QCD (for LHC)
 Lecture 1: Introduction

Gavin Salam

LPTHE, CNRS and UPMC (Univ. Paris 6)

At the 2009 European School of High-Energy Physics
June 2009, Bautzen, Germany

QUANTUM CHROMODYNAMICS

The theory of quarks, gluons and their interactions

It's central to all modern colliders.
(And QCD is what we're made of)

- Quarks (and anti-quarks): they come in 3 colours
- Gluons: a bit like photons in QED

But there are 8 of them, and they're colour charged

- And a coupling, α_{s}, that's not so small and runs fast At LHC, in the range $0.08(@ 5 \mathrm{TeV})$ to $\mathcal{O}(1)(@ 0.5 \mathrm{GeV})$

l'll try to give you a feel for:

How QCD works

How theorists handle QCD at high-energy colliders
How you can work with QCD at high-energy colliders

Quark part of Lagrangian:

Let's write down QCD in full detail

(There's a lot to absorb here - but it should become more palatable as we return to individual elements later)

Quarks -3 colours: $\psi_{a}=\left(\begin{array}{l}\psi_{1} \\ \psi_{2} \\ \psi_{3}\end{array}\right)$
Quark part of Lagrangian:

$$
\mathcal{L}_{q}=\bar{\psi}_{a}\left(i \gamma^{\mu} \partial_{\mu} \delta_{a b}-g_{s} \gamma^{\mu} t_{a b}^{C} \mathcal{A}_{\mu}^{C}-m\right) \psi_{b}
$$

SU(3) local gauge symmetry $\leftrightarrow 8\left(=3^{2}-1\right)$ generators $t_{a b}^{1} \ldots t_{a b}^{8}$ corresponding to 8 gluons $\mathcal{A}_{\mu}^{1} \ldots \mathcal{A}_{\mu}^{8}$.
A representation is: $t^{A}=\frac{1}{2} \lambda^{A}$,

Quarks -3 colours: $\psi_{a}=\left(\begin{array}{l}\psi_{1} \\ \psi_{2} \\ \psi_{3}\end{array}\right)$
Quark part of Lagrangian:

$$
\mathcal{L}_{q}=\bar{\psi}_{a}\left(i \gamma^{\mu} \partial_{\mu} \delta_{a b}-g_{s} \gamma^{\mu} t_{a b}^{C} \mathcal{A}_{\mu}^{C}-m\right) \psi_{b}
$$

SU(3) local gauge symmetry $\leftrightarrow 8\left(=3^{2}-1\right)$ generators $t_{a b}^{1} \ldots t_{a b}^{8}$ corresponding to 8 gluons $\mathcal{A}_{\mu}^{1} \ldots \mathcal{A}_{\mu}^{8}$.
A representation is: $t^{A}=\frac{1}{2} \lambda^{A}$,
$\lambda^{1}=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), \lambda^{2}=\left(\begin{array}{ccc}0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0\end{array}\right), \lambda^{3}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right), \lambda^{4}=\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$,
$\lambda^{5}=\left(\begin{array}{ccc}0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0\end{array}\right), \lambda^{6}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right), \lambda^{7}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0\end{array}\right), \lambda^{8}=\left(\begin{array}{ccc}\frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{3}} & 0 \\ 0 & 0 & \frac{-2}{\sqrt{3}}\end{array}\right)$,

Field tensor: $F_{\mu \nu}^{A}=\partial_{\mu} \mathcal{A}_{\nu}^{A}-\partial_{\nu} \mathcal{A}_{\nu}^{A}-g_{s} f_{A B C} \mathcal{A}_{\mu}^{B} \mathcal{A}_{\nu}^{C} \quad\left[t^{A}, t^{B}\right]=i f_{A B C} t^{C}$
$f_{A B C}$ are structure constants of $S U(3)$ (antisymmetric in all indices $S U(2)$ equivalent was $\epsilon^{A B C}$). Needed for gauge invariance of gluon part of Lagrangian:

$$
\mathcal{L}_{G}=-\frac{1}{4} F_{A}^{\mu \nu} F^{A \mu \nu}
$$

Field tensor: $F_{\mu \nu}^{A}=\partial_{\mu} \mathcal{A}_{\nu}^{A}-\partial_{\nu} \mathcal{A}_{\nu}^{A}-g_{s} f_{A B C} \mathcal{A}_{\mu}^{B} \mathcal{A}_{\nu}^{C}$

$$
\left[t^{A}, t^{B}\right]=i f_{A B C} t^{C}
$$

$f_{A B C}$ are structure constants of $S U(3)$ (antisymmetric in all indices $S U(2)$ equivalent was $\epsilon^{A B C}$). Needed for gauge invariance of gluon part of Lagrangian:

$$
\mathcal{L}_{G}=-\frac{1}{4} F_{A}^{\mu \nu} F^{A \mu \nu}
$$

Two main approaches to solving it

- Numerical solution with discretized space time (lattice)
- Perturbation theory: assumption that coupling is small

Also: effective theories (cf. lectures by M. Beneke)

