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Abstract.
The 2020 upgrade of the LHCb detector will vastly increase the rate of collisions

the online system needs to process in software in order to filter events in real-time.
30 million collisions per second will pass through a selection chain where each step is
executed conditional to its prior acceptance.

The Kalman filter is a process of the event reconstruction that, due to its time
characteristics and early execution in the selection chain, consumes 40% of the whole
reconstruction time in the current trigger software. This makes it a time-critical
component as the LHCb trigger evolves into a full software trigger in the upgrade.

The algorithm Cross Kalman allows performance tests across a variety of
architectures, including multi and many-core platforms, and has been successfully
integrated and validated in the LHCb codebase. Since its inception, new hardware
architectures have become available exposing features that require fine-grained tuning in
order to fully utilize their resources.

In this paper we present performance benchmarks and explore the IntelR© Skylake
and IntelR© Knights Landing architectures in depth. We determine the performance gain
over previous architectures and show that the efficiency of our implementation is close
to the maximum attainable given the mathematical formulation of our problem.

1. Introduction
The projected upgrade of the LHCb detector at CERN in 2020 [1] will increase the
estimated collision rate to 30 MHz, requiring data processing at 40 Tbit/s. As part of the
upgrade, the first stage of filtering known as hardware level trigger will be discontinued
in favor of a full software trigger [2]. Consequently, the processing rate required in the
software trigger will increase by a factor 40, due to both the increase in rate of events
processed in software, and the influx of larger events.

The Kalman filter is a linear quadratic estimator invented by Rudolf E. Kálmán in
1960 [3], that allows accurate estimation of the state of a system. In its discrete formulation
it consists of a predict phase where the state is propagated according to its physical
model, and an update phase where the measurements observed are integrated in the state
prediction. Since its inception, it has successfully been applied to a range of applications
including space tracking [4] and meteorology [5].

In high-energy physics experiments, the Kalman filter is a fundamental part of the
reconstruction of particle trajectories coming from particle collisions. In LHCb, the Kalman
filter consumes 40% of the reconstruction time, rendering it a critical component in the
reconstruction. In order to cope with the increase in data rate, the software in the LHCb
reconstruction is being updated to current hardware standards.



Cross Kalman is a cross-architecture Kalman filter optimized for a variety of SIMD
processors [6] [7]. It is optimized for low-rank Kalman filters on multi and many-core
processors, and we have successfully integrated it in the LHCb reconstruction software. It
also serves as a self-contained package to evaluate different architectures in the context of
the LHCb upgrade.

In this paper, we focus on the evaluation of modern Intel R© platforms, including Xeon
PhiTM and Xeon R© Scalable Processors. Our software takes into account features like the
support of the AVX-512F ISA extension and high bandwidth MCDRAM. We evaluate
the scalability and price performance of Cross Kalman in all platforms. In addition, we
evaluate our Kalman filter integrated in the multithreaded LHCb framework Gaudi [8].
We show the ability of Cross Kalman to scale to all considered configurations, and draw
conclusions over the platforms under analysis.

2. A vectorized Kalman filter
In the LHCb software level trigger, particle trajectory reconstruction (track reconstruction)
involves a complex selection chain where the trajectory of each particle is determined in
several steps, due to the various subdetectors that compose the LHCb tracker [9]. Several
of these stages involve simplified fits, in the form of square root fits or simplified Kalman
filters. In contrast, Cross Kalman performs a fit in three steps: For each track, a fit
is performed in the forward direction, followed by the backward direction, and finally a
smoother is applied to average both states [10].

Additionally, a track is composed of two kind of nodes. Signal nodes are produced by
detector signals, whereas virtual reference nodes are placed at certain positions in the track
in order to determine track parameters up-front for later stages of the reconstruction. While
signal nodes trigger a Kalman filter step composed of predict and update phases, reference
nodes only trigger the predict phase in either direction. Figure 1 depicts two particles
traversing the LHCb detector. The particle at the top would trigger three predicts before
the first update, in the forward direction.
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Figure 1: Schematic of two particle trajectories traversing LHCb detectors (in blue). The
collision at their origin (in red) takes place in the Vertex Locator subdetector. The tracks
are composed of signal nodes, produced in the Vertex Locator, TT and the three tracking
stations T1, T2 and T3. A magnet bends the tracks between the TT and the tracking
stations. Reference nodes are placed at predefined locations in order to determine their
track parameters.

