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Introduction High-energy limit

One of the major unsolved problems of QCD (and Yang-Mills theory in
general) is the understanding of its high-energy limit.

I.e. the limit in which C.O.M. energy (
√

s) is much larger than all other
scales in the problem.

√s = 2E >> m h

E E

(e.g. proton)
hadron hadron

Want to examine perturbative QCD predictions for

I asymptotic behaviour of cross section, σhh(s) ∼??

I properties of final states for large s.
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Introduction Experimental knowledge

Donnachie & Landshoff

I Some knowledge exists about
behaviour of cross section
experimentally

I Slow rise as energy increases

I Data insufficient to make
reliable statements about
functional form
I σ ∼ s0.08?
I σ ∼ ln2 s?

I Understanding of final-states is
∼ inexistent

I Would like theoretical
predictions. . .
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Introduction Experimental knowledge

cosmic ray
neutrinos

cosmic ray
hadrons

LHC

Future experiments go to much higher energies.
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Introduction Not just for hadrons

Problem is must more general than just for hadrons. E.g. photon can
fluctuate into a quark-antiquark (hadronic!) state:

photon γ
q

q
E

hadron

Even a neutrino can behave like a hadron

W±, Z

E

hadron
q

q

neutrino

Hadronic component dominates high-energy cross section
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Fields of high-energy dipole

Lowest order — like QED
Study field of qq̄ dipole (' hadron)

y

z

E/m = 1

q

q−

Look at density of gluons from
dipole field (∼ energy density).

QCD ' QED

I Large energy ≡ large boost
(along z axis), by factor

I Fields flatten into pancake.
I simple longitudinal structure

I There remains non-trivial
transverse structure.
I Fields are those of a dipole in

2+1 dimensions
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Fields of high-energy dipole

Lowest order — like QED
Study field of qq̄ dipole (' hadron)

y

z

E/m = 2

q

q−

Look at density of gluons from
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Fields of high-energy dipole

Lowest order — like QED
Study field of qq̄ dipole (' hadron)

y

z

E/m = 3

q

q−

Look at density of gluons from
dipole field (∼ energy density).

QCD ' QED

I Large energy ≡ large boost
(along z axis), by factor

I Fields flatten into pancake.
I simple longitudinal structure

I There remains non-trivial
transverse structure.
I Fields are those of a dipole in

2+1 dimensions
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Fields of high-energy dipole

Lowest order — like QED
Study field of qq̄ dipole (' hadron)

y

z

E/m = 5

q

q−

Look at density of gluons from
dipole field (∼ energy density).

QCD ' QED

I Large energy ≡ large boost
(along z axis), by factor

I Fields flatten into pancake.
I simple longitudinal structure

I There remains non-trivial
transverse structure.
I Fields are those of a dipole in

2+1 dimensions
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Fields of high-energy dipole

Lowest order — like QED
Study field of qq̄ dipole (' hadron)

y

z

E/m = 10

q

q−

Look at density of gluons from
dipole field (∼ energy density).

QCD ' QED

I Large energy ≡ large boost
(along z axis), by factor

I Fields flatten into pancake.
I simple longitudinal structure

I There remains non-trivial
transverse structure.
I Fields are those of a dipole in

2+1 dimensions
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Fields of high-energy dipole

Lowest order — like QED
Study field of qq̄ dipole (' hadron)

y

z

E/m = 20

q

q−

Look at density of gluons from
dipole field (∼ energy density).

QCD ' QED

I Large energy ≡ large boost
(along z axis), by factor

I Fields flatten into pancake.
I simple longitudinal structure

I There remains non-trivial
transverse structure.
I Fields are those of a dipole in

2+1 dimensions
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Fields of high-energy dipole

Lowest order — like QED
Study field of qq̄ dipole (' hadron)

y

z

E/m = 50

q

q−

Look at density of gluons from
dipole field (∼ energy density).

