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Outline

´ Introduction
´ Detector Simulation and  fast simulation
´ A general framework: Deep Learning tool for fast simulation

´ Simulation as an image reconstruction problem
´ Generative Adversarial Networks (GAN)
´ Some examples

´ Summary & Outlook
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Simulation in HEP

´ Detailed simulation is essential from detector 
R&D to data analysis

´ Large statistics are generally needed to reduce 
systematic errors or study rare signals

´ Complex physics and geometry modeling

´ Heavy computation requirements, strongly 
CPU-bound

´ More than 50% of WLCG power is used for 
simulations
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200 Computing centers in 20 countries: > 600k cores

@CERN (20% WLCG): 65k processor cores ; 30PB disk + >35PB tape storage 

Fabbri, LPCC

ATLAS 



The problem

High Luminosity LHC

´ Higher Luminosity → higher statistics → 
smaller simulation errors → larger MC 
statistics (.. and precise physics 
modelling) 
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Campana, CHEP 2016

Other communities 
share similar needs:

´ Intensity frontier 
experiments need 
to have detailed 
description of larger 
phase spaces

ATLAS computing needs



Speeding up simulation

Several initiatives are on-going 
´ Introduce multi-threading and/or  task based approach (GaudiHive, 

GaudiMP, Geant4 Multi-threading)
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Asai, LPCC

Geant4



Speeding up simulation

´ Mix data to simulation (pile-up overlay techniques) to reduce CPU time and 
memory
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Haas, CHEP 2016



Speeding up simulation

´ Introduce fine grained parallelism
´ GEANTV aims at x5 speedup through vectorisation, concurrency, locality
´ Improved geometry algorithms:  VecGeom library developed for GEANTV 

(also available to GEANT4 and ROOT)
´ New SIMD library (VecCore)
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S.V., PASC17

see A: Gheata talk on GeantV
and G. Amadio poster on VecCore

VecGeom vectorisation
speedup measured on 

Intel Xeon Phi



Going beyond: Fast Simulation

´ Already used for searches, upgrade studies,…

´ Different techniques

´ Shower libraries (pre-simulated EM showers, fwd
calorimeters in ATLAS/CMS)

´ Shower shapes parametrizations (GFlash,..) 

´ Fast trackers simulation (ATLAS FATRAS, .. )

´ Look-up tables

´ Fully parametrized simulation (DELPHES)

´ Different performance

´ Different speed improvements (x10 - x1000)

´ Different levels of accuracy (~10% wrt full sim)
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Zaborowska, CHEP2016

FCChh

ATLAS

Choice is “experiment” dependent!



A generic framework for fast simulation

´ MC need to integrate fast simulation 

´ GEANT4 has mechanism to mix fast and full 
simulation: user-defined models within 
“envelopes” à few use it

´ Towards a  common framework providing

´ Algorithms and tools

´ Mechanism to mix fast and full simulation 
according to particle type and detector

´ R&D within GeantV to develop a  generic fully 
customizable fast sim framework
´ Deep Learning  based

FCC Gaudi framework

9

• Full Sim 600 HS06.s (curr
3-5 times that )

• Fast Sim 10% of Full Sim
Assumption

year

Bozzi, CHEP 2016

LHCb

Zaborowska, CHEP2016



Deep Learning for fast sim10

Energy 
depositions 
in cells

Particle type, 
mometum, 
pseudorapidity, 
detector 
geometry..

EX. SIMULATION OF A CALORIMETER



Deep Learning for fast sim

´ Generic approach
´ Can encapsulate expensive computations 
´ DNN inference step is generally faster than algorithmic approach
´ Already parallelized and optimized for GPUs/HPCs. 
´ Industry building highly optimized software, hardware, and cloud services. 
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A precursor - Falcon

´ Turbosim (B. Knuteson) developed at the Tevatron
´ Falcon: Modern version (Gleyzer at al., 1605.02684) 
´ Consists of two parts:

´ Builder: Non-parametric representation of the 
detector response function obtained from FullSim
events. 