- Put all the quark and gluon fields of QCD on a 4D-lattice

NB: with imaginary time

- Figure out which field configurations are most likely (by Monte Carlo sampling).
- You've solved QCD

image credits: fdecomite [Flickr]

Lattice QCD is great at calculation static properties of a single hadron.
E.g. the hadron mass spectrum

Durr et al '08

How big a lattice do you need for an LHC collision @ 14 TeV ?
$\underline{\text { Lattice spacing: } \frac{1}{14 \mathrm{TeV}} \sim 10^{-5} \mathrm{fm}}$
Lattice extent:

- non-perturbative dynamics for quark/hadron near rest takes place on timescale $t \sim \frac{1}{0.5 \mathrm{GeV}} \sim 0.4 \mathrm{fm} / c$
- But quarks at LHC have effective boost factor $\sim 10^{4}$
- So lattice extent should be $\sim 4000 \mathrm{fm}$

Total: need $\sim 4 \times 10^{8}$ lattice units in each direction, or 3×10^{34} nodes total.
Plus clever tricks to deal with high particle multiplicity, imaginary v. real time, etc.

Perturbation theory

Relies on idea of order-by-order expansion small coupling, $\alpha_{\mathrm{s}} \ll 1$

Interaction vertices of Feynman rules:

These expressions are fairly complex, so you really don't want to have to deal with too many orders of them! i.e. α_{s} had better be small. . .

A gluon emission repaints the quark colour.
A gluon itself carries colour and anti-colour.

$$
\begin{aligned}
& -g_{s} f^{A B C}\left[(p-q)^{\rho} g^{\mu \nu}\right. \\
& \quad+(q-r)^{\mu} g^{\nu \rho} \\
& \left.\quad+(r-p)^{\nu} g^{\rho \mu}\right]
\end{aligned}
$$

A gluon emission also repaints the gluon colours.
Because a gluon carries colour + anti-colour, it emits \sim twice as strongly as a quark (just has colour)

Quick guide to colour algebra

$$
\operatorname{Tr}\left(t^{A} t^{B}\right)=T_{R} \delta^{A B}, \quad T_{R}=\frac{1}{2} \quad \sum_{A} t_{a b}^{A} t_{b c}^{A}=C_{F} \delta_{a c}, \quad C_{F}=\frac{N_{c}^{2}-1}{2 N_{c}}=\frac{4}{3} \quad \xrightarrow{\text { ab }}
$$

$N_{c} \equiv$ number of colours $=3$ for QCD

Quick guide to colour algebra

$$
\begin{aligned}
& \operatorname{Tr}\left(t^{A} t^{B}\right)=T_{R} \delta^{A B}, \quad T_{R}=\frac{1}{2} \\
& \sum_{A} t_{a b}^{A} t_{b c}^{A}=C_{F} \delta_{a c}, \quad C_{F}=\frac{N_{c}^{2}-1}{2 N_{c}}=\frac{4}{3} \\
& \sum_{C, D} f^{A C D}{ }_{f}^{B C D}=C_{A} \delta^{A B}, \quad C_{A}=N_{c}=3
\end{aligned}
$$

$N_{c} \equiv$ number of colours $=3$ for QCD

Quick guide to colour algebra

$$
\begin{aligned}
& \operatorname{Tr}\left(t^{A} t^{B}\right)=T_{R} \delta^{A B}, \quad T_{R}=\frac{1}{2} \\
& \sum_{A} t_{a b}^{A} t_{b c}^{A}=C_{F} \delta_{a c}, \quad C_{F}=\frac{N_{c}^{2}-1}{2 N_{c}}=\frac{4}{3} \\
& \sum_{C, D} f^{A C D}{ }_{f}^{B C D}=C_{A} \delta^{A B}, \quad C_{A}=N_{c}=3 \\
& t_{a b}^{A} t_{c d}^{A}=\frac{1}{2} \delta_{b c} \delta_{a d}-\frac{1}{2 N_{c}} \delta_{a b} \delta_{c d} \text { (Fierz) }
\end{aligned}
$$

$N_{c} \equiv$ number of colours $=3$ for QCD

Quick guide to colour algebra

$$
\operatorname{Tr}\left(t^{A} t^{B}\right)=T_{R} \delta^{A B}, \quad T_{R}=\frac{1}{2} \quad \sum_{A} t_{a b}^{A} t_{b c}^{A}=C_{F} \delta_{a c}, \quad C_{F}=\frac{N_{c}^{2}-1}{2 N_{c}}=\frac{4}{3} \quad \xrightarrow{\text { ab }}
$$

$N_{c} \equiv$ number of colours $=3$ for QCD

How big is the coupling?

All couplings run (QED, QCD, EW), i.e. they depend on the momentum scale $\left(Q^{2}\right)$ of your process.