QCD ' QED

I Large energy ≡ large boost
(along z axis), by factor

I Fields flatten into pancake.
I simple longitudinal structure

I There remains non-trivial
transverse structure.
I Fields are those of a dipole in

2+1 dimensions
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(along z axis), by factor
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I There remains non-trivial
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Fields of high-energy dipole

Lowest order — like QED
Study field of qq̄ dipole (' hadron)

y

x

E/m = 50
q

q−

Look at density of gluons from
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Fields of high-energy dipole

Lowest order — like QED
Total number of gluons

Longitudinal structure of energy density (Nc = # of
colours):

dε

dz
∼ αsNc

π
× Eδ(z) × transverse

Fourier transform → energy density in field per unit of
long. momentum (pz)

dε

dpz
∼ αsNc

π
× transverse , m � pz � E

→ number (n) of gluons (each gluon has energy pz):

y

x zR⊥

q

q−

dn

dpz
∼ αsNc

π

1

pz
× transverse , m � pz � E

Total number of gluons:

n ∼ αsNc

π
ln

E

m
× transverse
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Fields of high-energy dipole

Lowest order — like QED
Total number of gluons

Longitudinal structure of energy density (Nc = # of
colours):

dε

dz
∼ αsNc

π
× Eδ(z) × transverse

Fourier transform → energy density in field per unit of
long. momentum (pz)

dε

dpz
∼ αsNc

π
× transverse , m � pz � E

→ number (n) of gluons (each gluon has energy pz):

y

x zR⊥

q

q−

dn

dpz
∼ αsNc

π

1

pz
× transverse , m � pz � E

Total number of gluons:

n ∼ αsNc

π
ln

E

m
× transverse



High-energy QCD (7/36)

Fields of high-energy dipole

Lowest order — like QED
High-energy limit

√
s , E → ∞

I Calculation so far is first-order perturbation theory.

I Fixed order perturbation theory is reliable if series converges quickly.

I At high energies, n ∼ αs lnE ∼ 1.

I What happens with higher orders?

(αs lnE )n?

Leading Logarithms (LL). Any fixed order potentially non-convergent. . .
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Fields of high-energy dipole

QCD specifics
Large-Nc approx.

Colour flowFeynman diagram

I Quarks come in 3 ‘colours’ (Nc = 3). Gluons emission ‘repaints’ the
colour of the quark.

I i.e. gluon carries away one colour and brings in a different one [this
simple picture ≡ approx of many colours].

I gluon itself is charged with both colour and anti-colour [c.f. two lines
with different directions].
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Fields of high-energy dipole

QCD specifics
Multiple gluon emission

Start with bare qq̄ dipole:

q

q

Emission of 1 gluon is like QED case — modulo additional colour factor
(number of different ways to repaint quark):

α→ αsNc/2 (approx)

I In QED subsequent photons are
emitted by original dipole

I In QCD original dipole is
converted into two new dipoles,
which emit independently.
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Fields of high-energy dipole

QCD specifics
Multiple gluon emission

Start with bare qq̄ dipole:

q

q

Emit a gluon:

g

q

q

Emission of 1 gluon is like QED case — modulo additional colour factor
(number of different ways to repaint quark):

α→ αsNc/2 (approx)

I In QED subsequent photons are
emitted by original dipole
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Fields of high-energy dipole

QCD specifics
Multiple gluon emission

Start with bare qq̄ dipole:

q

q

Emit a gluon:

g

q

q

Emission of 1 gluon is like QED case — modulo additional colour factor
(number of different ways to repaint quark):

α→ αsNc/2 (approx)

I In QED subsequent photons are
emitted by original dipole

I In QCD original dipole is
converted into two new dipoles,
which emit independently. e+

e−

γ
γ
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Fields of high-energy dipole

QCD specifics
Multiple gluon emission

Start with bare qq̄ dipole:

q

q

Emit a gluon:

g

q

q

Emission of 1 gluon is like QED case — modulo additional colour factor
(number of different ways to repaint quark):

α→ αsNc/2 (approx)

I In QED subsequent photons are
emitted by original dipole

I In QCD original dipole is
converted into two new dipoles,
which emit independently.

g

q

q
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Fields of high-energy dipole

BFKL equation (NB: Y = ln s)
Towards evolution equation

I Keeping track of full structure of dipoles in evolved qq̄ pair is
complicated.