´ Uses a k-d tree to bin the generated objects in the 
lookup table. 

´ Simulator: Uses events in the parton level to simulate 
reconstruction level events. Leading jet pT from

events
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Ultra-fast, self-tuning, non-parametric simulation based on lookup tables that 
directly map generated events into simulation events



Generative Models13



Generative models
The problem:
´ Assume data sample follows pdata distribution 
´ Can we draw samples x from distribution  pmodel such that pmodel ≈ pdata?

A  well known solution:
´ Assume some form for pmodel, using prior knowledge and 

parameterized by θ
´ Find the maximum likelihood estimator

14

´ Draw samples from pθ∗

´ Generative models don’t assume any prior form for  pmodels

´ Use Neural Networks instead



Generative models for simulation
Many models: Generative Stochastic Networks, Variational Auto-Econders, 
Generative Adversarial Networks ..
´ Realistic generation of samples
´ Use complicated probability distributions
´ Optimise multiple output for a single input
´ Can do interpolation
´ Work well with missing data

Ranzato, Susskind, Mnih, Hinton, IEEE CVPR 2011
https://arxiv.org/pdf/1605.05396.pdf
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Questions: 

Can imaging approaches be useful? 
´ Can we keep accuracy while doing things faster? 
´ Can we sustain the increase in detector complexity 

(future highly-granular calorimeters are more 
demanding)? 

´ What resources are needed?
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Generative adversarial networks

´ Generator learns to generate 
data starting from random 
noise

´ Discriminator learns how to 
distinguish real data from 
generated data

The counterfeiter/police case
´ Counterfeiter shows police the fake money
´ Police says it is fake and gives feedback 
´ Counterfeiter makes new money based on feedback
´ Iterate until police is fooled
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arXiv:1406.2661v1 

Simultaneously train two networks that compete and cooperate with each other: 



Generative adversarial training
Generator is trained to maximize the probability of Discriminator making a mistake
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arXiv:1406.2661v1 

G and D don’t 
improve anymore.
D is unable to 
differentiate

D is not an 
accurate 
classifier

D is trained to 
discriminate samples 
from data

D gradient guides G to 
regions more likely to 
be classified as data



Many GAN flavors

arXiv:1610.0958

´ Original GAN was based on MLP in 
2014

´ Deep Convolutional GAN in 2015
´ Conditional GAN 

´ Extended to learn a parameterized 
generator pmodel(x|θ); 

´ Useful to obtain a single generator 
object for all θ configurations

´ Interpolate between distribution
´ Auxiliary Classifer GAN

´ D can assign a class to the image
arXiv: 1411.1784
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Applications20



LAGAN & CaloGAN

21

See Paganini 
and de Oliveira  
talks in parallel 

sessions



Location Aware GAN

´ Reproduce 2D generator level anti-kT jet images 
(generator-level study )

´ Modification of DCGAN (convolutions) and ACGAN 
(uses particle type information)  

´ Image sparsity
´ Location dependent features
´ Large dynamic range

arxiv:1701.05927
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CaloGAN

´ ATLAS LAr calorimeter
´ Heterogeneous longitudinal segmentation into 

3 layers
´ Irregular granularity in eta and phi

´ Energy deposition in each layer as a 2D 
image

´ Build one LAGAN per layer
´ Trainable transfer unit to preserve layer 

correlations
´ Result is a concatenation of 2D images that 

reproduce full 3D picture
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arxiv:1705.02355



CaloGAN performance

´ Comparison to full simulation:
´ Average showers

´ Shape variables (depth, width, layer energy.. ) 
and event variables (sparsity level per layer)

´ Energy reconstruction
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3d GAN
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3d GAN for calorimeter images

´ CLIC electromagnetic calorimeter (*)

´ Example of next-generation highly granular detector

´ Data is essentially a 3D image

´ Based on convolution/deconvolutions

´ 3D (de)convolutions to describe full 
shower development

´ Particle tag as auxiliary classifier

´ Implementation/Training  details in 
backup

26

Y

Geant4 shower

x y z

(*) http://cds.cern.ch/record/2254048#
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First 3D images