The QCD coupling, $\alpha_{\mathrm{s}}\left(Q^{2}\right)$, runs fast:

$$
\begin{aligned}
& Q^{2} \frac{\partial \alpha_{s}}{\partial Q^{2}}=\beta\left(\alpha_{\mathrm{s}}\right), \quad \beta\left(\alpha_{\mathrm{s}}\right)=-\alpha_{\mathrm{s}}^{2}\left(b_{0}+b_{1} \alpha_{\mathrm{s}}+b_{2} \alpha_{\mathrm{s}}^{2}+\ldots\right), \\
& b_{0}=\frac{11 C_{A}-2 n_{f}}{12 \pi}, \quad b_{1}=\frac{17 C_{A}^{2}-5 C_{A} n_{f}-3 C_{F} n_{f}}{24 \pi^{2}}=\frac{153-19 n_{f}}{24 \pi^{2}}
\end{aligned}
$$

Note sign: Asymptotic Freedom, due to gluon to self-interaction 2004 Novel prize: Gross, Politzer \& Wilczek

- At high scales Q, coupling becomes small

All couplings run (QED, QCD, EW), i.e. they depend on the momentum scale $\left(Q^{2}\right)$ of your process.

The QCD coupling, $\alpha_{\mathrm{s}}\left(Q^{2}\right)$, runs fast:

$$
\begin{aligned}
& Q^{2} \frac{\partial \alpha_{s}}{\partial Q^{2}}=\beta\left(\alpha_{\mathrm{s}}\right), \quad \beta\left(\alpha_{\mathrm{s}}\right)=-\alpha_{\mathrm{s}}^{2}\left(b_{0}+b_{1} \alpha_{\mathrm{s}}+b_{2} \alpha_{\mathrm{s}}^{2}+\ldots\right), \\
& b_{0}=\frac{11 C_{A}-2 n_{f}}{12 \pi}, \quad b_{1}=\frac{17 C_{A}^{2}-5 C_{A} n_{f}-3 C_{F} n_{f}}{24 \pi^{2}}=\frac{153-19 n_{f}}{24 \pi^{2}}
\end{aligned}
$$

Note sign: Asymptotic Freedom, due to gluon to self-interaction 2004 Novel prize: Gross, Politzer \& Wilczek

- At high scales Q, coupling becomes small
\Leftrightarrow quarks and gluons are almost free, interactions are weak
- At low scales, coupling becomes strong
\Rightarrow quarks and gluons interact strongly - confined into hadrons Perturbation theory fails.

Solve $Q^{2} \frac{\partial \alpha_{s}}{\partial Q^{2}}=-b_{0} \alpha_{\mathrm{s}}^{2}$

$\Lambda \simeq 0.2 \mathrm{GeV}$ (aka $\Lambda_{Q C D}$) is the fundamental scale of QCD, at which coupling blows up.

- \wedge sets the scale for hadron masses
(NB: ^ not unambiguously
defined wrt higher orders)
- Perturbative calculations valid for scales $Q \gg \wedge$.

Running coupling (cont.)

Solve $Q^{2} \frac{\partial \alpha_{s}}{\partial Q^{2}}=-b_{0} \alpha_{\mathrm{s}}^{2} \Rightarrow \alpha_{\mathrm{s}}\left(Q^{2}\right)=\frac{\alpha_{\mathrm{s}}\left(Q_{0}^{2}\right)}{1+b_{0} \alpha_{\mathrm{s}}\left(Q_{0}^{2}\right) \ln \frac{Q^{2}}{Q_{0}^{2}}}=\frac{1}{b_{0} \ln \frac{Q^{2}}{\Lambda^{2}}}$
$\Lambda \simeq 0.2 \mathrm{GeV}$ (aka $\Lambda_{Q C D}$) is the fundamental scale of QCD, at which coupling blows up.

- Λ sets the scale for hadron masses (NB: ^ not unambiguously defined wrt higher orders)
- Perturbative calculations valid for scales $Q \gg \Lambda$.

QCD perturbation theory (PT) \& LHC?

- The "new physics" at colliders is searched for at scales $Q \sim p_{t} \sim 50 \mathrm{GeV}-5 \mathrm{TeV}$

The coupling certainly is small there!

- But we're colliding protons, $m_{p} \simeq 0.94 \mathrm{GeV}$

The coupling is large!

When we look at QCD events (this one is inter-
preted as $\left.e^{+} e^{-} \rightarrow Z \rightarrow q \bar{q}\right)$, we see:
> hadrons (PT doesn't hold for them)

QCD perturbation theory (PT) \& LHC?

- The "new physics" at colliders is searched for at scales $Q \sim p_{t} \sim 50 \mathrm{GeV}-5 \mathrm{TeV}$

The coupling certainly is small there!

- But we're colliding protons, $m_{p} \simeq 0.94 \mathrm{GeV}$

The coupling is large!

When we look at QCD events (this one is interpreted as $\left.e^{+} e^{-} \rightarrow Z \rightarrow q \bar{q}\right)$, we see:

- hadrons (PT doesn't hold for them)
- lots of them - so we can't say 1 quark/gluon ~ 1 hadron, and we limit ourselves to 1 or 2 orders of PT.

Neither lattice QCD nor perturbative QCD can offer a full solution to using QCD at colliders

What the community has settled on is perturbative QCD inputs + non-perturbative modelling/factorisation

Rest of this lecture: take a simple environment ($e^{+} e^{-} \rightarrow$ hadrons) and see how PT allows us to understand why QCD events look the way they do.

