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The need for reliable operations of linear accelerators is critical for the spread of this technique in 

medical environment. At CERN, where LINACs are used for particle research, similar issues are 

encountered, such as the appearance of jitters in plasma sources (2MHz RF generators), that can have 

significant impact on the subsequent beam quality in the accelerator. The “SmartLINAC” project was 

established as an effort to increase LINACs’ reliability by means of early anomaly detection and 

prediction in its operations, down to the component level. The research described in this article 

reviews the different techniques used to detect anomalies, from their earlier signals, using data from 

2MHz RF generators. This research is an important step forward in the SmartLINAC project but 

represents only its beginning. The authors used four different techniques in an effort to determine the 

most appropriate one to detect anomalies on the generators’ data. The main challenge came from the 

nature of the data having a noised signal and presenting several kinds of anomalies from different 

sources, and from the lack of available exhaustive and precise labelling. This research allowed us to 

understand better the nature of the data we are working with and start addressing the project’s 

objectives, not only identifying and differentiating possible anomalies, but also forecasting to potential 

breakdowns. 
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1 Introduction 

In this project, we investigate jitters on LINAC4’s 2MHz RF plasma generators’ forward 

power’s history. LINAC4 is a linear accelerator designed to become CERN’s Large Hadron Collider’s 

(LHC) source of proton beams after its 2019-2020 shutdown. It is designed to accelerate negative 

hydrogen ions to 160 MeV for the LHC’s injection chain [1, 2]. 2MHz RF sources are used to create 

the plasma from which particle are extracted to form the proton beam. This source is one of several 

alternatives but is used as a reference in the framework of this specific research. Forward power, 

measured in Watts, allows measuring jitters from the source. Those jitters are variations of high 

intensity in the periodicity of the signal over a period. They heavily influence the beam quality and 

availability. Therefore, periods of jittering should be identified and if possible, predicted in order to 

realize preventive maintenance. This paper is based on LINAC4’s functioning, but it is included in a 

greater project, SmartLINAC, which aims to create a support platform for medical and scientific linear 

accelerators allowing anomaly detection and maintenance planning, powered by artificial intelligence. 

Indeed, the need for simpler-to-maintain-and-operate medical LINACs was highly stressed by the 

International Cancer Expert Corps (ICEC) and STFC in October 2017 [3]. Nowadays, jitters are first 

perceived by their symptoms and are not labelled immediately as jitters, they usually appear after long 

period of functioning and their cause is unknown. As such, the first step in SmartLINAC project was 

to identify them automatically and so to do to analyze the signal obtained from the RF sources forward 

power. Those signals are noised and presents over time a few periods of jitters. These periods 

sometimes origins from human manipulations, sometimes from environmental factors. It is the second 

category that provokes uncontrolled, long terms jitters. Those noise, human interactions and global 

sensitivity of the signals makes challenging to even identify with certainty periods of jitters. In this 

paper we present and compare the results of different methods we used to approach the problem of 

jitter identification and prediction. One of the key challenge is the relative rarity of those jitters. Indeed 

a few periods may appear on a period of several month, or none at all. Furthermore, those appearing 

are of various intensity any size. Those elements made modelling anomalies challenging, different big 

data specialists participating to the project coordinated themselves to each apply different techniques 

they we experienced with in order to identify jittering periods and select the most appropriate 

approach during the project. 

2 Data description 

Several sets of data, presenting different kinds and amounts of anomaly periods have been 

used to in the framework of the experiments described in this paper. The series presented about 9 

million entries from different RF sources. About 30 jittering periods caused by human manipulations 

and 3 periods of jittering as investigated. Those data has been separated for training and test purposes. 

In this chapter, the nature of the data will be described using the training set as a reference. Captions 

are made every 1.2 seconds, they contain a date and a power in Watts mainly included between 30’000 

W and 50’000 W, depending of the current configuration of the source. Some, rare and isolated data 

range between 30’000 W and 0 W for unexplained reasons, sometimes, the source was captured as 

powered down, registering 0 W. 

