited computing knowledge, approached the issue. Starting from scratch, he was able
to learn the basic functionalities of the new tools and run the entire workflow in a day. The
simplicity of the Spark workflow to be set up in a short timescale is a clear advantage when
compared to the timescale that is needed for a newcomer once approaching the classical ROOT-
based workflow.

The second step consisted in adapting to the Vanderbilt cluster the workflow tuned to run
at the Padova cluster. The major showstopper encountered was the environment setup. This
can be solved developing a shared library that generalizes the site configuration. Additional
improvement is also required for the packaging of the Hadoop-xrootd connector in order to make
the tool more automatically deployable, avoiding manual configuration. Both the developments
are currently a work in progress.

5. Conclusions
We presented studies of executing the traditional HEP analysis workflow on Apache Spark.
The efficiency of the application of the new tools has been evaluated both quantitatively, by
measuring the performances, and qualitatively, focusing on the user experience. Our studies
identified some bottlenecks and underlined the need to scale up the Spark infrastructure and to
generalize the site configuration. The scaling behavior results are promising and they are only
a factor of two from the original goal of reducing 1 PB to 5 hours, reasonably achievable with
more hardware and further software optimizations.

6. Acknowledgments
We would like to thank the CMS collaboration and the LHC to provide the data for the use
case and the ROOT based workflow. This work was partially supported by Fermilab operated
by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United
States Department of Energy, and by the National Science Foundation under grant ACI-1450377
and Cooperative Agreement PHY-1120138.

References
[1] Zaharia M, Chowdhury M, Franklin M J, Shenker S and Stoica I 2010 Proceedings of the 2Nd USENIX

Conference on Hot Topics in Cloud Computing HotCloud’10 (Berkeley, CA, USA: USENIX Association)
pp 10–10 URL http://dl.acm.org/citation.cfm?id=1863103.1863113

[2] Gutsche O, Cremonesi M, Elmer P, Jayatilaka B, Kowalkowski J, Pivarski J, Sehrish S, Surez C M,
Svyatkovskiy A and Tran N 2017 CoRR abs/1703.04171 URL http://arxiv.org/abs/1703.04171

[3] Elmer P, Hegner B and Sexton-Kennedy L 2010 J. Phys. Conf. Ser. 219 032022
[4] Brun R and Rademakers F 1997 Nuclear Instruments and Methods in Physics Research Section

A 389 81 – 86 ISSN 0168-9002 new Computing Techniques in Physics Research V URL
http://www.sciencedirect.com/science/article/pii/S016890029700048X

[5] Chatrchyan S e a (CMS Collaboration) 2008 JINST 3 S08004
[6] Evans L and Bryant P 2008 Journal of Instrumentation 3 S08001 URL

http://stacks.iop.org/1748-0221/3/i=08/a=S08001

[7] Apache avro URL http://avro.apache.org



[8] Shvachko K, Kuang H, Radia S and Chansler R 2010 Proceedings of the 2010 IEEE 26th Symposium on Mass
Storage Systems and Technologies (MSST) MSST ’10 (Washington, DC, USA: IEEE Computer Society)
pp 1–10 ISBN 978-1-4244-7152-2 URL http://dx.doi.org/10.1109/MSST.2010.5496972

[9] Scala URL http://www.scala-lang.org

[10] Pivarski J, Svyatkovskiy A, Schenck F and Engels B 2016 histogrammar-python: 1.0.0 URL
https://doi.org/10.5281/zenodo.61418

[11] Khristenko V and Pivarski J 2017 diana-hep/spark-root: v0.1.14 pre1 release URL
https://doi.org/10.5281/zenodo.1019880

[12] Eos: Large disk storage at cern URL https://eos.web.cern.ch

[13] Motesnitsalis V hadoop-xrootd-connector URL https://gitlab.cern.ch/awg/hadoop-xrootd-connector

[14] Dorigo A, Elmer P, Furano F and Hanushevsky A 2005 Xrootd- a highly scalable architecture for data access
WSEAS Transactions on Computers

[15] Apache parquet URL https://parquet.apache.org/

[16] Mascetti L, Labrador H G, Lamanna M, Mościcki J and Peters A 2015 Journal of Physics: Conference Series
664 062037 URL http://stacks.iop.org/1742-6596/664/i=6/a=062037

[17] Cern openlab/intel cms big data project URL https://cms-big-data.github.io