Tomorrow's lecture: understanding how we deal with incoming protons
Thursday \& Friday: using QCD at colliders

$\underline{\text { Start with } \gamma^{*} \rightarrow q \bar{q}:}$

$$
\mathcal{M}_{q \bar{q}}=-\bar{u}\left(p_{1}\right) i e_{q} \gamma_{\mu} v\left(p_{2}\right)
$$

Emit a gluon:

Soft gluon amplitude

Start with $\gamma^{*} \rightarrow q \bar{q}:$

$$
\mathcal{M}_{q \bar{q}}=-\bar{u}\left(p_{1}\right) i e_{q} \gamma_{\mu} v\left(p_{2}\right)
$$

Emit a gluon:

$$
\begin{aligned}
\mathcal{M}_{q \bar{q} g} & =\bar{u}\left(p_{1}\right) i g_{s} \notin t^{A} \frac{i}{p_{1}+\nless} i e_{q} \gamma_{\mu} v\left(p_{2}\right) \\
& -\bar{u}\left(p_{1}\right) i e_{q} \gamma_{\mu} \frac{i}{p_{2}+\nless k} i g_{s} \notin t^{A} v\left(p_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \bar{u}\left(p_{1}\right) i g_{s} \ell t^{A} \frac{i}{p_{1}+K} i e_{q} \gamma_{\mu} v\left(p_{2}\right)=-i g_{s} \bar{u}\left(p_{1}\right) \phi \frac{p_{1}+k}{\left(p_{1}+k\right)^{2}} e_{q} \gamma_{\mu} t^{A} v\left(p_{2}\right) \\
& \text { Use } A B=2 A \cdot B-B A: \\
& =-i g_{s} \bar{u}\left(p_{1}\right)\left[2 \epsilon \cdot\left(p_{1}+k\right)-\left(\not p_{1}+k\right) \notin \frac{1}{\left(p_{1}+k\right)^{2}} e_{q} \gamma_{\mu} t^{A} v\left(p_{2}\right)\right. \\
& \text { Use } \bar{u}\left(p_{1}\right) \tilde{p}_{1}=0 \text { and } k \ll p_{1}\left(p_{1}, k \text { massless }\right) \\
& \simeq-i g_{s} \bar{u}\left(p_{1}\right)\left[2 \epsilon \cdot p_{1}\right] \frac{1}{\left(p_{1}+k\right)^{2}} e_{q} \gamma_{\mu} t^{A} v\left(p_{2}\right) \\
& =-i g_{s} \frac{p_{1} \cdot \epsilon}{p_{1} \cdot k} \underbrace{\bar{u}\left(p_{1}\right) e_{q} \gamma_{\mu} t^{A} v\left(p_{2}\right)}_{\text {pure QED spinor structure }}
\end{aligned}
$$

Soft gluon amplitude

Start with $\gamma^{*} \rightarrow q \bar{q}:$

$$
\mathcal{M}_{q \bar{q}}=-\bar{u}\left(p_{1}\right) i e_{q} \gamma_{\mu} v\left(p_{2}\right)
$$

Emit a gluon:

$$
\begin{aligned}
\mathcal{M}_{q \bar{q} g} & =\bar{u}\left(p_{1}\right) i g_{s} \notin t^{A} \frac{i}{p_{1}+\nless k} i e_{q} \gamma_{\mu} v\left(p_{2}\right) \\
& -\bar{u}\left(p_{1}\right) i e_{q} \gamma_{\mu} \frac{i}{p_{2}+\nless k} i g_{s} \notin t^{A} v\left(p_{2}\right)
\end{aligned}
$$

Make gluon soft $\equiv k \ll p_{1,2}$; ignore terms suppressed by powers of k :

$$
\begin{array}{l|l}
\mathcal{M}_{q \bar{q} g} \simeq \bar{u}\left(p_{1}\right) i e_{q} \gamma_{\mu} t^{A} v\left(p_{2}\right) g_{s}\left(\frac{p_{1} \cdot \epsilon}{p_{1} \cdot k}-\frac{p_{2} \cdot \epsilon}{p_{2} \cdot k}\right) & \begin{array}{l}
p v(p)=0, \\
p k+k p p=2 p . k
\end{array}
\end{array}
$$

Squared amplitude

$$
\begin{aligned}
\left|M_{q \bar{q} g}^{2}\right| \simeq & \sum_{A, \text { pol }}\left|\bar{u}\left(p_{1}\right) i_{q} \gamma_{\mu} t^{A} v\left(p_{2}\right) g_{s}\left(\frac{p_{1} \cdot \epsilon}{p_{1} \cdot k}-\frac{p_{2} \cdot \epsilon}{p_{2} \cdot k}\right)\right|^{2} \\
& =-\left|M_{q \bar{q}}^{2}\right| C_{F} g_{s}^{2}\left(\frac{p_{1}}{p_{1} \cdot k}-\frac{p_{2}}{p_{2} \cdot k}\right)^{2}=\left|M_{q \bar{q}}^{2}\right| C_{F} g_{s}^{2} \frac{2 p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)}
\end{aligned}
$$

