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Simulation in HEP

»  Defailed simulation is essential from detector
R&D to data analysis

®» | arge statistics are generally needed to reduce
systematic errors or study rare signals

»  Complex physics and geometry modeling Wall clock consumption 1/01/2016-04/06/2017

®» Heavy computation requirements, strongly
CPU-bound

B MC Simulation

B MC Event Generation
MC Reconstruction

B Group Production

W User Analyses
Others

More than 50% of WLCG power is used for

simulations
Fabbri, LPCC

éi! 200 Computing centers in 20 countries: > 600k cores
mmemne @CERN (20% WLCG): 65k processor cores ; 30PB disk + >35PB tape storage




The problem

High Luminosity LHC

» Higher Luminosity — higher statistics —
smaller simulation errors — larger MC
statistics (.. and precise physics

delling)

CPU needs (kHS06)
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ATLAS computing needs
Campana, CHEP 2016

Start of LHC - 2009: s = 900 GeV

Runt: Js=7-8TeV,L =2- 7x1033cm2s
Bunch spacing: 75/50/25 ns (25 s2011; 20127 ~25 b

LHC shutdown to prepare for design energy and nominal luminosity

Run2 Js=13-14TeV,L=1x 10% cm?%s!
Bunch spacing: 25 ns >50fb”

Injector and LHC Phase-l upgrade to go to ultimate luminosity
Run 3: Js =14 TeV, L = 2 x 10* cm™%s™!
Bunch spacing: 25 ns ~300 b’

High-luminosity LHC (HL-LHC), crab cavities, lumi levelling, ...

Run4: Js=14TeV,L=5x 10% cm?s'
Bunch spacing: 25 ns ~3000 fb!

[Ldt

Other communities
share similar needs:

» |ntensity frontier
experiments need
to have detailed
description of larger
phase spaces



Speeding up simulation

Several inifiatives are on-going

» [ntfroduce multi-threading and/or task based approach (GaudiHive,
GaudiMP, Geant4 Multi-threading)

CMS geometry (GDML), =~ 50 GeV (FTFP_BERT), B field (4T) - KNL

wi Geant4

Version 10.2-p02 on KNL
(strong-scalability)

50 100 150 200 250

Num Threads ASC”, LPCC




Speeding up simulation

» Mix data to simulation (pile-up overlay techniques) to reduce CPU time and

memaory
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see A: Gheata talk on GeantV
and G. Amadio poster on VecCore

Speeding up simulation

» |ntroduce fine grained parallelism
» GEANTV aims at x5 speedup through vectorisation, concurrency, locality

» |[mproved geometry algorithms: VecGeom library developed for GEANTV
(also available to GEANT4 and ROOT)

» New SIMD library (VecCore)

“AVX512
AVX2

VecGeom vectorisation 15 +—
speedup measured on
Intel Xeon Phi

¥ S.V., PASC17/




Going beyond: Fast Simulation

» Already used for searches, upgrade studies,... p T remsisim

— — Full Sim

» / Different techniques

» Shower libraries (pre-simulated EM showers, fwd
calorimeters in ATLAS/CMS)

» Shower shapes parametrizations (GFlash,..)

» Fast trackers simulation (ATLAS FATRAS, .. )

longitudinal profile

» | ook-up tables

» Fully parametrized simulation (DELPHES)

» Different performance

deposited energy per tslice (GeV)
- i [ i

g depogited energy per r slice (GeV)

» Different speed improvements (x10 - x1000)

» Different levels of accuracy (~10% wrt full sim)

Choice is “experiment” dependent!

20 25 T T TR T PO L
l(x()) r(Rhl)

Zaborowska, CHEP2016




A generic framework for fast simulation
s R | e

» MC need to integrate fast simulation g [LHCb
()
I
» GEANT4 has mechanism to mix fast and full .
simulatfion: user-defined models within s
“envelopes” > few use it L T
B Rt s MRS
» Towards a common framework providing Looens o o oo
» Algorithms and fools e
E SIMULATION !

» Mechanism to mix fast and full simulation

Interface

according to parficle type and detector

» R&D within GeantV to develop a generic fully
customizable fast sim framework e 7
» Deep Learning based i ------- e

| Zaborowska, CHEP2016
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Deep Learning for fast sim

Generic approach

Can encapsulate expensive computations

DNN inference step is generally faster than algorithmic approach

Already parallelized and optimized for GPUs/HPCs.

