La QCD à hautes énergies

Gavin Salam

LPTHE, Universités de Paris VI et VII, et CNRS

Collège de France 5 avril 2005

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

One of the major unsolved problems of QCD (and Yang-Mills theory in general) is the understanding of its *high-energy limit*.

I.e. the limit in which C.O.M. energy (\sqrt{s}) is much larger than *all other scales* in the problem.

Want to examine perturbative QCD predictions for

asymptotic behaviour of cross section, σ_{hh}(s) ~??
 properties of final states for large s.

Experimental knowledge

- Some knowledge exists about behaviour of cross section experimentally
- Slow rise as energy increases
- Data insufficient to make reliable statements about functional form
 - $\sigma \sim s^{0.08}$? • $\sigma \sim \ln^2 s$?
- Understanding of final-states is
 ~ inexistent

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

 Would like theoretical predictions...

Experimental knowledge

Future experiments go to much higher energies.

э

Problem is must more general than just for hadrons. E.g. photon can *fluctuate* into a quark-antiquark (hadronic!) state:

Even a neutrino can behave like a hadron

Hadronic component dominates high-energy cross section

Study field of $q\bar{q}$ dipole (\simeq hadron)

Look at density of *gluons* from dipole field (\sim energy density).

$QCD \simeq QED$

- Large energy = large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure

Study field of $q\bar{q}$ dipole (\simeq hadron)

Look at density of *gluons* from dipole field (\sim energy density).

 $QCD \simeq QED$

- Large energy = large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Study field of $q\bar{q}$ dipole (\simeq hadron)

Look at density of *gluons* from dipole field (\sim energy density).

 $QCD \simeq QED$

- Large energy = large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure

Study field of $q\bar{q}$ dipole (\simeq hadron)

Look at density of *gluons* from dipole field (\sim energy density).

 $QCD \simeq QED$

- Large energy = large boost (along z axis), by factor
- Fields flatten into *pancake*.
 - simple longitudinal structure

Look at density of *gluons* from dipole field (\sim energy density).

 $QCD \simeq QED$

- Large energy = large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure

Look at density of *gluons* from dipole field (\sim energy density).

 $QCD \simeq QED$

- Large energy = large boost (along z axis), by factor
- Fields flatten into *pancake*.
 - simple longitudinal structure

Look at density of *gluons* from dipole field (\sim energy density).

 $QCD \simeq QED$

- ► Large energy ≡ large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure

There remains non-trivial transverse structure.

Look at density of *gluons* from dipole field (\sim energy density).

 $QCD \simeq QED$

- ► Large energy ≡ large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure

 There remains non-trivial transverse structure.

Look at density of *gluons* from dipole field (\sim energy density).

 $QCD \simeq QED$

- Large energy = large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure
- There remains non-trivial transverse structure.

 Fields are those of a dipole in 2+1 dimensions

Study field of $q\bar{q}$ dipole (\simeq hadron)

Look at density of *gluons* from dipole field (\sim energy density).

$QCD \simeq QED$

- ► Large energy ≡ large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure
- There remains non-trivial transverse structure.
 - Fields are those of a dipole in 2+1 dimensions

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

Look at density of *gluons* from dipole field (\sim energy density).

$QCD \simeq QED$

- ► Large energy ≡ large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure
- There remains non-trivial transverse structure.
 - Fields are those of a dipole in 2+1 dimensions

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

Look at density of *gluons* from dipole field (\sim energy density).

$QCD \simeq QED$

- ► Large energy ≡ large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure
- There remains non-trivial transverse structure.
 - Fields are those of a dipole in 2+1 dimensions

Look at density of *gluons* from dipole field (\sim energy density).

 $QCD \simeq QED$

- ► Large energy ≡ large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure
- There remains non-trivial transverse structure.
 - Fields are those of a dipole in 2+1 dimensions

(日)(四)(日)(日)(日)(日)

Look at density of *gluons* from dipole field (\sim energy density).

 $QCD \simeq QED$

- ► Large energy ≡ large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure
- There remains non-trivial transverse structure.
 - Fields are those of a dipole in 2+1 dimensions

Look at density of *gluons* from dipole field (\sim energy density).

 $QCD \simeq QED$

- Large energy = large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure
- There remains non-trivial transverse structure.
 - Fields are those of a dipole in 2+1 dimensions

Look at density of *gluons* from dipole field (\sim energy density).

 $QCD \simeq QED$

- ► Large energy ≡ large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure
- There remains non-trivial transverse structure.
 - Fields are those of a dipole in 2+1 dimensions

(日) (字) (日) (日) (日)

Study field of $q\bar{q}$ dipole (\simeq hadron)

Look at density of *gluons* from dipole field (\sim energy density).

 $QCD \simeq QED$

- Large energy = large boost (along z axis), by factor
- Fields flatten into pancake.
 - simple longitudinal structure
- There remains non-trivial transverse structure.
 - Fields are those of a dipole in 2+1 dimensions

(日)

Longitudinal structure of energy density ($N_c = \#$ of colours):

 $rac{d\epsilon}{dz} \sim rac{lpha_{\sf s} N_{\sf c}}{\pi} imes E\delta(z) imes {
m transverse}$

Fourier transform ightarrow energy density in field per unit of long. momentum (ho_z)

 $rac{d\epsilon}{dp_z} \sim rac{lpha_{s} N_c}{\pi} imes ext{transverse} \,, \qquad m \ll p_z \ll E$

 \rightarrow number (*n*) of gluons (each gluon has energy p_z):

 $rac{dn}{d
ho_z}\sim rac{lpha_s N_c}{\pi}rac{1}{
ho_z} imes ext{transverse}\,,\qquad m\ll
ho_z\ll E$

Total number of gluons:

Longitudinal structure of energy density ($N_c = \#$ of colours):

 $rac{d\epsilon}{dz} \sim rac{lpha_{s}N_{c}}{\pi} imes E\delta(z) imes ext{transverse}$

Fourier transform \rightarrow energy density in field per unit of long. momentum (p_z)

 $\frac{d\epsilon}{dp_z} \sim \frac{\alpha_{\rm s} N_c}{\pi} \times {\rm transverse}\,, \qquad m \ll p_z \ll E$

 \rightarrow number (*n*) of gluons (each gluon has energy p_z):

 $\frac{dn}{dp_z} \sim \frac{\alpha_s N_c}{\pi} \frac{1}{p_z} \times \text{transverse}, \qquad m \ll p_z \ll R$

Total number of gluons:

$$n \sim \frac{\alpha_{s} N_{c}}{\pi} \ln \frac{E}{m} \times \text{transverse}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 ● ◇◇◇

