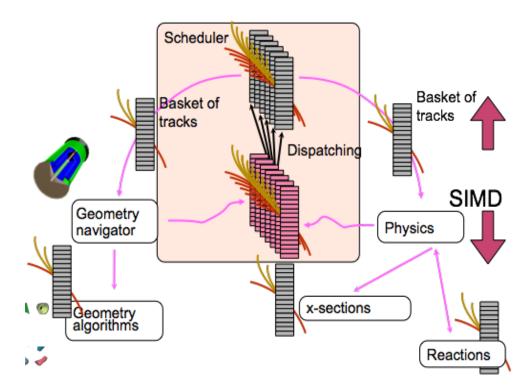
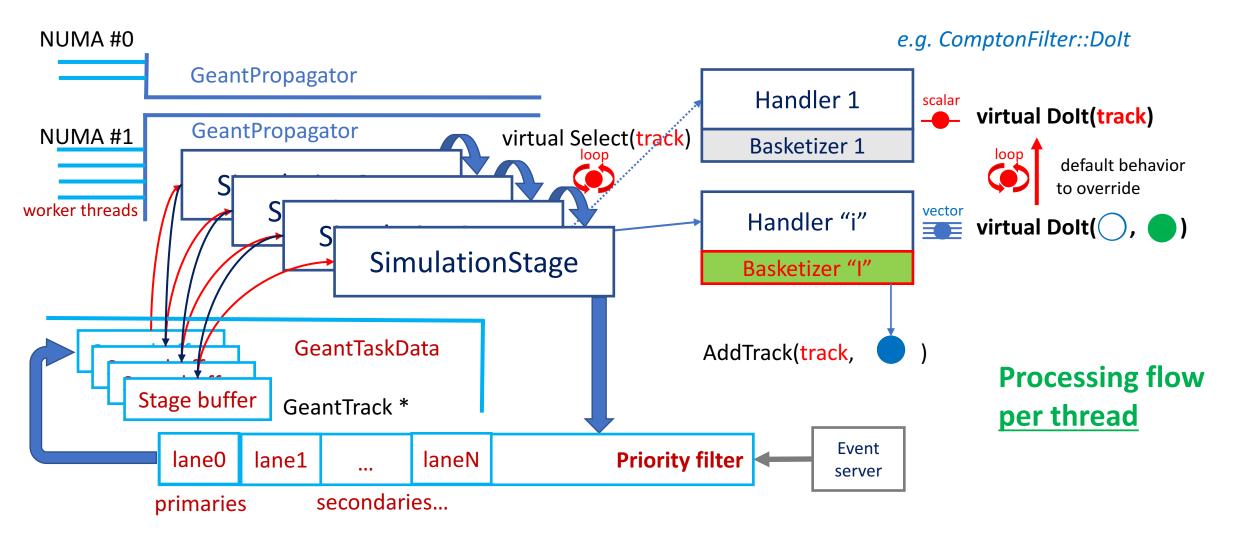