´ First generated results look promising!
´ Qualitative results show no collapse problem
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Shower transverse section

GAN generated (100 GeV) 
electrons

0 5 10 15 20 250

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Ez distribution
hz

Entries  1137352
Mean    13.65
Std Dev     4.599

hz_g4
Entries  1576880
Mean     13.8
Std Dev     4.654

Ez distributionShower longitudinal section

Geant4
GAN generated



Image validation and energy response

´ Detailed study of 
calorimeter response
´ Energy distribution 

in single cells

´ Comparison to full sim 
and different fast sim tools 
is ongoing
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´ Primary particle 
energy from discriminator

Geant4
GAN generated



DL engine for fast simulation in GeantV

´ 3d GAN represent first proof of concept
´ We aim at a generic fully configurable tool 

´ Optimal network design depends on the problem to solve
´ Embedded algorithms for hyper-parameters tuning and meta-

optimization
´ Studying parallelization on clusters
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Summary I

´ MC production has been so far a major fraction of WLCG 
workload 
´Experiments are implementing a large range of fast simulation 

solutions
´ HL-LHC runs will scale up MC needs by orders of magnitude
´ A generic framework with common fast sim algorithm and 

strategies for mixing full and fast sim
´ Could bring great benefit to the HEP community

´Serve small experiments/collaborations as well
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Summary II

´ Generative Models seem natural candidates to speedup 
simulation
´Rely on the possibility to interpret “events” as “images”
´First GANs applications to calorimeter simulations look very 

promising 
´Many studies ongoing in the different experiments 

´ 3d GAN is the initial step of a wider plan to do DL based fast 
simulation within the GeantV project
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Outlook

´ Even larger speedup 
gained by replacing 
digitization and 
reconstruction steps

´ ML/DL tools are 
capable of “learning” 
extremely complicated 
feature spaces 
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Thank you!
Questions?

33

Proud of gender diversity in GeantV with  41% of female 
colleagues within the team!
(July 2017)



Variational Auto Encoders
´ Typically used for un-labelled data and de-noising

´ Two stacked NN (encoder – decoder)

´ Sequentially de-construct input data into a latent representation

´ Use this representation to reconstruct output that resembles the original
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Calorimeter 
Shower Hit 
(χ,y,z,E,σ)

Generated
Calorimeter
Shower Hit 
(χ,y,z,E,σ)

2D latent 
space

D.Salamani, U. of Geneva



Enhancing MC simulation with GAN

´ An example from LAr
TPC

´ MC-Trained CNN to 
classify hits as shower-
like or track-like 

´ Performed on noise-
filtered ADC values 
after hit finding, 

´ one of the first 
reconstruction steps

´ Greatly speeds up 
tracking

´ Makes shower 
clustering possible

Smith, IML workshop
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Enhancing MC simulation with GAN

´ Modify aGAN to pass in a MC sample into the generator, 
functionally turning it into a filter

´ Training against data will create a data-driven filter for MC, allowing 
one to create a filtered MC sample that is very similar to data

Smith, IML workshop
36



Training GANs is a many steps process:

1. Generate images with the Generator. 
2. Train the Discriminator to recognize 

Generator data from Real data.
3. Push the combined model to tag it as 

Real data. 

I. Discriminator weights are frozen. 
4. Back feed to Discriminator and 

repeat

http://www.rricard.me/machine/learning/generative/adversarial/networks/2017/04/05/g
ans-part1.html
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CLIC EM calorimeter data

´ CLIC is a CERN project for a linear accelerator 
of electrons and positrons to TeV energies

´ Calorimeter detector design associated to the 
project 

´ An array of absorber material and silicon sensors
´ ECAL: 1.5 m inner radius, 5 mm×5 mm 

segmentation
´ 25 tungsten absorber layers +  silicon 

sensors
´ Geant4 single-particle datasets (e+, e-, γ, π)
´ Simplified: no clustering/clustering id algorithms 

applied

´ Data released within CERN OpenData initiative 

Pierini, DS@HEP

LCD Calorimeter
• CLIC is a proposed CERN project for a linear accelerator of electrons and positrons to TeV 

energies (~ LHC for protons) 

• Not a real experiment yet, so we) can simulate data and make it public.  