I Instead examine total number of dipoles as a function of energy:

R01

0

1
Start with dipole of size R01.

Define number of dipoles of size r obtained after evo-
lution in energy to a rapidity Y = ln s:

n(Y ;R01, r)

I Write an equation for the evolution of n(Y ;R01, r) with energy.
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Fields of high-energy dipole

BFKL equation (NB: Y = ln s)
Dipole evolution equation

0

1

2

0

1

0

1

−−
d

dY
= +

0

1

2

r
r r

r

∂n(Y ; R01, r)

∂Y
=
αsNc

2π2

∫
d2R2 R2

01

R2
02R

2
12

[n(Y ; R12, r) + n(Y ; R02, r) − n(Y ; R01, r)]

Transverse struct:
2-dim dipole-field

(squared)

Balitsky-Fadin-Kuraev-Lipatov (BFKL)

Formulation of Mueller + Nikolaev & Zakharov ’93

NB: ∃ other formulations

I original BFKL I Ciafaloni-Catani-Fiorani-Marchesini (CCFM)

I Colour Glass Condensate (CGC) / Jalilian-Marian, Iancu, McLerran,
Weigert, Leonidov and Kovner (JIMWLK)

I Balitsky-Kovchegov (BK)
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Fields of high-energy dipole
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BFKL solutions: double logs

Recall: Y ' ln 1/x ' ln s/s0 ; Q/Λ ∼ R/r

Solutions?

No full analytical solution exists in closed form. But asymptotic properties
are well understood.

Simplest case is double asymptotic limit: ln s ∼ eY � 1 & r � R .

off−shell (Q2)
γ ∗photon

r γ

q
r γ

electron proton

Rp

~ 1/Q < p< R

q

This is just Deep Inelastic Scattering
at small longitudinal momentum frac-
tion x :

1

x
∼ s

Q2
� 1

Q2

Λ2
∼
(

r2
γ

R2
p

)
−1

� 1

Much data from HERA collider.
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BFKL solutions: double logs

Recall: Y ' ln 1/x ' ln s/s0 ; Q/Λ ∼ R/r

Double Log (DL) Equation

r
−− r

0

1

2

1

0

+r

0

1
r

0

1

2
=

d

dY

∂n(Y ; R01, r)

∂Y
= ᾱs

∫ R01

r

dR2
12

R2
12

n(Y ; R12, r)

∣
∣
∣
∣
ᾱs =

αsNc

π

⇒ n(Y ; R01, r) =
αsNc

π

∫ Y

0

dy

∫ R01

r

dR2
12

R2
12

︸ ︷︷ ︸

αs ln s ln R01

r
= double log

n(y ; R12, r)

Same result can be deduced from DGLAP equations
(evolution in Q2)
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= double log

n(y ; R12, r)

Same result can be deduced from DGLAP equations
(evolution in Q2)
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BFKL solutions: double logs
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BFKL solutions: double logs

Recall: Y ' ln 1/x ' ln s/s0 ; Q/Λ ∼ R/r

Double Log (DL) Solution

Make zeroth order approx: n(0)(Y ;R , r) = Θ(R − r)
count number of dipoles larger than r

Solve iteratively to get j th order contribution:

n(j)(Y ;R , r) = ᾱs

∫ Y

0
dy

∫ R

r

dR ′2

R ′2
n(j−1)(y ;R ′, r)

Result:

n(j)(Y ;R , r) = ᾱj
s

Y j

j!

