

Generative models for fast simulation

Sofia Vallecorsa*

for the GeantV project

Outline

- Introduction
 - Detector Simulation and fast simulation
 - A general framework: Deep Learning tool for fast simulation
- Simulation as an image reconstruction problem
 - Generative Adversarial Networks (GAN)
 - Some examples
- Summary & Outlook

Simulation in HEP

- Detailed simulation is essential from detector
 R&D to data analysis
- Large statistics are generally needed to reduce systematic errors or study rare signals
 - Complex physics and geometry modeling
 - Heavy computation requirements, strongly CPU-bound
 - More than 50% of WLCG power is used for simulations

Wall clock consumption 1/01/2016-04/06/2017

200 Computing centers in 20 countries: > 600k cores

@CERN (20% WLCG): 65k processor cores; 30PB disk + >35PB tape storage

The problem

High Luminosity LHC

► Higher Luminosity → higher statistics → smaller simulation errors → larger MC statistics (.. and precise physics modelling)

ATLAS computing needs

Campana, CHEP 2016

Other communities share similar needs:

Intensity frontier
 experiments need
 to have detailed
 description of larger
 phase spaces

Speeding up simulation

Several initiatives are on-going

Introduce multi-threading and/or task based approach (GaudiHive, GaudiMP, Geant4 Multi-threading)

Speeding up simulation

■ Mix data to simulation (pile-up overlay techniques) to reduce CPU time and memory

Haas, CHEP 2016

Speeding up simulation

- Introduce fine grained parallelism
 - GEANTV aims at x5 speedup through vectorisation, concurrency, locality
 - Improved geometry algorithms: VecGeom library developed for GEANTV (also available to GEANT4 and ROOT)
 - New SIMD library (VecCore)

VecGeom vectorisation speedup measured on Intel Xeon Phi

Going beyond: Fast Simulation

- Already used for searches, upgrade studies,...
- **■** Different techniques
 - Shower libraries (pre-simulated EM showers, fwd calorimeters in ATLAS/CMS)
 - Shower shapes parametrizations (GFlash,...)
 - ► Fast trackers simulation (ATLAS FATRAS, ...)
 - Look-up tables
 - Fully parametrized simulation (DELPHES)
- Different performance
 - Different speed improvements (x10 x1000)
 - Different levels of accuracy (~10% wrt full sim)

Choice is "experiment" dependent!

A generic framework for fast simulation

- MC need to integrate fast simulation
 - GEANT4 has mechanism to mix fast and full simulation: user-defined models within "envelopes" → few use it
- Towards a common framework providing
 - Algorithms and tools
 - Mechanism to mix fast and full simulation according to particle type and detector
- R&D within GeantV to develop a generic fully customizable fast sim framework
 - Deep Learning based

FCC Gaudi framework

Deep Learning for fast sim

EX. SIMULATION OF A CALORIMETER

Deep Learning for fast sim

- Generic approach
- Can encapsulate expensive computations
- DNN inference step is generally faster than algorithmic approach
- Already parallelized and optimized for GPUs/HPCs.
- Industry building highly optimized software, hardware, and cloud services.

A precursor - Falcon

Ultra-fast, self-tuning, non-parametric simulation based on lookup tables that directly map generated events into simulation events

- Turbosim (<u>B. Knuteson</u>) developed at the Tevatron
- Falcon: Modern version (Gleyzer at al., 1605.02684)
- Consists of two parts:
 - Builder: Non-parametric representation of the detector response function obtained from FullSim events.
 - Uses a k-d tree to bin the generated objects in the lookup table.
 - Simulator: Uses events in the parton level to simulate reconstruction level events. Leading jet p_T from

 $p+p \to H \to ff$

events

Generative Models

Generative models

The problem:

- Assume data sample follows p_{data} distribution
- Can we draw samples x from distribution p_{model} such that p_{model} ≈ p_{data}?