Intel Parallel Computing Centers

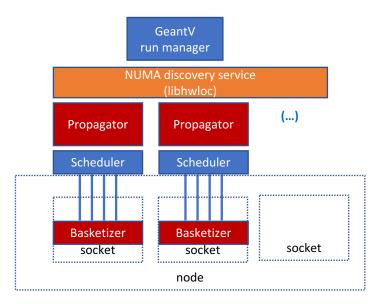
GeantV

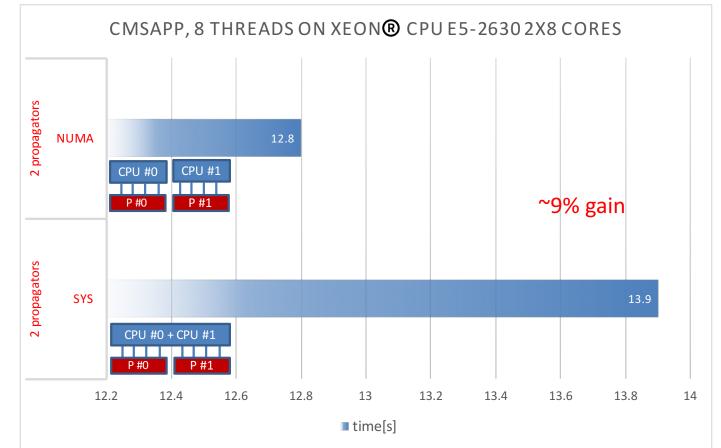
-Intel code modernization-

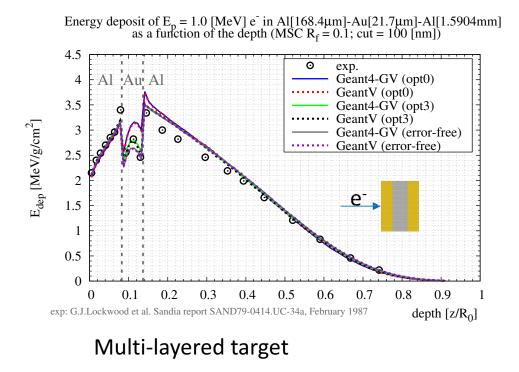

CERN openlab Open Day

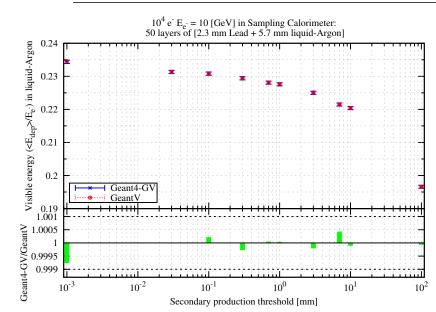

GeantV: modernizing detector simulation

- More than 50% of WLCG power used for simulations
 - The need for simulated samples will increase with luminosity
 - Faster full simulation & more fast simulation !
- GeantV: path towards a faster toolkit using more efficiently CPU resources
 - SIMD and NUMA topology aware, more cache friendly
 - More generic fast simulation integrated with full simulation
- Alpha and beta releases (2017 and 2018)
 - Deliver early a product for the community to test/adopt


Aim for a 3x-5x faster code


GeantV v3: A generic vector flow approach


NUMA awareness vs. OS policy


- Topology detection using *hwloc*
- A propagator will use threads bound to the same NUMA node

EM Physics models in GeantV

	e^{-}/e^{+} : ionisation, bremsstrahlung, msc; γ : Compton, conversion								
	GeantV				Geant4				
material	$E_{d}[GeV]$	rms [MeV]	tr.l. [m]	rms [cm]	$E_{d}[GeV]$	rms [MeV]	tr.l. [m]	rms [cm]	
Pb	0.69450	15.198	51.015	1.189	0.69448	15.234	51.016	1.192	
lAr	0.22792	14.675	106.11	7.592	0.22796	14.656	106.13	7.582	

10^5 1 [GeV] e- in ATLAS bar. simpl. cal. : 50 layers of [2.3 mm Pb + 5.7 mm lAr]; p.cut = 0.7 [mm]

Mean number of :

gamma	405.87	406.15	
electron	9411.49	9419.44	
positron	53.77	53.71	
charged steps	11470	11476	
neutral steps	49177	49222	

ATLAS simplified sampling calorimeter

Geant4 GAN generated 0.05 0.04 0.03 0.02 Shower longitudinal section 0.01 Single energy 0.06 response 0.04 100 GeV electrons

R&D: ML prototype for fast simulation

- Fast simulation "hooks" à la G4 designed according to v3 flow
 - First implementation of the user interfaces
- First ML prototype for simulation of high granularity calorimeters
 - Complete GAN based model for the simulation of particle showers in calorimeter (including particle type, energy, and trajectory)
 - First algorithm meta-optimization according to calorimeter geometry
- Integration of the inference step as simulation stage
- TensorFlow + KERAS -> Neon -> Ngraph

Next steps

- Deliver the alpha release in December 2017
 - Vectorization for some components: geometry, field propagation
 - Examples to demonstrate GeantV use and integration with experimental frameworks
 - Fast simulation ML prototype and integration of fast sim stages in GeantV
- Prepare for the beta release
 - Vectorization of physics models
 - Hadronic physics
 - Production-ready geometry
 - Examples demonstrating ML-based fast simulation usage for different detector types