(lnR2/r2)j

j!

(fixed coupling approximation)
Do sum:

n(Y ;R , r) =

∞∑

j=0

(ᾱsY lnR2/r2)j

(j!)2
∼ exp

[

2
√

ᾱsY lnR2/r2

]

NB: including running coupling ∼ exp(2/β2
0

√

Y ln ln R2/r2)
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BFKL solutions: double logs

Recall: Y ' ln 1/x ' ln s/s0 ; Q/Λ ∼ R/r

Test in Deep Inelastic Scattering

DIS X-sctn ∼ n dipoles:

F2(x ,Q
2) ∼ n(ln

1

x
;

1

Λ2
,

1

Q2
)

∼ exp

[

2

β2
0

√

ln
1

x
ln ln

Q2

Λ2

]

I Growth of cross section at
small x

I Faster growth for high Q2

NB: truly predict features of

x-dependence, even for non-

perturbative (NP) proton, since

NP uncertainty ≡ rescaling of Λ

+ can be made quantitative

(Ball & Forte ’94–96)
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BFKL solutions: double logs

Recall: Y ' ln 1/x ' ln s/s0 ; Q/Λ ∼ R/r

Large number of gluons

H
1 

C
ol

la
bo

ra
tio

n

I Convert cross sections into
estimate of number of
gluons

I Various independent
extractions

I Up to 20 gluons per unit
ln x (or unit ln pz)!

NB: at resolution Q2, area occupied by gluon ∼ 1/Q2 (area
of proton ∼ 1/Λ2) ⇒ the many gluons are spread out thinly,

density ∼ xg(x) × Λ2/Q2 . 1
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High-energy QCD (17/36)

Full BFKL solution True high-energy limit

Double-Log limit had ln s and lnQ2 growing simultaneously.

True high-energy limit is when c.o.m. energy
√

s � all other scales:

⊥ scale = fixed and ln s → ∞

Since all ⊥ scales similar, problem is self-similar:

dipole → 2 dipoles → 4 dipoles → . . .

Expect exponential growth:

n ∼ exp [ᾱs ln s × transverse] ∼ s ᾱs×transverse
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Full BFKL solution BFKL eigenfunctions

BFKL equation is linear & homogeneous, kernel is conformally invariant

∂n(Y ; R01, r)

∂Y
=
ᾱs

2π

∫
d2R2 R2

01

R2
02R

2
12

[n(Y ; R12, r) + n(Y ; R02, r) − n(Y ; R01, r)]

It has power-like eigenfunctions:

n(Y ;R , r) = nγ(Y )

(
R2

r2

)γ

,

which evolve exponentially (as expected):

∂nγ(Y )

∂Y
= ᾱsχ(γ)nγ(Y ) ⇒ nγ(Y ) ∝ exp [ᾱsχ(γ)Y ]

[

χ(γ) = 2ψ(1) − ψ(γ) − ψ(1 − γ)
︸ ︷︷ ︸

characteristic function

, ψ(γ) =
1

Γ(γ)

dΓ(γ)

dγ

]
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Full BFKL solution Characteristic function

 0

 5

 10

 0  0.5  1

χ(
γ)

γ

4 ln 2

≈ 1/γ ≈ 1/(1−γ)
Eigenvalues for (R2/r2)γ

χ(γ) = 2ψ(1) − ψ(γ) − ψ(1 − γ)

→ high energy evolution, n ∼ e ᾱsχ(γ)Y .