Squared amplitude

$$
\begin{aligned}
& \left|M_{q \bar{q} g}^{2}\right| \simeq \sum_{A, \mathrm{pol}}\left|\bar{u}\left(p_{1}\right) i e_{q} \gamma_{\mu} t^{A} v\left(p_{2}\right) g_{s}\left(\frac{p_{1} \cdot \epsilon}{p_{1} \cdot k}-\frac{p_{2} \cdot \epsilon}{p_{2} \cdot k}\right)\right|^{2} \\
& \quad=-\left|M_{q \bar{q}}^{2}\right| C_{F} g_{s}^{2}\left(\frac{p_{1}}{p_{1} \cdot k}-\frac{p_{2}}{p_{2} \cdot k}\right)^{2}=\left|M_{q \bar{q}}^{2}\right| C_{F} g_{s}^{2} \frac{2 p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)}
\end{aligned}
$$

Squared amplitude

$$
\begin{aligned}
& \left|M_{q \bar{q} g}^{2}\right| \simeq \sum_{A, \mathrm{pol}}\left|\bar{u}\left(p_{1}\right) i e_{q} \gamma_{\mu} t^{A} v\left(p_{2}\right) g_{s}\left(\frac{p_{1} \cdot \epsilon}{p_{1} \cdot k}-\frac{p_{2} \cdot \epsilon}{p_{2} \cdot k}\right)\right|^{2} \\
& \quad=-\left|M_{q \bar{q}}^{2}\right| C_{F} g_{s}^{2}\left(\frac{p_{1}}{p_{1} \cdot k}-\frac{p_{2}}{p_{2} \cdot k}\right)^{2}=\left|M_{q \bar{q}}^{2}\right| C_{F} g_{s}^{2} \frac{2 p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)}
\end{aligned}
$$

Include phase space:

$$
d \Phi_{q \bar{q} g}\left|M_{q \bar{q} g}^{2}\right| \simeq\left(d \Phi_{q \bar{q}}\left|M_{q \bar{q}}^{2}\right|\right) \frac{d^{3} \vec{k}}{2 E(2 \pi)^{3}} C_{F} g_{s}^{2} \frac{2 p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)}
$$

Squared amplitude

$$
\begin{aligned}
& \left|M_{q \bar{q} g}^{2}\right| \simeq \sum_{A, \mathrm{pol}}\left|\bar{u}\left(p_{1}\right) i e_{q} \gamma_{\mu} t^{A} v\left(p_{2}\right) g_{s}\left(\frac{p_{1} \cdot \epsilon}{p_{1} \cdot k}-\frac{p_{2} \cdot \epsilon}{p_{2} \cdot k}\right)\right|^{2} \\
& \quad=-\left|M_{q \bar{q}}^{2}\right| C_{F} g_{s}^{2}\left(\frac{p_{1}}{p_{1} \cdot k}-\frac{p_{2}}{p_{2} \cdot k}\right)^{2}=\left|M_{q \bar{q}}^{2}\right| C_{F} g_{s}^{2} \frac{2 p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)}
\end{aligned}
$$

Include phase space:

$$
d \Phi_{q \bar{q} g}\left|M_{q \bar{q} g}^{2}\right| \simeq\left(d \Phi_{q \bar{q}}\left|M_{q \bar{q}}^{2}\right|\right) \frac{d^{3} \vec{k}}{2 E(2 \pi)^{3}} C_{F} g_{s}^{2} \frac{2 p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)}
$$

Squared amplitude

$$
\begin{aligned}
& \left|M_{q \bar{q} g}^{2}\right| \simeq \sum_{A, \mathrm{pol}}\left|\bar{u}\left(p_{1}\right) i e_{q} \gamma_{\mu} t^{A} v\left(p_{2}\right) g_{s}\left(\frac{p_{1} \cdot \epsilon}{p_{1} \cdot k}-\frac{p_{2} \cdot \epsilon}{p_{2} \cdot k}\right)\right|^{2} \\
& \quad=-\left|M_{q \bar{q}}^{2}\right| C_{F} g_{s}^{2}\left(\frac{p_{1}}{p_{1} \cdot k}-\frac{p_{2}}{p_{2} \cdot k}\right)^{2}=\left|M_{q \bar{q}}^{2}\right| C_{F} g_{s}^{2} \frac{2 p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)}
\end{aligned}
$$

Include phase space:

$$
d \Phi_{q \bar{q} g}\left|M_{q \bar{q} g}^{2}\right| \simeq\left(d \Phi_{q \bar{q}}\left|M_{q \bar{q}}^{2}\right|\right) \frac{d^{3} \vec{k}}{2 E(2 \pi)^{3}} C_{F} g_{s}^{2} \frac{2 p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)}
$$

Note property of factorisation into hard $q \bar{q}$ piece and soft-gluon emission piece, $d S$.