Relatively frequently, the source presents some especially violent jittering; those are power 

scans, resulting from human manipulations and are referred as such in the present document. Power 

scans are intentional change of power in order to observe effects on the source. The prime concern 

treated in this article are anomalies appearing overtime and presenting constant and long jitter periods.  
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3 Approaches 

3.1 Filtering, smoothing and distance from average 

In this approach, referred hereafter as “first approach” we chose to first divide the data into 

two categories “significant” and “noise”. The data were then smoothed to normalize them over a 

period of time. From then, it was possible to highlight the shift from average over time during and 

before long jitter periods. Furthermore, it was possible to understand the structures of a jitter based on 

the provided samples. Smoothing was used to understand tendencies in data. This step was necessary 

to differentiate punctual peaks from increasing tendencies.. Graphically, outside periods of anomalies, 

the tendency varies in different shades of dark red and black as represented on Figure 1.On the 

opposite, a higher deviation value appears in shades of bright red as represented on Figure 2. 

This approach allowed us to detect jitters periods but not to differentiate efficiently their 

nature (systemic or human manipulation). However, this approach showed itself informative in 

another way. Indeed, jitters do not appear suddenly but progressively, with symptoms as early as days 

before. Short periods of higher power delta are frequent at any time, but their density increase 

systematically before periods of jitters. First symptom have been identified by the technique in 1) and 

jitters where first observed it 2). In this example, the difference between the early symptoms and the 

jitters is of more than two days. A low delta is represented by darker shades of red, the higher the 

delta, the brighter the color. The empirical parameters for the estimation of noised areas is that deltas 

higher than average by 100% on the last 100 samples, remaining so for at least one hour are 

anomalies. This approach proved itself efficient to detect and predict jitters periods. 

3.2 Label-related clustering 

This approach is characterized by the fact that no information on LINAC4 internal 

maintenance processes was used (unsupervised), for example, on the possible causes of jitter: human 

manipulations or environmental factors. Thus, only contains RF power sources output and four 

problematic time intervals that were manually marked by domain expert were used. The method is 

based on the search for features that distinguish the marked problem intervals of jitter from the rest of 

the data. The feature is a subsequence of data for which the distance to the selected subsequence does 

not exceed the threshold determines the “proximity zone”. The Euclidean metric is chosen as a 

measure of the distance between the subsequences. Algorithm 1 describes in detail the steps of the 

method. Firstly, a subsequence of a given length k is randomly selected. Then, for different values of 

the threshold t, the positions of the subsequences are determined, which are close to the selected 

subsequence. The resulting set of X is clustered by the kernel density estimation (KDE) method [6, 7]. 

The Adjusted Rand Index (ARI) [8] is then calculated between the clustered X set and the labelled 

set L. The best ARI value currently is stored together with its corresponding subsequence s and 

threshold t. The advantages of this method are the scalability to the number of extracted features, the 

ability to use domain experts to refine the results and the possibility of stopping the calculation at any 

time, while having the result. Indeed, firstly, it is possible to vary the number of selected subsequences 

 Figure 1 Fragment without anomaly, the shades are 
between  dark  red  and  black,  which  signifies  a  low 
delta from the average distance between points

 Figure 2 Fragment representing an anomaly period, 
the  shades  are  between  dark  red  and  black,  which 
signifies  a  high  delta  from  the  average  distance 
between points
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depending on the specifics of the data. Secondly, domain experts can analyze the correctness of the 

selected subsequences. Moreover, the complexity of this analysis is significantly lower than direct data 

analysis. But it should clarify important features of the problem under consideration. Thirdly, at any 

moment of the method operation there is a subsequence with the best ARI value, which can be 

accepted as the result of the method. 