Industry building highly optimized software, hardware, and cloud services.



A precursor - Falcon

Ultra-fast, self-tuning, non-parametric simulation based on lookup tables that

directly map generated events intfo simulation events

®» Turbosim (B. Knuteson) developed at the Tevatron

®» Falcon: Modern version (Gleyzer at al., 1605.02684)

» Consists of two parts:

» Builder: Non-parametric representation of the
detector response function obtained from FullSim
events.

» Uses a k-d free 1o bin the generated objects in the
lookup table.

» Simulator: Uses events in the parton level to simulate

reconstruction level events. P
eading jet p; from

p+p— H — ff

events
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Generative Models




Generative models

The problem:
®» Assume data sample follows pyqtg distribution
» Can we draw samples x from distribution P ogel SUCh that Prodel = Paata®

well known solution:

» Assume some form for p.,.q4er USING prior knowledge and
parameterized by 6

» Find the maximum likelihood estimator

0* = arggnax Z log(Pmodel (X; 0))

xeD
= Draw samples from pg,

» Generaftive models don’t assume any prior form for progers

» Jse Neural Networks instead



Generative models for simulation

Many models: Generative Stochastic Networks, Variational Auto-Econders,
Generative Adversarial Networks ..

» Readlistic generation of samples

Use complicated probability distributions

Can do interpolation

»
» Opfimise multiple output for a single input
»
»

Work well with missing data

‘Small blue bird with black wings” —
‘Small yellow bird with black wings’

Wps://omiv.org/pdf/l 605.05396.pdf

Original Input Layer 1 Layer 2 Layer 3 Laver4 Layer 4 (x 10)

i O

Ranzato, Susskind, Mnih, Hinton, IEEE CVPR 201




Questions:

Can imaging approaches be useful?
» Can we keep accuracy while doing things fastere

®» Can we sustain the increase in detector complexity

(future highly-granular calorimeters are more
demanding)?

» \What resources are needede?




arXiv:1406.2661v 1

Generative adversarial networks

Simultaneously train two networks that compete and cooperate with each other:

» Generator learns to generate
data starfing from random petwod | —
noise e

0
)

’
o0 :
~ | o
*
5507

Discriminator learns how to N
distinguish real data from
generated data

Generator [——| Sample

Latent random variable
D00

The counterfeiter/police case

» Counterfeiter shows police the fake money

®» Police says it is fake and gives feedback

» Counterfeiter makes new money based on feedback

» |ferate until police is fooled




Generative adversarial fraining

D gradient guides G to
regions more likely to
be classified as data

po(data) Data distribution
Model distribution
N N

Y

D is not an
accurate

classifier

{ S N e e
-~ A
.._ . e

N 7/ NN

Poorly fit model After updating D After updating G~ Mixed strategy
equilibrium

D is frained fo
discriminate samples
from data

arXiv:1406.2661v 1

Generator is trained to maximize the probability of Discriminator making a mistake

G and D don't
Improve anymore.
D is unable to
differentiate



Many GAN flavors

» Original GAN was based on MLP in
2014

» Deep Convolutional GAN in 2015
Conditional GAN

» Fxtended to learn a parameterized
generartor Proqel(X | 0);

» Useful fo obtain a single generator
object for all © configurations

» |nterpolate between distribution
» Auxiliary Classifer GAN
» D can assign a class to the image

(fake)

ES

(Xreat ata) | (( Xpake )

G

[C (class)) ( 7 (noise))

Conditional GAN
(Mirza & Osindero, 2014)

arXiv: 1411.1784

(=D
GeaD) (=2
Take) )

(Xreat @ata)  (_ Xpake )

i

(C (dass)) (Z (noise)]

AC-GAN
(Present Work)

arXiv:1610.0958




Applications




AGAN & CaloGAN

See Paganini
and de Oliveira
talks in parallel

sessions



Location Aware GAN

(generator-level study )

(uses particle type information)
» tfmage sparsity

Location dependent features
®» | arge dynamic range

3 LAGAN (signal)
. C 1 HEPjet2D (signal) i
-1 |C3 LAGAN (bkg)
: "'|Z 21 HEPjet2D (bkg)
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Reproduce 2D generator level anti-kT jet images
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Modification of DCGAN (convolutions) and ACGAN

arxiv:1701.05927
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arxiv:1705.02355