Squared amplitude

$$
\begin{aligned}
& \left|M_{q \bar{q} g}^{2}\right| \simeq \sum_{A, \mathrm{pol}}\left|\bar{u}\left(p_{1}\right) i e_{q} \gamma_{\mu} t^{A} v\left(p_{2}\right) g_{s}\left(\frac{p_{1} \cdot \epsilon}{p_{1} \cdot k}-\frac{p_{2} \cdot \epsilon}{p_{2} \cdot k}\right)\right|^{2} \\
& \quad=-\left|M_{q \bar{q}}^{2}\right| C_{F} g_{s}^{2}\left(\frac{p_{1}}{p_{1} \cdot k}-\frac{p_{2}}{p_{2} \cdot k}\right)^{2}=\left|M_{q \bar{q}}^{2}\right| C_{F} g_{s}^{2} \frac{2 p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)}
\end{aligned}
$$

Include phase space:

$$
d \Phi_{q \bar{q} g}\left|M_{q \bar{q} g}^{2}\right| \simeq\left(d \Phi_{q \bar{q}}\left|M_{q \bar{q}}^{2}\right|\right) \frac{d^{3} \vec{k}}{2 E(2 \pi)^{3}} C_{F} g_{s}^{2} \frac{2 p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)}
$$

Note property of factorisation into hard $q \bar{q}$ piece and soft-gluon emission piece, $d \mathcal{S}$.

$$
\begin{array}{|l|}
\hline d \mathcal{S}=E d E d \cos \theta \frac{d \phi}{2 \pi} \cdot \frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \frac{2 p_{1} \cdot p_{2}}{\left(2 p_{1} \cdot k\right)\left(2 p_{2} \cdot k\right)} \quad
\end{array} \quad \begin{aligned}
& \theta \equiv \theta_{p_{1} k} \\
& \phi=\text { azimuth }
\end{aligned}
$$

Soft \& collinear gluon emission

Take squared matrix element and rewrite in terms of E, θ,

$$
\frac{2 p_{1} \cdot p_{2}}{\left(2 p_{1} \cdot k\right)\left(2 p_{2} \cdot k\right)}=\frac{1}{E^{2}\left(1-\cos ^{2} \theta\right)}
$$

So final expression for soft gluon emission is

Soft \& collinear gluon emission

Take squared matrix element and rewrite in terms of E, θ,

$$
\frac{2 p_{1} \cdot p_{2}}{\left(2 p_{1} \cdot k\right)\left(2 p_{2} \cdot k\right)}=\frac{1}{E^{2}\left(1-\cos ^{2} \theta\right)}
$$

So final expression for soft gluon emission is

$$
d \mathcal{S}=\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \frac{d E}{E} \frac{d \theta}{\sin \theta} \frac{d \phi}{2 \pi}
$$

Soft \& collinear gluon emission

Take squared matrix element and rewrite in terms of E, θ,

$$
\frac{2 p_{1} \cdot p_{2}}{\left(2 p_{1} \cdot k\right)\left(2 p_{2} \cdot k\right)}=\frac{1}{E^{2}\left(1-\cos ^{2} \theta\right)}
$$

So final expression for soft gluon emission is

$$
d \mathcal{S}=\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \frac{d E}{E} \frac{d \theta}{\sin \theta} \frac{d \phi}{2 \pi}
$$

NB:

- It diverges for $E \rightarrow 0$ - infrared (or soft) divergence
- It diverges for $\theta \rightarrow 0$ and $\theta \rightarrow \pi$ - collinear divergence

Soft \& collinear gluon emission

Take squared matrix element and rewrite in terms of E, θ,

$$
\frac{2 p_{1} \cdot p_{2}}{\left(2 p_{1} \cdot k\right)\left(2 p_{2} \cdot k\right)}=\frac{1}{E^{2}\left(1-\cos ^{2} \theta\right)}
$$

So final expression for soft gluon emission is

$$
d \mathcal{S}=\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \frac{d E}{E} \frac{d \theta}{\sin \theta} \frac{d \phi}{2 \pi}
$$

NB:

- It diverges for $E \rightarrow 0$ - infrared (or soft) divergence
- It diverges for $\theta \rightarrow 0$ and $\theta \rightarrow \pi$ - collinear divergence

Soft, collinear divergences derived here in specific context of $e^{+} e^{-} \rightarrow q \bar{q}$ But they are a very general property of QCD

Total cross section: sum of all real and virtual diagrams

Total cross section must be finite. If real part has divergent integration, so must virtual part.
(Unitarity, conservation of probability)

Real-virtual cancellations: total X-sctn

Total cross section: sum of all real and virtual diagrams

Total cross section must be finite. If real part has divergent integration, so must virtual part.
(Unitarity, conservation of probability)

$$
\begin{aligned}
\sigma_{\text {tot }}=\sigma_{q \bar{q}}\left(1+\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \int \frac{d E}{E} \int\right. & \frac{d \theta}{\sin \theta} R(E / Q, \theta) \\
& \left.-\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \int \frac{d E}{E} \int \frac{d \theta}{\sin \theta} V(E / Q, \theta)\right)
\end{aligned}
$$