A well known solution:

- Assume some form for p_{model} , using prior knowledge and parameterized by θ
- Find the maximum likelihood estimator

$$heta^* = rg\max_{ heta} \sum_{\mathbf{x} \in \mathcal{D}} \log(p_{\mathsf{model}}(\mathbf{x}; heta))$$

- lacktriangle Draw samples from $p_{\theta*}$
- Generative models don't assume any prior form for p_{models}
- Use Neural Networks instead

Generative models for simulation

Many models: Generative Stochastic Networks, Variational Auto-Econders, Generative Adversarial Networks ..

- Realistic generation of samples
- Use complicated probability distributions
- Optimise multiple output for a single input
- Can do interpolation
- Work well with missing data

https://arxiv.org/pdf/1605.05396.pdf

Questions:

Can imaging approaches be useful?

- Can we keep accuracy while doing things faster?
- Can we sustain the increase in detector complexity (future highly-granular calorimeters are more demanding)?
- What resources are needed?

Generative adversarial networks

Simultaneously train two networks that compete and cooperate with each other:

- Generator learns to generate data starting from random noise
- Discriminator learns how to distinguish real data from generated data

The counterfeiter/police case

- Counterfeiter shows police the fake money
- Police says it is fake and gives feedback
- Counterfeiter makes new money based on feedback
- Iterate until police is fooled

Generative adversarial training

Generator is trained to maximize the probability of Discriminator making a mistake

D gradient guides G to regions more likely to be classified as data

D is not an accurate classifier

G and D don't improve anymore. D is unable to differentiate

D is trained to discriminate samples from data

Many GAN flavors

- Original GAN was based on MLP in 2014
- Deep Convolutional GAN in 2015
- Conditional GAN
 - Extended to learn a parameterized generator $p_{model}(x \mid \theta)$;
 - Useful to obtain a single generator object for all θ configurations
 - Interpolate between distribution
- Auxiliary Classifer GAN
 - D can assign a class to the image

monarch butterfly

goldfinch

dais

Conditional GAN (Mirza & Osindero, 2014)

arXiv: 1411.1784

AC-GAN (Present Work)

arXiv:1610.0958

Applications 20

LAGAN & CaloGAN

See Paganini and de Oliveira talks in parallel sessions

Location Aware GAN

- Reproduce 2D generator level anti-kT jet images (generator-level study)
- Modification of DCGAN (convolutions) and ACGAN (uses particle type information)
- /mage sparsity
- Location dependent features
- Large dynamic range

23

CaloGAN

- ATLAS LAr calorimeter
 - Heterogeneous longitudinal segmentation into 3 layers
 - Irregular granularity in eta and phi
- Energy deposition in each layer as a 2D image
- Build one LAGAN per layer
- Trainable transfer unit to preserve layer correlations
- Result is a concatenation of 2D images that reproduce full 3D picture

CaloGAN performance

- Comparison to full simulation:
 - Average showers
 - Shape variables (depth, width, layer energy...)
 and event variables (sparsity level per layer)
- Energy reconstruction

3d GAN

3d GAN for calorimeter images

- CLIC electromagnetic calorimeter (*)
 - Example of next-generation highly granular detector
 - Data is essentially a 3D image
- Based on convolution/deconvolutions
 - 3D (de)convolutions to describe full shower development
- Particle tag as auxiliary classifier
- Implementation/Training details in backup

Geant4 shower

First 3D images

- First generated results look promising!
- Qualitative results show no collapse problem

hz_g4

Shower longitudinal section

Image validation and energy response

- Detailed study of calorimeter response
 - Energy distribution in single cells

- Primary particle energy from discriminator
- Comparison to full sim and different fast sim tools is ongoing

DL engine for fast simulation in GeantV

- 3d GAN represent first proof of concept
 - We aim at a generic fully configurable tool
- Optimal network design depends on the problem to solve
 - Embedded algorithms for hyper-parameters tuning and metaoptimization
- Studying parallelization on clusters

Summary I

- MC production has been so far a major fraction of WLCG workload
 - Experiments are implementing a large range of fast simulation solutions
- ► HL-LHC runs will scale up MC needs by orders of magnitude
- → A generic framework with common fast sim algorithm and strategies for mixing full and fast sim
 - Could bring great benefit to the HEP community
 - Serve small experiments/collaborations as well

Summary II

- Generative Models seem natural candidates to speedup simulation
 - Rely on the possibility to interpret "events" as "images"
 - First GANs applications to calorimeter simulations look very promising
 - Many studies ongoing in the different experiments
- → 3d GAN is the initial step of a wider plan to do DL based fast simulation within the GeantV project

Outlook

- Even larger speedup gained by replacing digitization and reconstruction steps
- ML/DL tools are capable of "learning" extremely complicated feature spaces

Thank you!