Geant4, Pb Absorber, |Ar Gap, 10 GeV e Geant4, Pb Absorber, |Ar Gap, 10 GeV e

ndirection [mm]
ndirection [mm)

CaloGAN

Local Energy Deposit [MeV]

15
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» ATLAS LAr calorimeter

®» Heterogeneous longitudinal segmentation into
3 layers

® [rregular granularity in eta and phi

» Fnergy deposition in each layer as a 2D
image

Build one LAGAN per layer

Trainable fransfer unit to preserve layer
correlations

» Result is a concatenation of 2D images that 5
reproduce full 3D picture kz

N



GEANT  GAN

Energy (MeV)
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3d GAN




3d GAN for calorimeter images

. . “ Geant4 shower
» CLIC electromagnetic calorimeter (%)

» Example of next-generation highly granular detector

» Data is essentially a 3D image /

» Based on convolution/deconvolutions v

» 3D (de)convolutions to describe full i
shower development

» Particle tag as auxiliary classifier

» |[mplementation/Training details in
backup

GENERATOR

() http://cds.cern.ch/record/2254048#




First 3D Images

/ 'G,'A\N generated (100 GeV)
' electrons

’

» First generated results look promising!

L. (classification

» Qualitative results show no collapse problem

loss) per Epoch

— discriminator (train)
—— generator (train)
— discriminator (test)
—— generator (test)
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Image validation and energy response

StdDev

Real/GAN
T

» Detailed study of
calorimeter response GaN generated

» Energy distribution g
in single cells e

e iﬁ* "
- Primqry pOrTiCle 250: - . [ GAN 150 ll\ge;g7((1zt$)l)
energy from discriminator
» Comparison to full sim A
and different fast sim tools
iS OngOing 00 50 100 180 26£nergy6e360




DL engine for fast simulation in GeantV

» 3d GAN represent first proof of concept
» \We aim at a generic fully configurable tool
» Optimal network design depends on the problem to solve

» Fmbedded algorithms for hyper-parameters tuning and meta-
optimization

» Studying parallelization on clusters




Summary |

» MC production has been so far a major fraction of WLCG
workload

» Experiments are implementing a large range of fast simulation
solutions

» H|-LHC runs will scale up MC needs by orders of magnitude

®» A generic framework with common fast sim algorithm and
strategies for mixing full and fast sim

» Could bring great benefit to the HEP community

®» Serve small experiments/collaborations as well




Summary |l

» Generative Models seem natural candidates to speedup
simulation

» Rely on the possibility o inferpret “events” as “images”

» First GANs applications to calorimeter simulations look very
promising

» Many studies ongoing in the different experiments

» 3d GAN is the initial step of a wider plan to do DL based fast
simulation within the GeantV project




Outlook

» Fven larger speedup
gained by replacing
digitization and
reconstruction steps

» ML/DL tools are
capable of “learning”
extremely complicated
feature spaces

Information

Analysis

Simulation
Comparison

Reconstruction

“Paricies

Track
candidates

Track
segments
Summable digits
Digits Rgconstructed
points
>

Rawidata Processing



Thank you!

ions?
Questionss e o

Proud of gender diversity in GeantV with 41% of female
colleagques within the team!
(July 2017)




Variational Auto Encoders

» Typically used for un-labelled data and de-noising
» Two stacked NN (encoder — decoder)
» Sequentially de-construct input data into a latent representation

Use this representation to reconstruct output that resembles the original

2D latent
space
Latent Space
Calorimeter Generated
Shower Hit =) — Calorimeter
(x,y.z,E,O) Shower Hit
(x.y.z.E.0)
Ob;::\a/ed input > Z ———————— » output Recogztt;ucted

P(z/x) P(x/z)

D.Salamani, U. of Geneva



Enhancing MC simulation with GAN

Smith, IML workshop

» An example from LAr e :
TPC

LArIAT Data |

» MC-Trained CNN to -
classify hits as shower- J:=rn
like or tfrack-like
erformed on noise- /; |

filtered ADC values Entering Particle - #— Bt ]

after hit finding,

one of the ﬁrST nout Image Selected pixel Convolutional Neural Network

reconsfruction steps putimag and its patch S Probability:

Greatly speeds up [ Track

TrGCkIﬂg ‘ b | E; EM Shower
y o iaf® : Empty

Makes shower P

clustering possible

Convolutional Layers Dense Layers Network Output



Enhancing MC simulation with GAN

Smith, IML workshop

» Modify aGAN to passin a MC sample into the generator,
functionally turning it into a filter

» Training against data will create a data-driven filter for MC, allowing
one to create a filtered MC sample that is very similar to data

200 ;- MC events ) ] )
sl Filtered-MC Trained Classifier
Shower-Like - | Track-Like
2 Tracks: Showers:

Track-Like “n Track-Like

mmmmmmmmmmm

__ N
g 3 3 8 B
MBS S BN MBS MBS

Anmha . iteglodbn
1 02 03 04 05 06 07 08 09

Shower-Like

638 - data events with p/e contamination

Shower-Like : Track-Like

102 03 04 05 06 07 08 09
Shower-Like

10 PJI'_,_’—"IJ
b 0 G [l n dmnfi L
01 02 03 04 05 06 07 08 09

10




Training GANS Is a many steps process:

1. Train the discriminator LG et

1. Generate images with the Generator.

o8- e L
2. Train the Discriminator to recognize l l

Generator data from Real data. [ — ] [ ]

3. Push the combined model to tag it as -
Real data. l

C .. : B ke . PR n_JnF)itEP* o [
. Discriminator weighfts are frozen. T

4. Back feed to Discriminator and R
repeat [@ ]

http://www.rricard.me/machine/learning/generative/adversarial/networks/2017/04/05/g
ans-part1.html



CLIC EM calorimeter dato

» CLIC is a CERN project for a linear accelerator
of electrons and positrons to TeV energies

» Calorimeter detector design associated to the
project

» An array of absorber material and silicon sensors

» FCAL: 1.5 minner radius, 5 mmx5 mm
segmentation

» 75 fungsten absorber layers + silicon
SENSOrs

» Geant4 single-particle datasets (e*, e, y, 1)

» Simplified: no clustering/clustering id algorithms
applied

» Data released within CERN OpenData initiative

Pierini, DS@HEP

i Electromagnetic
i ‘3 shower (e, y)




3dGAN for calorimeter images

» Based on convolution/deconvolutions

» 3D (de)convolutions to describe full
shower development

» Particle tag as auxiliary classifier
» mplemented fips&tricks found in literature

= Some helpful (ho batch normalisation
in the last step, LeakyRelu, no hidden
dense layers, no pooling layers)

= Some not (Adam optimiser)
= Batfch training

® [ 0ssis combined cross entropy
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Conditioning on energy

Training the generator and the discriminator using initial particle energy

®» The discriminator can be trained to do energy
regression (including additional loss function)

» Test continuous spectrum and generate single energy
points

®» Train on fixed energy dataset fo test intferpolation and [

. ticl .
extrapolation gleliiels ] x [ noise |

energy

generator

[ data sample ]—{ discriminator }—[ 8enerator
sample

data
sample?

[yos ]

» Add ofther variables (primary enfry point, angle, etc..) ]

®» Energy loss is mean absolute error

“reco”
energy




Preliminary

3d GAN eﬂergy reSpOnse Energy regression test results

Energy | Error (%)
Energy regression test results (GeV)
100 5
X-axis Y-axis
o] — Datas0 | O] 1 Data 50 150 13
' GAN 50 0.8 GAN 50
2067 0.6 - 200 10
o o 300 6
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Time costse

Generation Method | Hardware | Batch Size | milliseconds/shower
. . . . . GEANT4 CPU N/A
» Using DL techniques for fast simulation is L
. . o o . o CPU 10 5.11
profitable if training time is not a bottleneck N
CALOGAN 1 4
» Depending on the final use case v |13 001
. . . 512 0.014
training the networks might be 2| o0
necessary
Test different hardware & multi-node
scaling
» Fyll Simulation generation fime scales with energy
Time/Shower
(msec)
Full Simulation (G4) Intel Xeon
3d GAN Intel i7 (laptop) 66
(batchsize 128)
GeForce GTX 1080 0.04




Preliminary

Single cell response

-
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Cell energy sigma is underestimated by GAN
» Set up higher level criteria for image validation (reconstructed variables)
» Check uncertainty related to fraining sample statistics

» Compare to other fast sim approaches