Longitudinal structure of energy density ($N_c = \#$ of colours):

 $rac{d\epsilon}{dz} \sim rac{lpha_{s}N_{c}}{\pi} imes E\delta(z) imes ext{transverse}$

Fourier transform \rightarrow energy density in field per unit of long. momentum (p_z)

 $\frac{d\epsilon}{dp_z} \sim \frac{\alpha_{\rm s} N_c}{\pi} \times {\rm transverse}\,, \qquad m \ll p_z \ll E$

 \rightarrow number (*n*) of gluons (each gluon has energy p_z):

 $\frac{dn}{dp_z} \sim \frac{\alpha_{\rm s} N_c}{\pi} \frac{1}{p_z} \times {\rm transverse}\,, \qquad m \ll p_z \ll E$

Total number of gluons:

$$n \sim \frac{\alpha_{s} N_{c}}{\pi} \ln \frac{E}{m} \times ext{transverse}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 ● ◇◇◇

Longitudinal structure of energy density ($N_c = \#$ of colours):

 $rac{d\epsilon}{dz} \sim rac{lpha_{\sf s} N_c}{\pi} imes {\sf E} \delta(z) imes {
m transverse}$

Fourier transform \rightarrow energy density in field per unit of long. momentum (p_z)

$$\frac{d\epsilon}{dp_z} \sim \frac{\alpha_{\rm s} N_c}{\pi} \times {\rm transverse}\,, \qquad m \ll p_z \ll E$$

 \rightarrow number (*n*) of gluons (each gluon has energy p_z):

$$\frac{dn}{dp_z} \sim \frac{\alpha_{\rm s} N_c}{\pi} \frac{1}{p_z} \times \text{transverse} \,, \qquad m \ll p_z \ll E$$

Total number of gluons:

$$n \sim \frac{\alpha_{s} N_{c}}{\pi} \ln \frac{E}{m} \times \text{transverse}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

- Calculation so far is first-order perturbation theory.
- Fixed order perturbation theory is reliable if series converges quickly.
- At high energies, $n \sim \alpha_{\rm s} \ln E \sim 1$.
- What happens with higher orders?

 $(\alpha_{s} \ln E)^{n}$?

Leading Logarithms (LL). Any fixed order potentially non-convergent...

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

- ▶ Quarks come in 3 'colours' (N_c = 3). Gluons emission 'repaints' the colour of the quark.
- ► i.e. gluon carries away one colour and brings in a different one [this simple picture = approx of many colours].
- gluon itself is charged with both colour and anti-colour [c.f. two lines with different directions].

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

Start with bare $q\bar{q}$ dipole:

Emission of 1 gluon is like QED case — modulo additional colour factor (number of different ways to repaint quark):

 $\alpha \rightarrow \alpha_{\rm s} N_c/2$ (approx)

- In QED subsequent photons are emitted by original dipole
- In QCD original dipole is converted into two new dipoles, which *emit independently*.

Multiple gluon emission

Emission of 1 gluon is like QED case — modulo additional colour factor (number of different ways to repaint quark):

$$\alpha \to \alpha_{\rm s} N_c/2$$
 (approx)

- In QED subsequent photons are emitted by original dipole
- In QCD original dipole is converted into two new dipoles, which *emit independently*.

Multiple gluon emission

(日) (字) (日) (日) (日)

Emission of 1 gluon is like QED case — modulo additional colour factor (number of different ways to repaint quark):

$$\alpha \to \alpha_{\rm s} N_c/2$$
 (approx)

- In QED subsequent photons are emitted by original dipole
- In QCD original dipole is converted into two new dipoles, which *emit independently*.

Multiple gluon emission

Emission of 1 gluon is like QED case — modulo additional colour factor (number of different ways to repaint quark):

$$\alpha \to \alpha_{\rm s} N_c/2$$
 (approx)

- In QED subsequent photons are emitted by original dipole
- In QCD original dipole is converted into two new dipoles, which *emit independently*.

・ロト ・ 同ト ・ ヨト ・ ヨト

×01

n

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

- Keeping track of full structure of dipoles in evolved qq pair is complicated.
- Instead examine *total* number of dipoles as a function of energy:

Start with dipole of size R_{01} .

Define *number of dipoles of size r* obtained after evolution in energy to a *rapidity* $Y = \ln s$:

 $n(Y; R_{01}, r)$

▶ Write an equation for the *evolution* of *n*(*Y*; *R*₀₁, *r*) with energy.

۲₀₁

Λ

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

- Keeping track of full structure of dipoles in evolved qq pair is complicated.
- Instead examine *total* number of dipoles as a function of energy:

Start with dipole of size R_{01} .

Define *number of dipoles of size r* obtained after evolution in energy to a *rapidity* $Y = \ln s$:

 $n(Y; R_{01}, r)$

• Write an equation for the *evolution* of $n(Y; R_{01}, r)$ with energy.

×01

0

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

- Keeping track of full structure of dipoles in evolved qq pair is complicated.
- Instead examine *total* number of dipoles as a function of energy:

Start with dipole of size R_{01} .

Define *number of dipoles of size r* obtained after evolution in energy to a *rapidity* $Y = \ln s$:

 $n(Y; R_{01}, r)$

• Write an equation for the *evolution* of $n(Y; R_{01}, r)$ with energy.

High-energy QCD (11/36) Fields of high-energy dipole BFKL equation (NB: $Y = \ln s$)

Dipole evolution equation

 $\frac{\partial n(Y; R_{01}, r)}{\partial Y} = \frac{\alpha_{s} N_{c}}{2\pi^{2}} \int \frac{d^{2} R_{2} R_{01}^{2}}{R_{02}^{2} R_{12}^{2}} \left[n(Y; R_{12}, r) + n(Y; R_{02}, r) - n(Y; R_{01}, r) \right]$

Transverse struct: 2-dim dipole-field (squared)

NB: 3 other formulations

original BFKL

Balitsky-Fadin-Kuraev-Lipatov (BFKL

Formulation of Mueller + Nikolaev & Zakharov '93

・ロト ・ 同ト ・ ヨト ・ ヨト

- FKL Ciafaloni-Catani-Fiorani-Marchesini (CCFM)
- Colour Glass Condensate (CGC) / Jalilian-Marian, lancu, McLerran, Weigert, Leonidov and Kovner (JIMWLK)
- Balitsky-Kovchegov (BK)
High-energy QCD (11/36) Fields of high-energy dipole BFKL equation (NB: $Y = \ln s$)

Dipole evolution equation

2-dim dipole-field (squared)

High-energy QCD (11/36) Fields of high-energy dipole BFKL equation (NB: $Y = \ln s$)