I pole (1/γ) corresponds to ⊥
logarithms → DL terms αsY lnQ2

I dominant part at high energies is
minimum (only stable solution)

n(Y ;R , r) ∼ R

r
e4 ln 2ᾱsY ∼ R

r
e0.5Y

αs ' 0.2

Rapid power growth with energy of number of dipoles (and cross sections).
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Full BFKL solution

Recall: eigenfunctions ∼ (R2/r2)γ
BFKL eqn solved numerically

 0.01
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 1
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 0.01  0.1  1  10  100

n(
Y

; R
, r

)

r/R

Y =  0.0

Y = 0
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Full BFKL solution

Recall: eigenfunctions ∼ (R2/r2)γ
BFKL eqn solved numerically

 0.01

 0.1

 1

 10

 100

 0.01  0.1  1  10  100

n(
Y

; R
, r

)

r/R

Y = 10.0

Y = 0

Y = 2.5

Y = 5.0

Y = 7.5

small effective γ,
rapid growth in Y
exp[2√(α−s Y ln R2/r2)]

n ∝ R/r  ⇒  γ ≈ 1/2

   ∝ R/r e4ln2 α−s Y
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BFKL ‘searches’

DIS (F2)
Look for BFKL in F2 [γ∗p X-sct]

BFKL ‘predicts’ (for low Q2)

F2(x ,Q
2) ∼ e4 ln 2αsY ∼ x−0.5

Fit λ in F2(x ,Q
2) ∼ x−λ(Q2).

Expect to find λ ' 0.5
may be larger at high Q2 (DL)
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BFKL ‘searches’

DIS (F2)
Look for BFKL in F2 [γ∗p X-sct]

BFKL ‘predicts’ (for low Q2)

F2(x ,Q
2) ∼ e4 ln 2αsY ∼ x−0.5

Fit λ in F2(x ,Q
2) ∼ x−λ(Q2).

Expect to find λ ' 0.5
may be larger at high Q2 (DL)

Result incompatible with
BFKL

What’s wrong?

I proton is non-perturbative (NP)

I BFKL dynamics naturally
concentrated at (NP) scales

H
1
 C

o
lla

b
o
ra

tio
n

I NB: DLs spread over range of
scales ⇒ less sensitive to NP
region
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BFKL ‘searches’

γ∗γ∗

γ
∗
γ

∗ collisions

off−shell (Q )
1

γ ∗

γ ∗ (Q 2)

positron

q

q

electron

photon

I Eliminate ratios of transverse
scales by colliding two virtual
photons Q1 ∼ Q2

I Make perturbative by choosing
Q1 ∼ Q2 ∼ few GeV

I Theoretically clean

I Experimentally difficult (small
cross section)
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BFKL ‘searches’

γ∗γ∗

Results from LEP

L3 Data * γ * γ

1 2

LL BFKL (schematic)
One gluon

√s


=189 −209 GeV

σ
γ∗

γ∗
(Y

) 
[n

b
]

0
2 3 4 5 6

Y = ln s/Q Q

5

10

15

20

I Here too, data clearly incompatible with LL BFKL

I But perhaps some evidence for weak growth
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BFKL ‘searches’

γ∗γ∗

Results from LEP

g−class BFKL

NLOLO

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Y

10
-3

2

5

10
-2

2

5
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-1
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5

d
t/d

Y
[p

b]

e
+

e
-

e
+

e
-
(

* *
) hadrons, L3 cuts

NLO + g class scale dep
NLO + g class
NLO
L3 data

Cacciari et al, 2001

I Here too, data clearly incompatible with LL BFKL

I But perhaps some evidence for weak growth
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Higher order corrections Where is BFKL?

I BFKL is rigorous prediction of field theory, yet not seen in data

I Should we be worried?

I Calculations shown so far are in Leading Logarithmic (LL)
approximation, (αs ln s)n: accurate only for

αs → 0, ln s → ∞ and αs ln s ∼ 1.