Questions?

the rery will diverse team

Proud of gender diversity in GeantV with 41% of female colleagues within the team!

(July 2017)

Variational Auto Encoders

- Typically used for un-labelled data and de-noising
- Two stacked NN (encoder decoder)
- Sequentially de-construct input data into a latent representation
- Use this representation to reconstruct output that resembles the original

Enhancing MC simulation with GAN

Smith, IML workshop

- An example from LAr TPC
- MC-Trained CNN to classify hits as showerlike or track-like
- Performed on noisefiltered ADC values after hit finding,
- one of the first reconstruction steps
- Greatly speeds up tracking
- Makes shower clustering possible

Enhancing MC simulation with GAN

Smith, IML workshop

- Modify aGAN to pass in a MC sample into the generator, functionally turning it into a filter
- Training against data will create a data-driven filter for MC, allowing one to create a filtered MC sample that is very similar to data

Training GANs is a many steps process:

- 1. Generate images with the Generator.
- 2. Train the Discriminator to recognize Generator data from Real data.
- 3. Push the combined model to tag it as Real data.
 - I. Discriminator weights are frozen.
- Back feed to Discriminator and repeat

CLIC EM calorimeter data

- CLIC is a CERN project for a linear accelerator of electrons and positrons to TeV energies
- Calorimeter detector design associated to the project
- An array of absorber material and silicon sensors
- ECAL: 1.5 m inner radius, 5 mm×5 mm segmentation
 - 25 tungsten absorber layers + silicon sensors
- Geant4 single-particle datasets (e⁺, e⁻, γ, π)
- Simplified: no clustering/clustering id algorithms applied
- Data released within CERN OpenData initiative

3dGAN for calorimeter images

- Based on convolution/deconvolutions
 - 3D (de)convolutions to describe full shower development
 - Particle tag as auxiliary classifier
- /implemented tips&tricks found in literature
 - Some helpful (no batch normalisation in the last step, LeakyRelu, no hidden dense layers, no pooling layers)
 - Some not (Adam optimiser)
- Batch training
- Loss is combined cross entropy

DISCRIMINATOR

Υ

Conditioning on energy

Training the generator and the discriminator using initial particle energy

- The discriminator can be trained to do energy regression (including additional loss function)
- Test continuous spectrum and generate single energy points
- Train on fixed energy dataset to test interpolation and extrapolation
- Add other variables (primary entry point, angle, etc..)
- Energy loss is mean absolute error

3d GAN energy response

Energy regression test results

Energy regression test results

Energy (GeV)	Error (%)
100	5
150	13
200	10
300	6
400	10
500	15

Time costs?

 Using DL techniques for fast simulation is profitable if training time is not a bottlene

Depending on the final use case retraining the networks might be necessary

7	Test different hardware &	multi-node
	scaling	

► Full Simulation generation time scales with energy

	Generation Method	Hardware	Batch Size	milliseconds/shower
	GEANT4	CPU	N/A	1772
S NECK CALOGAN		1	13.1	
	-	CPU	10	5.11
	010	128	2.19	
			1024	2.03
		1	14.5	
		4	3.68	
		GPU	128	0.021
			512	0.014
		1024	0.012	

		Time/Shower (msec)
Full Simulation (G4)	Intel Xeon	
3d GAN (batchsize 128)	Intel i7 (laptop)	66
	GeForce GTX 1080	0.04

Single cell response

Cell energy sigma is underestimated by GAN

- Set up higher level criteria for image validation (reconstructed variables)
- Check uncertainty related to training sample statistics
- Compare to other fast sim approaches