3.3 Sequence analysis using statistical features 

This method consists in processing the sequence by sliding window and calculating the 

statistical features for the fragments of the sequence located in this window [9].The idea behind the 

approach is based on the assumption that there are some statistical characteristics allowing predicting 

the appearance of abnormal periods in time series (anomalies). The transition between the normal and 

abnormal state do not occur instantly, meaning the sequence does not only contain normal and 

abnormal intervals, but also transition stages. Meaning the detection of such transition stages can be 

used predict anomalies. The exact amount of transition intervals being unknown, clustering algorithms 

must be used to determine their number and characteristics. Thus, the problem is reduced to the 

division of the initial sequence into N clusters based on the values of statistical features. Processing of 

the sequence will be carried out using a sliding window of size L with a shift K. the Features are the 

statistical features of the sequences: mean, variance, asymmetry, kurtosis and percentile [10].  

3.4 Kalman filter and rolling metrics 

In this approach, statistical calculations are based on time series’ statistical metrics. Kalman 

filter is usually performant at describing the random structure of experimental measurements [12]. 

This filter is able to take into account quantities that may be neglected by other techniques [13], such 

as the variance of the initial state estimation and the model error variance [14]. It provides information 

about the quality of the estimation by representing the estimation error probability. This type of filter 

is well applicable to real-time digital processing [15], because of its recursive structure allowing 

execution without storing observations or past estimations [16].  

4 Review 

All approaches showed themselves able to detect anomalies when they were occurring, each 

bringing their own information. 3.1 Filtering, smoothing and distance from average highlighted the 

first signals of an anomaly and showed its growths structure. 3.2 Label-related clustering, showed the 

possibility to solve the problem using machine learning approach, with an excellent scalability, which 

is essential for the adaptability of the solution to our project. 3.3 Sequence analysis using statistical 

features highlighted the possible clustering in the data, giving us an opportunity to differentiate in 

depth states and stages of anomalies. Finally, 3.4 clarified for us the nature of the noise present in the 

data and allowed to differentiate jittering by their origins. Figure  shows the jittering period labelling.  

As shown on the figure 3, all techniques developed detects first symptoms of jittering before it 

Figure 3.  Comparison of methods with the period of anomaly they detect, over a fragment of data. From top to bottom, 

raw data representation, 1) 3.1 Filtering, smoothing and distance from average, 2) 3.2Label-related clustering, 3) 

3.3  Sequence analysis using statistical features, 4) 3.4 Kalman filter and rolling metrics, and manual labelling of the data 
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was signaled on the original dataset (labelling represented on the last line of the figure). As developed 

in chapter 3.1, the first method presented detects anomalies way ahead of their apparition. The two 

methods using noise filtering techniques (3.1 and 3.4) are less prone to punctual false positive 

labelling and more importantly the results doesn’t seems to be altered by the absence of this 

information, which seems to signify the data removed were indeed non-informative as assumed. Those 

characteristics will allow us to develop an adaptable and scalable technique to detect, identify and to 

some extents forecast anomalies using machine learning, in order to maximize the adaptability of our 

method. The statistical method that will be used is however still to be defined. 

5 Conclusion 

The initial approach of this study, to use different approaches and focus on their respective 

input showed itself rewarding as in allowed us to discover and understand previously supposed 

features in data we initially had very little information about. The core objective of the SmartLINAC 

project is to realize predictive maintenance. In other words to predict anomalies. If it has been done 

successfully in this project, this application is yet far from what is needed in the project. What we 

observed in the framework of this study is the informativeness of one specific data source. This study 

should now be adapted for its use in production in LINAC4’s facilities, thus also allowing the testing 

of its abilities. If the breakdown forecasts obtained in this study might be interesting at CERN’s 

facilities, where maintenance for the instruments we are working with is available day and night with a 

Mean Time To Repair rounding under an hour [17], it is not sufficient for hospitals or radiotherapy 

station deployed in countries having a shortage in qualified personal for LINACs maintenance. It will 

be necessary in the future to model and study in depth the LINACs environment, in order to discover 

not only symptoms of breakdowns but their possible source and patterns. This study is in conclusion a 

success in itself, with results beyond our initial objectives and its sets a great kick forward to the 

SmartLINAC project. 
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