I Need higher order corrections

Next-to-Leading-Logarithmic (NLL)
terms: αs(αs ln s)n

Fadin, Lipatov, Fiore, Kotsky, Quartarolo;

Catani, Ciafaloni, Hautmann, Camici;

’89–’98
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I NLL terms are
pathologically large
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→ stable, sensible kernel
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Higher order corrections NLL solutions
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G (Y ; k , k0) = Fourier

transform of n(Y ; R , r)

I LL grows rapidly with Y

I NLL unstable wrt
subleading changes

I DGLAP-symmetry
constrained higher-orders
(schemes A, B) give stable
predictions

I Higher orders
I slow onset of growth (Y & 5)

I reduce power of growth
(∼ e0.25Y )

I Detailed comparison with data
not yet done parts of NLL

(‘impact factors’) missing

I General picture seems sensible
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High-energy QCD (27/36)

Saturation etc. What about protons?

I Higher-order corrections are sufficient to explain lack of growth in γ∗γ∗

data (Y . 6). NB: LHC and International Linear Collider can

test perturbative BFKL up to Y ' 10

I But pp and low-Q2 DIS go to higher energies, Y ' 10 − 14.
NLL BFKL (+ DGLAP constraints) predicts σ & s0.3 by such energies.

I Why does one only see σ ∼ s0.08 (pp) or F2 ∼ x−0.15 (low-Q2 DIS)?

Unitarity/saturation & confinement
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Saturation etc.

Impact on X-sctn growth
Two mechanisms for growth of σ
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I Increase in size of biggest
dipoles rmax.



High-energy QCD (28/36)

Saturation etc.

Impact on X-sctn growth
Two mechanisms for growth of σ

 0.1

 1

 10

 100

 0.1  1  10

n(
Y

; R
, r

)

r/R

Increase
in density

Y = 0

Y = 2.5

Y = 5.0

Y = 7.5

Y = 10

LL BFKL

Cross sections grow:

I Increase in number of
dipoles r ∼ R

I Increase in size of biggest
dipoles rmax.



High-energy QCD (28/36)

Saturation etc.

Impact on X-sctn growth
Two mechanisms for growth of σ

 0.1

 1

 10

 100

 0.1  1  10

n(
Y

; R
, r

)

r/R

Increase
in density

Increase
in size

Y = 0

Y = 2.5

Y = 5.0

Y = 7.5

Y = 10

LL BFKL

Cross sections grow:

I Increase in number of
dipoles r ∼ R

I Increase in size of biggest
dipoles rmax.



High-energy QCD (29/36)

Saturation etc.

Impact on X-sctn growth
Saturation

Density of gluons cannot increase indefinitely

I When dipole density is high (∼ Nc/αs) dipole branching compensated
by dipole merging → saturation of density

I Reach maximxal ‘occupation number’ Colour Glass Condensate

I Closely connected issue: unitarity (interaction prob. bounded, ≤ 1)

Expressed (approx.. . . ) in BFKL equation via non-linear term

∂n(Y ; R01)

∂Y
=
ᾱs

2π

∫
d2R2 R2

01

R2
02R

2
12

[n(Y ; R12) + n(Y ; R02) − n(Y ; R01)

−cα2
sn(Y ; R12)n(Y ; R02)

]

Gribov Levin Ryskin ’83; Balitsky ’96; Kovchegov ’98; JIMWLK ’97–98.
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Saturation etc.

Impact on X-sctn growth
Cross-section with saturation

Kernel
R2

01d
2~R2

R2
12R

2
02

is conformally invariant (even with non-linear term)

e.g. : Growth in area

BFKL growth is not
just increase in number of gluons/dipoles.

Gluons can be produced far from original dipole — because
of conformal (scale) invariance each step in Y translates to
a constant factor of increase in area.

No other scales in problem.

Perturbative (fixed-coupling) geometric cross section for two dipoles in
Balitsky-Kovchegov (= BFKL with saturation) grows as

σ ∼ exp [ 2.44 × ᾱs Y ] 2.44 ' χ′(γ̄) where γ̄χ′(γ̄) = χ(γ̄)

Only marginally weaker than e4 ln 2ᾱsY = e2.77ᾱsY of unsaturated BFKL.

Y∆ Y∆
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Saturation etc.