• Simpler geometry than ATLAS…  

• The LCD calorimeter is an array of absorber material and silicon sensors  comprising the 
most granular calorimeter design available  

• Data is essentially a 3D image 

• So far several million Pi0, Elec, ChPi, Gamma. 10 to 510 GeV. Low energy and Jet 
samples planned. 

• ECAL (25x25x25) / HCAL (5x5x60) “window”. Aux info: Energy, …  

• First studies, π
0

 vs γ classification with various DNNs by summer students.  

• Code/results not collected… but should be easy to redo. 

• New version of dataset.  

• Some visualization code exists… Full running example in CaloDNN. 

• Many interesting problems: PID Classification, Energy Regression, Shower generative 
models. 

The LCD calorimeter
• CLIC is a CERN project for a linear 

accelerator of electrons and 
positrons to TeV energies (~ LHC for 
protons) 

• The LCD is the detector design 
associated to the project 

• The LCD calorimeter is an array of 
absorber material and silicon 
sensors 

• So far, the most granular (i.e., more 
“pixels”) calorimeter design 
available 
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A long way to an optimal network architecture

19

• From this first exercise, 
we still have sizeable 
improvement margin 
ahead 

• Planning for an 
extended 
hyperparameter 
optimization on the 
CSCS cluster in Lugano 

• Starting to work on 
regressions in parallel, 
with CERN/Caltech 
Summer students 

Calorimetry in one slide
• Most particles hitting a dense material develop a 

shower of particles  

• In this stochastic process, they loose energy, which 
is transmitted to the material 

• Properly instrumenting the material, this energy can 
be collected as an electronic signal and converted 
into an energy measurement 

• The shape of the shower is related to the nature of 
the particle 

• calorimeter fragmented in cells to allow particle 
identification from shower shape 

• each cell is a volume in space associated to an 
energy deposit

Electromagnetic 
shower (e, γ)

Hadronic shower 
(π, Κ, p, n, ..)
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3dGAN for calorimeter images

´ Based on convolution/deconvolutions

´ 3D (de)convolutions to describe full 
shower development

´ Particle tag as auxiliary classifier

´ Implemented tips&tricks found in literature

´ Some helpful (no batch normalisation
in the last step, LeakyRelu, no hidden 
dense layers, no pooling layers)

´ Some not (Adam optimiser)

´ Batch training

´ Loss is combined cross entropy 

39
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Conditioning on energy

´ The discriminator can be trained to do energy 
regression  (including additional loss function)

´ Test continuous spectrum and generate single energy 
points

´ Train on fixed energy dataset  to test interpolation and 
extrapolation 

´ Add other variables (primary entry point, angle, etc..)
´ Energy loss is mean absolute error 
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Training the generator and the discriminator using initial particle energy 



3d GAN energy response41

Z

Z

Energy 
(GeV)

Error (%)

100 5

150 13

200 10

300 6

400 10

500 15

Energy regression test results

Energy regression test results

Preliminary



Time costs?

´ Using DL techniques for fast simulation is 
profitable if training time is not a bottleneck

´Depending on the final use case 
retraining the networks might be 
necessary 

´ Test different hardware &  multi-node 
scaling

´ Full Simulation generation time scales with energy
Time/Shower

(msec)
Full Simulation (G4) Intel Xeon

3d GAN
(batchsize 128)

Intel i7 (laptop) 66

GeForce GTX 1080 0.04
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Single cell response

Cell energy sigma is underestimated by GAN

´ Set up higher level criteria for image validation (reconstructed variables)

´ Check uncertainty related to training sample statistics

´ Compare to other fast sim approaches

Mean sigma

G
A

N
/G
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G
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N
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Cell IDCell ID

Preliminary
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