Real-virtual cancellations: total X-sctn

Total cross section: sum of all real and virtual diagrams

Total cross section must be finite. If real part has divergent integration, so must virtual part.
(Unitarity, conservation of probability)

$$
\begin{aligned}
\sigma_{\text {tot }}=\sigma_{q \bar{q}}\left(1+\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \int \frac{d E}{E} \int\right. & \frac{d \theta}{\sin \theta} R(E / Q, \theta) \\
& \left.-\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \int \frac{d E}{E} \int \frac{d \theta}{\sin \theta} V(E / Q, \theta)\right)
\end{aligned}
$$

- $R(E / Q, \theta)$ parametrises real matrix element for hard emissions, $E \sim Q$.
- $V(E / Q, \theta)$ parametrises virtual corrections for all momenta.

$$
\sigma_{t o t}=\sigma_{q \bar{q}}\left(1+\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \int \frac{d E}{E} \int \frac{d \theta}{\sin \theta}(R(E / Q, \theta)-V(E / Q, \theta))\right)
$$

- From calculation: $\lim _{E \rightarrow 0} R(E / Q, \theta)=1$.
- For every divergence $R(E / Q, \theta)$ and $V(E / Q, \theta)$ should cancel:

$$
\lim _{E \rightarrow 0}(R-V)=0, \quad \quad \lim _{\theta \rightarrow 0, \pi}(R-V)=0
$$

$$
\sigma_{\text {tot }}=\sigma_{q \bar{q}}\left(1+\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \int \frac{d E}{E} \int \frac{d \theta}{\sin \theta}(R(E / Q, \theta)-V(E / Q, \theta))\right)
$$

- From calculation: $\lim _{E \rightarrow 0} R(E / Q, \theta)=1$.
- For every divergence $R(E / Q, \theta)$ and $V(E / Q, \theta)$ should cancel:

$$
\lim _{E \rightarrow 0}(R-V)=0, \quad \lim _{\theta \rightarrow 0, \pi}(R-V)=0
$$

Result:

- corrections to $\sigma_{\text {tot }}$ come from hard $(E \sim Q)$, large-angle gluons - Soft gluons don't matter:

$$
\sigma_{\text {tot }}=\sigma_{q \bar{q}}\left(1+\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \int \frac{d E}{E} \int \frac{d \theta}{\sin \theta}(R(E / Q, \theta)-V(E / Q, \theta))\right)
$$

- From calculation: $\lim _{E \rightarrow 0} R(E / Q, \theta)=1$.
- For every divergence $R(E / Q, \theta)$ and $V(E / Q, \theta)$ should cancel:

$$
\lim _{E \rightarrow 0}(R-V)=0, \quad \lim _{\theta \rightarrow 0, \pi}(R-V)=0
$$

Result:

- corrections to $\sigma_{\text {tot }}$ come from hard $(E \sim Q)$, large-angle gluons
- Soft gluons don't matter:

$$
\sigma_{\text {tot }}=\sigma_{q \bar{q}}\left(1+\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \int \frac{d E}{E} \int \frac{d \theta}{\sin \theta}(R(E / Q, \theta)-V(E / Q, \theta))\right)
$$

- From calculation: $\lim _{E \rightarrow 0} R(E / Q, \theta)=1$.
- For every divergence $R(E / Q, \theta)$ and $V(E / Q, \theta)$ should cancel:

$$
\lim _{E \rightarrow 0}(R-V)=0, \quad \quad \lim _{\theta \rightarrow 0, \pi}(R-V)=0
$$

Result:

- corrections to $\sigma_{\text {tot }}$ come from hard $(E \sim Q)$, large-angle gluons
- Soft gluons don't matter:
- Physics reason: soft gluons emitted on long timescale $\sim 1 /\left(E \theta^{2}\right)$ relative to collision ($1 / Q$) - cannot influence cross section. be ignored.

$$
\sigma_{\text {tot }}=\sigma_{q \bar{q}}\left(1+\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \int \frac{d E}{E} \int \frac{d \theta}{\sin \theta}(R(E / Q, \theta)-V(E / Q, \theta))\right)
$$

- From calculation: $\lim _{E \rightarrow 0} R(E / Q, \theta)=1$.
- For every divergence $R(E / Q, \theta)$ and $V(E / Q, \theta)$ should cancel:

$$
\lim _{E \rightarrow 0}(R-V)=0, \quad \quad \lim _{\theta \rightarrow 0, \pi}(R-V)=0
$$

Result:

- corrections to $\sigma_{\text {tot }}$ come from hard $(E \sim Q)$, large-angle gluons
- Soft gluons don't matter:
- Physics reason: soft gluons emitted on long timescale $\sim 1 /\left(E \theta^{2}\right)$ relative to collision ($1 / Q$) - cannot influence cross section.
- Transition to hadrons also occurs on long time scale ($\sim 1 / \Lambda$) — and can also be ignored.

$$
\sigma_{\text {tot }}=\sigma_{q \bar{q}}\left(1+\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \int \frac{d E}{E} \int \frac{d \theta}{\sin \theta}(R(E / Q, \theta)-V(E / Q, \theta))\right)
$$