Impact on X-sctn growth
Confinement

I Conformal invariance not an exact symmetry of high-energy QCD.

I Broken by running of coupling.

I For distances & 1/ΛQCD perturbative treatment makes no sense
I confinement sets in
I cannot produce dipoles larger than 1/ΛQCD

I exponential BFKL growth in size stops
I (other than by additive amount ∼ 1/ΛQCD per unit increase in Y )

I This is the semi-perturbative picture consistent with

Froissart bound: σ ∼ Y 2/m2
π

But no direct connection with pp̄ X-section possible so far

I NB: combination of saturation & confinement are needed to get
Froissart.
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High-energy QCD (32/36)

Saturation etc.

Saturation scale (DIS)
Saturation scale for proton

ln Q2

Y

BFKL

DGLAP

Plot Y -lnQ2 plane
(as Prof. Veneziano)

Recall:

I Density ⇑ with Y

I Density ⇓ with lnQ2

Classify:

I Dilute: r2

R2 n . α−1
s

I Dense: r2

R2 n & α−1
s

Introduce boundary be-
tween them (in Q2):

Saturation Scale
Q2

s (Y )
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Saturation etc.

Saturation scale (DIS)
Saturation scale from data?

Big business at HERA collider

I Saturation ⇒ strong non-Abelian
fields (but αs � 1) if Q2

s & 1 GeV

I Use diffraction to measure degree of
saturation

I Saturation sets in (perhaps?) just at
limit of perturbative region

I NB: much interest also for nuclei
(thickness increases density) (RHIC)

Dynamics at Q2
s (Y )

I All gluon modes occupied up to
Q2

s (Y ).

I pp collisions always radiate gluons
up to Q2

s (Y ).

CRITICAL LINE

Q2(GeV 2)

lo
g

1
0
(1

/x
)

FIT 1

Bartels, Golec−Biernat & Kowalski ’02

FIT 2

SAT MODEL

1

2

3

4

5
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7

10
−1

1 10

HERA

I Qs & 1 GeV ⇒ pp collisions
partially perturbative.
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I NB: much interest also for nuclei
(thickness increases density) (RHIC)

Dynamics at Q2
s (Y )

I All gluon modes occupied up to
Q2

s (Y ).

I pp collisions always radiate gluons
up to Q2

s (Y ).
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I Qs & 1 GeV ⇒ pp collisions
partially perturbative.
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Conclusions A (biased) selection of recent work

Towards NLL comparisons with data

I NLL couplings to external particles (photons, jets) — ‘impact factors’
Bartels, Gieseke, Qiao, Colferai, Vacca, Kyrieleis ’01–. . .

Fadin, Ivanov, Kotsky ’01–. . .

I Understanding solutions of NLL evolution equations
Altarelli, Ball Forte ’02–. . . ; Andersen & Sabio Vera ’03–. . .

Ciafaloni, Colferai, GPS & Staśto ’02–. . .

Evolution equations with saturation:

I Solutions of multipole evolution
(BKP) Derkachov, Korchemsky,

Kotanski & Manashov ’02
de Vega & Lipatov ’02

I Connections between
Balitsky-Kovchegov and statistical
physics (FKPP)

Munier & Peschanski ’03

I Evolution eqns beyond ‘mean-field’
Iancu & Triantafyllopoulos ’04-05

Mueller, Shoshi & Wong ’05
Levin & Lublinsky ’05

I Understanding of solutions beyond
mean-field Mueller & Shoshi ’04

Iancu, Mueller & Munier ’04
Brunet, Derrida, Mueller &

Munier (in progress)
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Conclusions Conclusions & outlook

I Basic field-theoretical framework for high-energy limit of perturbative
QCD: BFKL

I Has many sources of corrections
I Higher-orders in linear equation
I Non-linearities

I These effects all combine together to provide a picture that looks
sensible wrt data

I Progress still needed in order to be quantitative
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Permanent

Postdoc

Ph.D.
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