Dipole evolution equation

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

 $\frac{\partial n(Y; R_{01}, r)}{\partial Y} = \frac{\alpha_{\rm s} N_c}{2\pi^2} \int \frac{d^2 R_2 R_{01}^2}{R_2^2 R_{01}^2} \left[n(Y; R_{12}, r) + n(Y; R_{02}, r) - n(Y; R_{01}, r) \right]$

Transverse struct: 2-dim dipole-field (squared)

Balitsky-Fadin-Kuraev-Lipatov (BFKL)

Formulation of Mueller + Nikolaev & Zakharov '93

- original BFKL
 - Ciafaloni-Catani-Fiorani-Marchesini (CCFM)
 - Colour Glass Condensate (CGC) / Jalilian-Marian, Iancu, McLerran,
 - Balitsky-Kovchegov (BK)

High-energy QCD (11/36) Fields of high-energy dipole BFKL equation (NB: $Y = \ln s$)

Dipole evolution equation

$$\frac{\partial n(Y; R_{01}, r)}{\partial Y} = \frac{\alpha_{\rm s} N_c}{2\pi^2} \int \frac{d^2 R_2 R_{01}^2}{R_{02}^2 R_{12}^2} \left[n(Y; R_{12}, r) + n(Y; R_{02}, r) - n(Y; R_{01}, r) \right]$$

Transverse struct: 2-dim dipole-field (squared)

Balitsky-Fadin-Kuraev-Lipatov (BFKL)

Formulation of Mueller + Nikolaev & Zakharov '93

NB: ∃ other formulations

original BFKL

- Ciafaloni-Catani-Fiorani-Marchesini (CCFM)
- Colour Glass Condensate (CGC) / Jalilian-Marian, lancu, McLerran, Weigert, Leonidov and Kovner (JIMWLK)
- Balitsky-Kovchegov (BK)

No full analytical solution exists in closed form. But *asymptotic properties* are well understood.

Simplest case is *double asymptotic limit*: $\ln s \sim e^{Y} \ll 1 \& r \ll R$.

This is just *Deep Inelastic Scattering* at small longitudinal momentum fraction *x*:

$$rac{1}{x}\sim rac{s}{Q^2}\gg 1$$
 $rac{Q^2}{\Lambda^2}\sim \left(rac{r_\gamma^2}{R_p^2}
ight)^{-1}\gg 1$

Much data from HERA collider.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

No full analytical solution exists in closed form. But *asymptotic properties* are well understood.

Simplest case is *double asymptotic limit*: $\ln s \sim e^{Y} \ll 1 \& r \ll R$.

This is just *Deep Inelastic Scattering* at small longitudinal momentum fraction *x*:

$$rac{1}{x}\simrac{s}{Q^2}\gg 1$$
 $rac{Q^2}{\Lambda^2}\sim\left(rac{r_\gamma^2}{R_p^2}
ight)^{-1}\gg 1$

Much data from HERA collider.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

 $\begin{array}{l} \mbox{High-energy QCD (13/36)} \\ \mbox{} \mbox$

Double Log (DL) Equation

(日) (四) (三) (三)

3

Same result can be deduced from DGLAP equations (evolution in Q^2)

 $\begin{array}{l} \mbox{High-energy QCD (13/36)} \\ \mbox{ } BFKL \mbox{ solutions: double logs} \\ \mbox{ } Recall: \ Y \simeq \ln 1/x \simeq \ln s/s_0; \ Q/\Lambda \sim R/r \end{array}$

Double Log (DL) Equation

(日) (四) (三) (三)

Same result can be deduced from
$$DGLAP$$
 equations (evolution in Q^2)

~ ~ ~ ~

э

 $\begin{array}{l} \mbox{High-energy QCD (13/36)} \\ \mbox{BFKL solutions: double logs} \\ \mbox{Lrecall: } Y \simeq \ln 1/x \simeq \ln s/s_0; \ Q/\Lambda \sim R/r \end{array}$

Double Log (DL) Equation

(日) (四) (三) (三)

Same result can be deduced from
$$DGLAP$$
 equations (evolution in Q^2)

SQR

э

High-energy QCD (13/36) BFKL solutions: double logs Lecall: $Y \simeq \ln 1/x \simeq \ln s/s_0$; $Q/\Lambda \sim R/r$

Double Log (DL) Equation

・ロト ・ 日 ・ ・ 日 ・ ・ 日

$$\frac{\partial n(Y; R_{01}, r)}{\partial Y} = \bar{\alpha}_{s} \int_{r}^{R_{01}} \frac{dR_{12}^{2}}{R_{12}^{2}} n(Y; R_{12}, r)$$

$$\Rightarrow \quad n(Y; R_{01}, r) = \underbrace{\frac{\alpha_{s} N_{c}}{\pi} \int_{0}^{Y} dy \int_{r}^{R_{01}} \frac{dR_{12}^{2}}{R_{12}^{2}}}_{\alpha_{s} \ln s \ln \frac{R_{01}}{r}} = \text{double log}} n(y; R_{12}, r)$$

Same result can be deduced from DGLAP equations (evolution in Q^2)

High-energy QCD (13/36) \square BFKL solutions: double logs \square Recall: $Y \simeq \ln 1/x \simeq \ln s/s_0$; $Q/\Lambda \sim R/r$

Double Log (DL) Equation

・ロト ・ 日 ・ ・ 日 ・ ・ 日

3

$$\frac{\partial n(Y; R_{01}, r)}{\partial Y} = \bar{\alpha}_{s} \int_{r}^{R_{01}} \frac{dR_{12}^{2}}{R_{12}^{2}} n(Y; R_{12}, r)$$

$$\Rightarrow \quad n(Y; R_{01}, r) = \underbrace{\frac{\alpha_{s} N_{c}}{\pi} \int_{0}^{Y} dy \int_{r}^{R_{01}} \frac{dR_{12}^{2}}{R_{12}^{2}}}_{\alpha_{s} \ln s \ln \frac{R_{01}}{r}} = \text{double log}} n(y; R_{12}, r)$$

Same result can be deduced from DGLAP equations (evolution in Q^2)

High-energy QCD (14/36) \square BFKL solutions: double logs \square Recall: $Y \simeq \ln 1/x \simeq \ln s/s_0$; $Q/\Lambda \sim R/r$

Double Log (DL) Solution

Make zeroth order approx: $n^{(0)}(Y; R, r) = \Theta(R - r)$

count number of dipoles larger than \boldsymbol{r}

Solve *iteratively* to get *j*th order contribution:

$$n^{(j)}(Y;R,r) = \bar{\alpha}_{s} \int_{0}^{Y} dy \int_{r}^{R} \frac{d{R'}^{2}}{{R'}^{2}} n^{(j-1)}(y;R',r)$$