In order to adapt the inherent complexity of the problem to any SIMD architecture, we
have developed Cross Kalman following three design aspects: flow control, data structures
and backend implementation.



SIMD processors require non-divergent workflows to operate at peak performance. In
Intel R© processors, vector units perform the same operation over an array of data. This
requirement has become more evident as the vector units have become wider. Therefore,
we employ a static scheduler to assign computations to SIMD lanes. Since the execution of
nodes in different tracks is independent, we execute them in a horizontally parallel scheme.
We allow for a configurable lane width, which makes our scheduler scale to the considered
SIMD platforms.

The LHCb Kalman filter needs to be processed in the backward direction as well. Our
scheduler guarantees this requirement trivially by traversing the scheduled object in the
reverse direction.

The data structure that we use in our application is Array of Structures of Array
(AOSOA). This data structure has been shown to work well with SIMD architectures [11],
as it maximizes locality. In Cross Kalman, the data is assumed to be already in this
format in the order we require to process it. This assumption is safe, as the schedule can
be generated prior to populating these data structures (cf. section 2.1).

The data is allocated in contiguous chunks of aligned memory. In order to avoid
overheads from allocating big chunks of memory, data stores are created on demand and
can store a configurable number of elements. In order to be able to traverse the data stores,
iterators and reverse iterators that are aware of the store size are provided.

Finally, several backend implementations are provided to perform the fit computations.
A scalar implementation, alongside Vectorclass [12] and UMESIMD [13] vectorized
implementations are provided. We also provide OpenCL and CUDA implementations
in our proto-application Cross Kalman Mathtest, showing that we can run on many types
of SIMD architectures.

2.1. Integration
Our software has been integrated and validated in the Gaudi framework. Following the pre-
and post-condition requirements of the current Kalman filter application TrackMasterFitter
(TMF), we have developed TrackVectorFitter (TVF) as a SIMD aware drop-in replacement
for TMF. TVF implements the design of Cross Kalman, with the necessary code
modifications and data adaptations.

In order to minimize the impact of data transposition, we generate the static schedule
prior to any data generation. This way, memory references are populated as the
Cross Kalman filter would expect them. Then, the data is populated in-place. This
method improves the data generation performance, and allows for future optimizations by
vectorizing the methods for data generation. Additionally, the output data is required to
adhere to Gaudi’s data layout for the processes that follow in the selection chain after the
Kalman filter. We transpose the data only once, at the end of TVF’s execution. These
optimizations reduce the overhead of changing the data structure from AOS to AOSOA.
Nevertheless, we have observed a performance penalty which currently is 3.4% of the total
execution time of TVF.

Finally, a version of Gaudi with multithreaded support is currently under development.
We have made our application reentrant in order to support this version of the framework.

3. Results
The results in this section were obtained with Cross Kalman v1.7, compiled with gcc
6.2.0 and flags -O2 -march=native. The events used, were generated with the official
LHCb Monte Carlo event generator, and the results were validated against the existing
Kalman filter implementation. NUMA pinning and TBB tasks were used to efficiently load
the nodes. Table 1 describes the nodes used for these tests. Xeon R© E5-2630 v3 (Haswell)
is the current production platform at LHCb. Xeon R© E5-2683 v4 and Xeon R© Platinum
8170 represent medium-range and high-range processors from the Broadwell and Skylake
family respectively. Xeon PhiTM 7210 (Knights Landing) is a many-core alternative to the
more traditional Xeon R© based solutions.



Xeon R© E5-2630 v3 Xeon R© E5-2683 v4 Xeon PhiTM 7210 Xeon R© Platinum 8170
# cores 8 16 64 26
base frequency 2.40 GHz 2.10 GHz 1.30 GHz 2.10 GHz
Cache 20 MB L3 40 MB L3 32 MB L2 35.75 MB L3
TDP 85 W 120 W 215 W 165 W
DRAM configuration 64 GB 64 GB 96 GB 192 GB

16 GB MCDRAM
STREAM bandwidth 41 GB/s 76 GB/s 77 GB/s (DRAM) 101 GB/s
Recommended price $667.00 - $671.00 $1846.00 $1881.00 $7405.00 - $7411.00
(ark.intel.com, August 2017)

Table 1: Machine configurations under study.