Result:

$$n^{(j)}(Y;R,r) = \bar{\alpha}_{\rm s}^{j} \frac{Y^{j}}{j!} \frac{(\ln R^{2}/r^{2})^{j}}{j!}$$

(fixed coupling approximation)

Do sum:

$$n(Y; R, r) = \sum_{j=0}^{\infty} \frac{(\bar{\alpha}_{s} Y \ln R^{2} / r^{2})^{j}}{(j!)^{2}} \sim \exp\left[2\sqrt{\bar{\alpha}_{s} Y \ln R^{2} / r^{2}}\right]$$

High-energy QCD (14/36) \square BFKL solutions: double logs \square Recall: $Y \simeq \ln 1/x \simeq \ln s/s_0$; $Q/\Lambda \sim R/r$

Double Log (DL) Solution

Make zeroth order approx: $n^{(0)}(Y; R, r) = \Theta(R - r)$

count number of dipoles larger than \boldsymbol{r}

Solve *iteratively* to get *j*th order contribution:

$$n^{(j)}(Y;R,r) = \bar{\alpha}_{s} \int_{0}^{Y} dy \int_{r}^{R} \frac{d{R'}^{2}}{{R'}^{2}} n^{(j-1)}(y;R',r)$$

Result:

$$n^{(j)}(Y;R,r) = \bar{\alpha}_{s}^{j} \frac{Y^{j}}{j!} \frac{(\ln R^{2}/r^{2})^{j}}{j!}$$

(fixed coupling approximation)

Do sum:

$$n(Y; R, r) = \sum_{j=0}^{\infty} \frac{(\bar{\alpha}_{s} Y \ln R^{2} / r^{2})^{j}}{(j!)^{2}} \sim \exp\left[2\sqrt{\bar{\alpha}_{s} Y \ln R^{2} / r^{2}}\right]$$

High-energy QCD (14/36) \square BFKL solutions: double logs \square Recall: $Y \simeq \ln 1/x \simeq \ln s/s_0$; $Q/\Lambda \sim R/r$

Double Log (DL) Solution

Make zeroth order approx: $n^{(0)}(Y; R, r) = \Theta(R - r)$

count number of dipoles larger than \boldsymbol{r}

Solve *iteratively* to get *j*th order contribution:

$$n^{(j)}(Y;R,r) = \bar{\alpha}_{s} \int_{0}^{Y} dy \int_{r}^{R} \frac{d{R'}^{2}}{{R'}^{2}} n^{(j-1)}(y;R',r)$$

Result:

$$n^{(j)}(Y;R,r) = \bar{\alpha}_{s}^{j} \frac{Y^{j}}{j!} \frac{(\ln R^{2}/r^{2})^{j}}{j!}$$

(fixed coupling approximation)

Do sum:

$$n(Y; R, r) = \sum_{j=0}^{\infty} \frac{(\bar{\alpha}_{s} Y \ln R^{2} / r^{2})^{j}}{(j!)^{2}} \sim \exp\left[2\sqrt{\bar{\alpha}_{s} Y \ln R^{2} / r^{2}}\right]$$

NB: including running coupling $\sim \exp(2/\beta_0^2 \sqrt{Y \ln \ln R^2/r^2})$

High-energy QCD (15/36) \square BFKL solutions: double logs \square Recall: $Y \simeq \ln 1/x \simeq \ln s/s_0$; $Q/\Lambda \sim R/r$

Test in Deep Inelastic Scattering

ZEUS Preliminary 1996-97 F_2^{em} $O^2 = 2.7$ $O^2 = 3.5$ $O^2 = 1.5$ ZEUS 1996-97 O 7FUS 1004 BCDMS, E665. NMC. SLAC ----2 $O^2 = 6.5$ $O^2 = 8.5$ $O^2 = 4.5$ 1 2 $Q^2 = 12$ $O^2 = 15$ $O^2 = 10$ 1 2 $Q^2 = 18$ $Q^2 = 22.0$ $Q^2 = 27$ 1

DIS X-sctn \sim n dipoles:

$$F_2(x, Q^2) \sim n(\ln \frac{1}{x}; \frac{1}{\Lambda^2}, \frac{1}{Q^2})$$
$$\sim \exp\left[\frac{2}{\beta_0^2}\sqrt{\ln \frac{1}{x}\ln \ln \frac{Q^2}{\Lambda^2}}\right]$$

- Growth of cross section at small x
- Faster growth for high Q^2

NB: truly predict **features** of *x*-dependence, even for nonperturbative (NP) proton, since NP uncertainty \equiv rescaling of Λ

+ can be made quantitative (Ball & Forte '94–96) →□→→♂♂→→ ₹→→₹→ ₹→ ∞へへ

High-energy QCD (15/36) \square BFKL solutions: double logs \square Recall: $Y \simeq \ln 1/x \simeq \ln s/s_0$; $Q/\Lambda \sim R/r$

Test in Deep Inelastic Scattering

● ● ● ●

High-energy QCD (15/36) \square BFKL solutions: double logs \square Recall: $Y \simeq \ln 1/x \simeq \ln s/s_0$; $Q/\Lambda \sim R/r$

Test in Deep Inelastic Scattering

DIS X-sctn \sim n dipoles:

$$F_2(x,Q^2) \sim n(\ln\frac{1}{x};\frac{1}{\Lambda^2},\frac{1}{Q^2})$$
$$\sim \exp\left[\frac{2}{\beta_0^2}\sqrt{\ln\frac{1}{x}\ln\ln\frac{Q^2}{\Lambda^2}}\right]$$

- Growth of cross section at small x
- Faster growth for high Q^2

NB: truly predict **features** of x-dependence, even for nonperturbative (NP) proton, since NP uncertainty \equiv rescaling of A

+ can be made quantitative (Ball & Forte '94–96)

NB: at resolution Q^2 , area occupied by gluon $\sim 1/Q^2$ (area of proton $\sim 1/\Lambda^2$) \Rightarrow the many gluons are *spread out thinly*,

density $\sim xg(x) imes \Lambda^2/Q^2 \lesssim 1$

(日)

NB: at resolution Q^2 , area occupied by gluon $\sim 1/Q^2$ (area of proton $\sim 1/\Lambda^2$) \Rightarrow the many gluons are *spread out thinly*,

density $\sim xg(x) \times \Lambda^2/Q^2 \lesssim 1$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

Double-Log limit had $\ln s$ and $\ln Q^2$ growing *simultaneously*.