In Figure 2a we show a performance comparison across the architectures under
consideration. The leftmost bar represents the scalar performance of Cross Kalman on the
production platform. When running the vectorized implementation on the same processor,
we observe a 1.36× speedup. We note also a 1.27× speedup of the Skylake processor
over Knights Landing. A price performance comparison is shown in Figure 2b. The Xeon
PhiTM Knights Landing processor is the most cost-effective solution for Cross Kalman,
being 40% cheaper than the production platform. Medium and high-range CPUs are not
cost-effective for our workload.

Scalar performance
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2x Intel Xeon® Platinum 8170 CPU (14810 $)

1

2

3

4

5

Sp
ee

du
p 

(ti
m

es
)

1.00
1.36

2.20

3.16

4.02

(a)

0

2000

4000

6000

8000

10000

12000

14000

Co
st

 o
f p

ro
ce

ss
in

g 
po

we
r

of
 1

0 
00

0 
ev

en
ts

 / 
s (

$)

3602.34

6152.70

2178.83

13501.25

(b)

Figure 2: (a) Performance of Cross Kalman relative to scalar implementation across several
architectures (higher is better). The best configuration for each architecture in terms of
active threads is used, shown in Figure 3a. The leftmost bar represents Cross Kalman’s
scalar implementation, running on a dual-socket Xeon R© E5-2630 v3 processor. (b) Price
required to obtain a throughput of 10 000 events per second (lower is better). The Xeon
PhiTM processor shows a better price for throughput ratio than its competitors.

Figure 3a shows the scalability of Cross Kalman in the architectures under study.
Our workflow saturates Xeon R© processors when configured with all physical processors,
and we do not gain by adding extra Hyperthreads (HTs). The notable exception is the
Knights Landing platform, where we gain an additional 31% with 2 HTs and 13% with 4
HTs. We attribute this behavior on Knights Landing to its higher bandwidth MCDRAM,
which we believe is in the case of our application only saturated when using all available
Hyperthreads.

Figure 3b shows the scalability of the Gaudi algorithm TrackBestTrackCreator, which
contains TVF. The Gaudi framework is run in multithreaded mode with as many active



processors as indicated in the X axis. The behavior of this workload is very different
than Cross Kalman. The application benefits from the HTs in both Xeon R© architectures,
however not in Xeon PhiTM. Both in Xeon PhiTM and Skylake, the peak performance
is observed when configured with 80 cores. We conclude Gaudi is not yet optimized for
many-core execution.
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Figure 3: (a) Throughput of Cross Kalman across architectures. All processors show
a degradation of performance when using HTs with the exception of Xeon PhiTM. (b)
Throughput of algorithm executing TVF in the Gaudi framework. Xeon R© processors scale
better than in Cross Kalman, in contrast to Xeon PhiTM.

Finally we present a Roofline model [14] of our fit and smoother programs in Figure 4.
The scalar implementation is provided by an emulated vector mode in UMESIMD, and
we observe the overhead introduced by this emulation causes the scalar fit and smoother
to underperform. We saturate the Skylake processor with our fit implementation when
configured with SIMD lane width 8. Even though the smoother formulation shows a
higher arithmetic intensity, we observe there may still be room for optimization.
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Figure 4: Roofline model of fit and smoother processes under Xeon R© Platinum 8170
(Skylake). Different double precision vector width configurations are shown.



4. Conclusions
We have presented results of our evaluation of modern hardware architectures using Cross
Kalman. We compared three dual-socket Xeon R© architectures including a production
Haswell LHCb server, and a many-core Xeon PhiTM architecture. The Skylake processor
outperforms the other considered alternatives in raw computational performance. At the
same time, the Xeon PhiTM processor under study is the most cost-effective solution for
the Cross Kalman workload, offering the same performance as our production dual-socket
Haswell system for 60% of its cost.

We have successfully ported our algorithm to the Gaudi multithreaded framework. We
observe a different behavior in the scalability of Cross Kalman and Gaudi versions. We
believe this is due to the inner workings of the framework, currently in development in its
multithreaded form. In particular, many-core architectures do not seem to scale. We will
further investigate the causes in the framework and try to mitigate this effect.

Cross Kalman saturates the Skylake platform for the fit process, while the arithmetic
intensity of the smoother process seems to leave room for improvement, which we plan to
study further. We will continue to track the performance of modern hardware architectures
and adapt our software to it, and observe the evolution of the different platforms.
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