True high-energy limit is when c.o.m. energy $\sqrt{s} \gg all \ other \ scales$:

 \perp scale = fixed and ln $s \rightarrow \infty$

Since all \perp scales similar, problem is *self-similar*:

```
dipole \rightarrow 2 dipoles \rightarrow 4 dipoles \rightarrow . . .
```

Expect exponential growth:

 $n \sim \exp\left[\bar{\alpha}_{s} \ln s \times \text{transverse}\right] \sim s^{\bar{\alpha}_{s} \times \text{transverse}}$

Double-Log limit had $\ln s$ and $\ln Q^2$ growing *simultaneously*.

True high-energy limit is when c.o.m. energy $\sqrt{s} \gg all \ other \ scales$:

 \perp scale = fixed and ln $s \rightarrow \infty$

Since all \perp scales similar, problem is *self-similar*:

dipole
$$\rightarrow$$
 2 dipoles \rightarrow 4 dipoles $\rightarrow \dots$

Expect exponential growth:

 $n \sim \exp\left[\bar{\alpha}_{s} \ln s \times \mathrm{transverse}\right] \sim s^{\bar{\alpha}_{s} \times \mathrm{transverse}}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

Double-Log limit had $\ln s$ and $\ln Q^2$ growing *simultaneously*.

True high-energy limit is when c.o.m. energy $\sqrt{s} \gg all \ other \ scales$:

 \perp scale = fixed and ln $s \rightarrow \infty$

Since all \perp scales similar, problem is *self-similar*:

dipole
$$\rightarrow$$
 2 dipoles \rightarrow 4 dipoles \rightarrow . . .

Expect exponential growth:

 $n \sim \exp\left[\bar{\alpha}_{s} \ln s \times \text{transverse}\right] \sim s^{\bar{\alpha}_{s} \times \text{transverse}}$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

BFKL equation is linear & homogeneous, kernel is conformally invariant

 $\frac{\partial n(Y;R_{01},r)}{\partial Y} = \frac{\bar{\alpha}_{s}}{2\pi} \int \frac{d^{2}R_{2}R_{01}^{2}}{R_{02}^{2}R_{12}^{2}} \left[n(Y;R_{12},r) + n(Y;R_{02},r) - n(Y;R_{01},r) \right]$

It has power-like *eigenfunctions*:

$$n(Y; R, r) = n_{\gamma}(Y) \left(\frac{R^2}{r^2}\right)^{\gamma}$$

which evolve exponentially (as expected):

$$\frac{\partial n_{\gamma}(Y)}{\partial Y} = \bar{\alpha}_{s}\chi(\gamma)n_{\gamma}(Y) \implies n_{\gamma}(Y) \propto \exp\left[\bar{\alpha}_{s}\chi(\gamma)Y\right]$$
$$\left[\underbrace{\chi(\gamma) = 2\psi(1) - \psi(\gamma) - \psi(1 - \gamma)}_{\text{characteristic function}}, \qquad \psi(\gamma) = \frac{1}{\Gamma(\gamma)}\frac{d\Gamma(\gamma)}{d\gamma}\right]$$

Characteristic function

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

Eigenvalues for $(R^2/r^2)^{\gamma}$ $\chi(\gamma) = 2\psi(1) - \psi(\gamma) - \psi(1 - \gamma)$ \rightarrow high energy evolution, $n \sim e^{\bar{\alpha}_{s}\chi(\gamma)Y}$. • pole $(1/\gamma)$ corresponds to \perp logarithms \rightarrow DL terms $\alpha_s Y \ln Q^2$ dominant part at high energies is *minimum* (only stable solution) $n(Y; R, r) \sim \frac{R}{r} e^{4 \ln 2\bar{\alpha}_{\rm s} Y} \sim \frac{R}{r} e^{0.5Y}$ $\alpha_{\rm s} \sim 0.2$

Rapid power growth with energy of number of dipoles (and cross sections).

BFKL eqn solved numerically

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

BFKL eqn solved numerically

BFKL eqn solved numerically

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

BFKL eqn solved numerically

BFKL eqn solved numerically

BFKL eqn solved numerically

BFKL eqn solved numerically

BFKL eqn solved numerically

BFKL eqn solved numerically

BFKL eqn solved numerically

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

BFKL eqn solved numerically

◆ロト ◆御 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

BFKL eqn solved numerically

BFKL eqn solved numerically

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

BFKL eqn solved numerically

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

BFKL eqn solved numerically

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ の Q @

BFKL eqn solved numerically

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 · ◇ Q @

BFKL eqn solved numerically

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

BFKL 'predicts' (for low Q^2)

 $F_2(x,Q^2) \sim e^{4 \ln 2 \alpha_s Y} \sim x^{-0.5}$

Fit λ in $F_2(x, Q^2) \sim x^{-\lambda(Q^2)}$.

Expect to find $\lambda \simeq 0.5$

may be larger at high Q^2 (DL)

Look for BFKL in F_2 [$\gamma^* p$ X-sct]

◆ロ▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ → 母 → の々で

Look for BFKL in F_2 [$\gamma^* p$ X-sct]

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

Eliminate ratios of transverse

High-energy QCD (23/36) BFKL 'searches' $-^{*}^{*}$

Results from LEP

Here too, data clearly incompatible with LL BFKL

But perhaps some evidence for weak growth

High-energy QCD (23/36) BFKL 'searches' -~*~*

Results from LEP

- Here too, data clearly incompatible with LL BFKL
- But perhaps some evidence for weak growth

BFKL is rigorous prediction of field theory, yet not seen in data

- Should we be worried?
- Calculations shown so far are in Leading Logarithmic (LL) approximation, (α_s ln s)ⁿ: accurate only for

 $\alpha_{s} \rightarrow 0$, $\ln s \rightarrow \infty$ and $\alpha_{s} \ln s \sim 1$.

Need higher order corrections

Next-to-Leading-Logarithmic (NLL) terms: $\alpha_s(\alpha_s \ln s)^n$

Fadin, Lipatov, Fiore, Kotsky, Quartarolo; Catani, Ciafaloni, Hautmann, Camici; '89–'98

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

- BFKL is rigorous prediction of field theory, yet not seen in data
- Should we be worried?
- Calculations shown so far are in Leading Logarithmic (LL) approximation, (α_s ln s)ⁿ: accurate only for

 $\alpha_{
m s}
ightarrow {
m 0}$, $\ln s
ightarrow \infty$ and $\alpha_{
m s} \ln s \sim 1$.

Need higher order corrections

Next-to-Leading-Logarithmic (NLL) terms: $\alpha_{s}(\alpha_{s} \ln s)^{n}$

> Fadin, Lipatov, Fiore, Kotsky, Quartarolo; Catani, Ciafaloni, Hautmann, Camici; '89–'98

> > ▲ロト ▲御 ▶ ▲臣 ▶ ▲臣 ▶ ▲ ● ● ● ●

- BFKL is rigorous prediction of field theory, yet not seen in data
- Should we be worried? No!
- Calculations shown so far are in Leading Logarithmic (LL) approximation, (α_s ln s)ⁿ: accurate only for

 $\alpha_{s} \rightarrow 0$, $\ln s \rightarrow \infty$ and $\alpha_{s} \ln s \sim 1$.

Need higher order corrections

Next-to-Leading-Logarithmic (NLL) terms: $\alpha_{s}(\alpha_{s} \ln s)^{n}$

> Fadin, Lipatov, Fiore, Kotsky, Quartarolo; Catani, Ciafaloni, Hautmann, Camici; '89–'98

> > ◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

- BFKL is rigorous prediction of field theory, yet not seen in data
- Should we be worried? No!
- Calculations shown so far are in Leading Logarithmic (LL) approximation, (α_s ln s)ⁿ: accurate only for

 $\alpha_{s} \rightarrow 0$, $\ln s \rightarrow \infty$ and $\alpha_{s} \ln s \sim 1$.

Need higher order corrections

Next-to-Leading-Logarithmic (NLL) terms: $\alpha_{s}(\alpha_{s} \ln s)^{n}$

> Fadin, Lipatov, Fiore, Kotsky, Quartarolo; Catani, Ciafaloni, Hautmann, Camici; '89–'98

> > ◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

Higher orders

- slow onset of growth $(Y\gtrsim 5)$
- reduce power of growth $(\sim e^{0.25Y})$

Examine solutions at LL, NLL, etc.

 $G(Y; k, k_0) =$ Fourier transform of n(Y; R, r)

- ► LL grows rapidly with Y
- NLL unstable wrt subleading changes
- DGLAP-symmetry constrained higher-orders (schemes A, B) give stable predictions

 Detailed comparison with data not yet done parts of NLL ('impact factors') missing

General picture seems sensible
 <□▶ < □▶ < □ > < ミ> < ミ> < 三

Higher orders

- slow onset of growth ($Y\gtrsim5$)
- reduce power of growth $(\sim e^{0.25Y})$

Examine solutions at LL, NLL, etc.

 $G(Y; k, k_0) =$ Fourier transform of n(Y; R, r)

- LL grows rapidly with Y
- NLL unstable wrt subleading changes
- DGLAP-symmetry constrained higher-orders (schemes A, B) give stable predictions
- Detailed comparison with data not yet done parts of NLL ('impact factors') missing

► General picture seems sensible

Higher orders

- slow onset of growth ($Y\gtrsim5$)
- reduce power of growth $(\sim e^{0.25Y})$

Examine solutions at LL, NLL, etc. $G(Y; k, k_0) =$ Fourier

 $G(Y; \kappa, \kappa_0) = \text{Fourier}$ transform of n(Y; R, r)

- LL grows rapidly with Y
- NLL unstable wrt subleading changes
- DGLAP-symmetry constrained higher-orders (schemes A, B) give stable predictions

 Detailed comparison with data not yet done parts of NLL ('impact factors') missing

► General picture seems sensible

- Higher orders
 - slow onset of growth ($Y\gtrsim 5$)
 - reduce power of growth $(\sim e^{0.25Y})$

Examine solutions at LL, NLL, etc. C(X; k, k) = Equijer

 $G(Y; k, k_0) =$ Fourier transform of n(Y; R, r)

- LL grows rapidly with Y
- NLL unstable wrt subleading changes
- DGLAP-symmetry constrained higher-orders (schemes A, B) give stable predictions

 Detailed comparison with data not yet done parts of NLL ('impact factors') missing

► General picture seems sensible

- Higher orders
 - slow onset of growth ($Y \gtrsim 5$)
 - reduce power of growth $(\sim e^{0.25Y})$

Examine solutions at LL, NLL, etc. C(X; k, k) = Fourier

 $G(Y; k, k_0) =$ Fourier transform of n(Y; R, r)

- LL grows rapidly with Y
- NLL unstable wrt subleading changes
- DGLAP-symmetry constrained higher-orders (schemes A, B) give stable predictions
- Detailed comparison with data not yet done parts of NLL ('impact factors') missing
- ► General picture seems sensible

- ► Higher-order corrections are sufficient to explain lack of growth in γ*γ* data (Y ≤ 6). NB: LHC and International Linear Collider can test perturbative BFKL up to Y ≃ 10
- But *pp* and low-Q² DIS go to higher energies, Y ≃ 10 − 14. NLL BFKL (+ DGLAP constraints) predicts σ ≥ s^{0.3} by such energies.
- Why does one only see $\sigma \sim s^{0.08}$ (pp) or $F_2 \sim x^{-0.15}$ (low- Q^2 DIS)?

Unitarity/saturation & confinement

- ► Higher-order corrections are sufficient to explain lack of growth in γ*γ* data (Y ≤ 6). NB: LHC and International Linear Collider can test perturbative BFKL up to Y ≃ 10
- But *pp* and low-Q² DIS go to higher energies, Y ≃ 10 − 14. NLL BFKL (+ DGLAP constraints) predicts σ ≥ s^{0.3} by such energies.
- Why does one only see $\sigma \sim s^{0.08}$ (pp) or $F_2 \sim x^{-0.15}$ (low- Q^2 DIS)?

Unitarity/saturation & confinement

Two mechanisms for growth of σ

Cross sections grow:

- Increase in number of dipoles r ~ R
- Increase in size of biggest dipoles r_{max}.

Two mechanisms for growth of σ

Cross sections grow:

- Increase in number of dipoles r ~ R
- Increase in size of biggest dipoles r_{max}.

Two mechanisms for growth of σ

Cross sections grow:

- Increase in number of dipoles r ~ R
- Increase in size of biggest dipoles r_{max}.

Density of gluons cannot increase indefinitely

When dipole density is high (~ N_c/α_s) dipole branching compensated by dipole merging → saturation of density

Reach maximxal 'occupation number'

Colour Glass Condensate

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

► Closely connected issue: *unitarity* (interaction prob. bounded, ≤ 1) Expressed (approx...) in BFKL equation via non-linear term $\frac{\partial n(Y; R_{01})}{\partial Y} = \frac{\bar{\alpha}_s}{2\pi} \int \frac{d^2 R_2 R_{01}^2}{R_{02}^2 R_{12}^2} [n(Y; R_{12}) + n(Y; R_{02}) - n(Y; R_{01}) - c\alpha_s^2 n(Y; R_{12})n(Y; R_{02})]$ Gribov Levin Ryskin '83; Balitsky '96; Kovchegov '98; JIMWLK '97-
Colour Glass Condensate

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の Q @

Density of gluons cannot increase indefinitely

- When dipole density is high (~ N_c/α_s) dipole branching compensated by dipole merging → saturation of density
- Reach maximxal 'occupation number'

► Closely connected issue: *unitarity* (interaction prob. bounded, ≤ 1)

Expressed (approx....) in BFKL equation via non-linear term

$$\frac{\partial n(Y; R_{01})}{\partial Y} = \frac{\bar{\alpha}_{s}}{2\pi} \int \frac{d^{2}R_{2}R_{01}^{2}}{R_{02}^{2}R_{12}^{2}} \left[n(Y; R_{12}) + n(Y; R_{02}) - n(Y; R_{01}) - c\alpha_{s}^{2}n(Y; R_{12})n(Y; R_{02}) \right]$$

Gribov Levin Ryskin '83; Balitsky '96; Kovchegov '98; JIMWLK '97–98.

Colour Glass Condensate

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の Q @

Density of gluons cannot increase indefinitely

- When dipole density is high (~ N_c/α_s) dipole branching compensated by dipole merging → saturation of density
- Reach maximxal 'occupation number'

► Closely connected issue: *unitarity* (interaction prob. bounded, ≤ 1)

Expressed (approx....) in BFKL equation via non-linear term

$$\frac{\partial n(Y; R_{01})}{\partial Y} = \frac{\bar{\alpha}_{s}}{2\pi} \int \frac{d^{2}R_{2}R_{01}^{2}}{R_{02}^{2}R_{12}^{2}} \left[n(Y; R_{12}) + n(Y; R_{02}) - n(Y; R_{01}) - c\alpha_{s}^{2}n(Y; R_{12})n(Y; R_{02}) \right]$$

Gribov Levin Ryskin '83; Balitsky '96; Kovchegov '98; JIMWLK '97–98.

Colour Glass Condensate

ふして ふぼく ふぼく ふぼく ふしく

Density of gluons cannot increase indefinitely

- When dipole density is high (~ N_c/α_s) dipole branching compensated by dipole merging → saturation of density
- Reach maximxal 'occupation number'

► Closely connected issue: *unitarity* (interaction prob. bounded, ≤ 1)

Expressed (approx....) in BFKL equation via non-linear term

$$\frac{\partial n(Y; R_{01})}{\partial Y} = \frac{\bar{\alpha}_{s}}{2\pi} \int \frac{d^{2}R_{2} R_{01}^{2}}{R_{02}^{2} R_{12}^{2}} \left[n(Y; R_{12}) + n(Y; R_{02}) - n(Y; R_{01}) - c\alpha_{s}^{2} n(Y; R_{12}) n(Y; R_{02}) \right]$$

Gribov Levin Ryskin '83; Balitsky '96; Kovchegov '98; JIMWLK '97–98.

Cross-section with saturation

Kernel $\frac{R_{01}^2 d^2 \dot{R}_2}{R_{12}^2 R_{02}^2}$ is *conformally invariant* (even with non-linear term) <u>e.g.</u>: Growth in area BFKL growth is not just increase in number of gluons/dipoles. Gluons can be produced *far* from original dipole — because

of conformal (scale) invariance *each step* in Y translates to a constant *factor of increase in area*.

No other scales in problem.

Perturbative (fixed-coupling) *geometric* cross section for two dipoles in Balitsky-Kovchegov (= BFKL with saturation) grows as

 $\sigma \sim \exp\left[2.44 \times \bar{\alpha}_{s} Y\right] = 2.44 \simeq \chi'(\bar{\gamma}) \text{ where } \bar{\gamma}\chi'(\bar{\gamma}) = \chi(\bar{\gamma})$

Only marginally weaker than $e^{4 \ln 2\bar{\alpha}_s Y} = e^{2.77\bar{\alpha}_s Y}$ of unsaturated BFKL.

Cross-section with saturation

Kernel $\frac{R_{01}^2 d^2 \dot{R}_2}{R_{12}^2 R_{02}^2}$ is *conformally invariant* (even with non-linear term) <u>e.g.</u>: Growth in area BFKL growth is not just increase in number of gluons/dipoles. Gluons can be produced *far* from original dipole — because of conformal (scale) invariance *each step* in Y translates to

a constant factor of increase in area.

No other scales in problem.

Perturbative (fixed-coupling) *geometric* cross section for two dipoles in Balitsky-Kovchegov (= BFKL with saturation) grows as

 $\sigma \sim \exp\left[2.44 \times \bar{\alpha}_{s} Y\right] \qquad 2.44 \simeq \chi'(\bar{\gamma}) \quad \text{where} \quad \bar{\gamma}\chi'(\bar{\gamma}) = \chi(\bar{\gamma})$

Only marginally weaker than $e^{4 \ln 2\bar{\alpha}_s Y} = e^{2.77\bar{\alpha}_s Y}$ of unsaturated BFKL.

Conformal invariance not an exact symmetry of high-energy QCD.

- Broken by running of coupling.
- \blacktriangleright For distances $\gtrsim 1/\Lambda_{\it QCD}$ perturbative treatment makes no sense
 - confinement sets in
 - cannot produce dipoles larger than $1/\Lambda_{QCD}$
 - exponential BFKL growth in size stops
 - (other than by additive amount $\sim 1/\Lambda_{QCD}$ per unit increase in Y)
- This is the semi-perturbative picture consistent with

Froissart bound: $\sigma \sim Y^2/m_\pi^2$

But no direct connection with $p\bar{p}$ X-section possible so far

(日) (圖) (E) (E) (E)

- Conformal invariance not an exact symmetry of high-energy QCD.
- Broken by running of coupling.
- \blacktriangleright For distances $\gtrsim 1/\Lambda_{\it QCD}$ perturbative treatment makes no sense
 - confinement sets in
 - cannot produce dipoles larger than $1/\Lambda_{QCD}$
 - exponential BFKL growth in size stops
 - (other than by additive amount $\sim 1/\Lambda_{QCD}$ per unit increase in Y)
- This is the semi-perturbative picture consistent with

Froissart bound: $\sigma \sim Y^2/m_\pi^2$

But no direct connection with $p\bar{p}$ X-section possible so far

- Conformal invariance not an exact symmetry of high-energy QCD.
- Broken by running of coupling.
- \blacktriangleright For distances $\gtrsim 1/\Lambda_{\textit{QCD}}$ perturbative treatment makes no sense
 - confinement sets in
 - cannot produce dipoles larger than $1/\Lambda_{QCD}$
 - exponential BFKL growth in size stops
 - (other than by additive amount $\sim 1/\Lambda_{QCD}$ per unit increase in Y)

▶ This is the semi-perturbative picture consistent with

Froissart bound: $\sigma \sim Y^2/m_\pi^2$

But no direct connection with $p\bar{p}$ X-section possible so far

- Conformal invariance not an exact symmetry of high-energy QCD.
- Broken by running of coupling.
- For distances $\gtrsim 1/\Lambda_{QCD}$ perturbative treatment makes no sense
 - confinement sets in
 - cannot produce dipoles larger than $1/\Lambda_{QCD}$
 - exponential BFKL growth in size stops
 - (other than by additive amount $\sim 1/\Lambda_{QCD}$ per unit increase in Y)
- ► This is the semi-perturbative picture consistent with

Froissart bound: $\sigma \sim Y^2/m_{\pi}^2$

But no direct connection with $p\bar{p}$ X-section possible so far

- Conformal invariance not an exact symmetry of high-energy QCD.
- Broken by running of coupling.
- For distances $\gtrsim 1/\Lambda_{QCD}$ perturbative treatment makes no sense
 - confinement sets in
 - cannot produce dipoles larger than $1/\Lambda_{QCD}$
 - exponential BFKL growth in size stops
 - (other than by additive amount $\sim 1/\Lambda_{QCD}$ per unit increase in Y)
- This is the semi-perturbative picture consistent with

Froissart bound: $\sigma \sim Y^2/m_{\pi}^2$

But no direct connection with $p\bar{p}$ X-section possible so far

Plot Y-ln Q^2 plane (as Prof. Veneziano) Recall: • Density \uparrow with Y • Density \Downarrow with ln Q^2 ▶ Dilute: $\frac{r^2}{R^2}n \lesssim \alpha_s^{-1}$ ▶ Dense: $\frac{r^2}{R^2}n \gtrsim \alpha_s^{-1}$

Plot Y-ln Q^2 plane (as Prof. Veneziano) Recall: • Density \uparrow with Y • Density \Downarrow with ln Q^2 Classify: • Dilute: $\frac{r^2}{R^2}n \lesssim \alpha_s^{-1}$ • Dense: $\frac{r^2}{R^2}n \gtrsim \alpha_s^{-1}$

Saturation Scale $Q_s^2(Y)$

Plot Y-ln Q^2 plane (as Prof. Veneziano) Recall: • Density \uparrow with Y • Density \Downarrow with ln Q^2 Classify: ▶ Dilute: $\frac{r^2}{R^2}n \lesssim \alpha_s^{-1}$ • Dense: $\frac{r^2}{R^2}n \gtrsim \alpha_s^{-1}$ boundary Introduce between them (in Q^2): Saturation Scale

(日) (四) (日) (日) (日) (日)

Saturation scale from data?

Big business at HERA collider

- ► Saturation \Rightarrow strong non-Abelian fields (but $\alpha_{s} \ll 1$) if $Q_{s}^{2} \gtrsim 1$ GeV
- Use diffraction to measure degree of saturation
- Saturation sets in (perhaps?) just at limit of perturbative region
- NB: much interest also for *nuclei* (thickness increases density) (RHIC)

Dynamics at $Q_s^2(Y)$

- ► All gluon modes occupied up to Q²_s(Y).
- ▶ pp collisions always radiate gluons up to Q²_s(Y).

• $Q_s \gtrsim 1 \text{ GeV} \Rightarrow pp$ collisions partially perturbative.

Saturation scale from data?

Big business at HERA collider

- ► Saturation \Rightarrow strong non-Abelian fields (but $\alpha_{s} \ll 1$) if $Q_{s}^{2} \gtrsim 1$ GeV
- Use diffraction to measure degree of saturation
- Saturation sets in (perhaps?) just at limit of perturbative region
- NB: much interest also for *nuclei* (thickness increases density) (RHIC)

Dynamics at $Q_s^2(Y)$

- ► All gluon modes occupied up to Q²_s(Y).
- ▶ pp collisions always radiate gluons up to Q²_s(Y).

• $Q_s \gtrsim 1 \text{ GeV} \Rightarrow pp$ collisions partially perturbative.

Saturation scale from data?

Big business at HERA collider

- ► Saturation \Rightarrow strong non-Abelian fields (but $\alpha_{s} \ll 1$) if $Q_{s}^{2} \gtrsim 1$ GeV
- Use diffraction to measure degree of saturation
- Saturation sets in (perhaps?) just at limit of perturbative region
- NB: much interest also for *nuclei* (thickness increases density) (RHIC)

Dynamics at $Q_s^2(Y)$

- ► All gluon modes occupied up to Q²_s(Y).
- ▶ pp collisions always radiate gluons up to Q²_s(Y).

• $Q_s \gtrsim 1 \text{ GeV} \Rightarrow pp$ collisions partially perturbative.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

Towards NLL comparisons with data

 NLL couplings to external particles (photons, jets) — 'impact factors' Bartels, Gieseke, Qiao, Colferai, Vacca, Kyrieleis '01-... Fadin, Ivanov, Kotsky '01-...

 Understanding solutions of NLL evolution equations
Altarelli, Ball Forte '02–...; Andersen & Sabio Vera '03–... Ciafaloni, Colferai, GPS & Staśto '02–...

Evolution equations with saturation:

- Solutions of *multipole* evolution (BKP) Derkachov, Korchemsky, Kotanski & Manashov '02 de Vega & Lipatov '02
- Connections between Balitsky-Kovchegov and statistical physics (FKPP) Munier & Peschanski '03
- Evolution eqns beyond 'mean-field' lancu & Triantafyllopoulos '04-05 Mueller, Shoshi & Wong '05 Levin & Lublinsky '05
- Understanding of *solutions* beyond mean-field Mueller & Shoshi '04 lancu, Mueller & Munier '04 Brunet, Derrida, Mueller & Munier (in progress)

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の Q @

- Basic field-theoretical framework for high-energy limit of perturbative QCD: *BFKL*
- Has many sources of corrections
 - Higher-orders in linear equation
 - Non-linearities
- These effects all combine together to provide a *picture* that looks *sensible* wrt data
- Progress still needed in order to be quantitative

- CPhT (X): Stéphane Munier, Bernard Pire
- LPT (Orsay): Gregory Korchemsky, Dominique Schiff, Samuel Wallon
- ▶ LPTHE (Paris 6 & 7): Hector de Vega, GPS
- SPhT (CEA): Jean-Paul Blaizot, François Gelis, Edmond Iancu, Robi Peschanski, Kazunori Itakura, Grégory Soyez, Dionysis Triantafyllopoulos, Cyrille Marquet.

Permanent Postdoc

Ph.D.

 Senior visitors over the past few years: Ian Balitsky, Marcello Ciafaloni, Stefano Forte, Lev Lipatov, Larry McLerran, Alfred H. Mueller, Raju Venugopalan, ...