- From calculation: $\lim _{E \rightarrow 0} R(E / Q, \theta)=1$.
- For every divergence $R(E / Q, \theta)$ and $V(E / Q, \theta)$ should cancel:

$$
\lim _{E \rightarrow 0}(R-V)=0, \quad \quad \lim _{\theta \rightarrow 0, \pi}(R-V)=0
$$

Result:

- corrections to $\sigma_{\text {tot }}$ come from hard $(E \sim Q)$, large-angle gluons
- Soft gluons don't matter:
- Physics reason: soft gluons emitted on long timescale $\sim 1 /\left(E \theta^{2}\right)$ relative to collision ($1 / Q$) - cannot influence cross section.
- Transition to hadrons also occurs on long time scale ($\sim 1 / \Lambda$) - and can also be ignored.
- Correct renorm. scale for $\alpha_{\mathrm{s}}: \mu \sim Q$ - perturbation theory valid.

Dependence of total cross section on only hard gluons is reflected in 'good behaviour' of perturbation series:

$$
\sigma_{t o t}=\sigma_{q \bar{q}}\left(1+1.045 \frac{\alpha_{\mathrm{s}}(Q)}{\pi}+0.94\left(\frac{\alpha_{\mathrm{s}}(Q)}{\pi}\right)^{2}-15\left(\frac{\alpha_{\mathrm{s}}(Q)}{\pi}\right)^{3}+\cdots\right)
$$

(Coefficients given for $Q=M_{Z}$)

Let's look at more "exclusive"

 quantities - structure of final stateLet's try and integrate emission probability to get the mean number of gluons emitted off a a quark with energy $\sim Q$:

$$
\left\langle N_{g}\right\rangle \simeq \frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \int^{Q} \frac{d E}{E} \int^{\pi / 2} \frac{d \theta}{\theta}
$$

This diverges

With this cutoff, result is:

Naive gluon multiplicity

Let's try and integrate emission probability to get the mean number of gluons emitted off a a quark with energy $\sim Q$:

$$
\left\langle N_{g}\right\rangle \simeq \frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \int^{Q} \frac{d E}{E} \int^{\pi / 2} \frac{d \theta}{\theta} \Theta\left(E \theta>Q_{0}\right)
$$

This diverges unless we cut the integral off for transverse momenta ($k_{t} \simeq E \theta$) below some non-perturbative threshold, $Q_{0} \sim \Lambda_{Q C D}$.

On the grounds that perturbation no longer applies for $k_{t} \sim \Lambda_{Q C D}$
Language of quarks and gluons becomes meaningless
With this cutoff, result is:

$$
\left\langle N_{g}\right\rangle \simeq \frac{\alpha_{\mathrm{s}} C_{F}}{\pi} \ln ^{2} \frac{Q}{Q_{0}}+\mathcal{O}\left(\alpha_{\mathrm{s}} \ln Q\right)
$$

Naive gluon multiplicity (cont.)

Suppose we take $Q_{0}=\Lambda_{Q C D}$, how big is the result?

$$
\text { Let's use } \alpha_{\mathrm{s}}=\alpha_{\mathrm{s}}(Q)=1 /(2 b \ln Q / \Lambda)
$$

[Actually, over most of integration range this is optimistically small]

$$
\left\langle N_{g}\right\rangle \simeq \frac{\alpha_{\mathrm{s}} C_{F}}{\pi} \ln ^{2} \frac{Q}{\Lambda_{Q C D}} \rightarrow \frac{C_{F}}{2 b \pi} \ln \frac{Q}{\Lambda_{Q C D}}
$$

NB: given form for α_{s}, this is actually $\sim 1 / \alpha_{\mathrm{s}}$
Put in some numbers: $Q=100 \mathrm{GeV}, \Lambda_{Q C D} \simeq 0.2 \mathrm{GeV}, C_{F}=4 / 3, b \simeq 0.6$,

$$
\longrightarrow\left\langle N_{g}\right\rangle \simeq 2.2
$$

Naive gluon multiplicity (cont.)

Suppose we take $Q_{0}=\Lambda_{Q C D}$, how big is the result?

$$
\text { Let's use } \alpha_{\mathrm{s}}=\alpha_{\mathrm{s}}(Q)=1 /(2 b \ln Q / \Lambda)
$$

[Actually, over most of integration range this is optimistically small]

$$
\left\langle N_{g}\right\rangle \simeq \frac{\alpha_{\mathrm{s}} C_{F}}{\pi} \ln ^{2} \frac{Q}{\Lambda_{Q C D}} \rightarrow \frac{C_{F}}{2 b \pi} \ln \frac{Q}{\Lambda_{Q C D}}
$$

NB: given form for α_{s}, this is actually $\sim 1 / \alpha_{\mathrm{s}}$
Put in some numbers: $Q=100 \mathrm{GeV}, \Lambda_{Q C D} \simeq 0.2 \mathrm{GeV}, C_{F}=4 / 3, b \simeq 0.6$,

$$
\longrightarrow\left\langle N_{g}\right\rangle \simeq 2.2
$$

Perturbation theory assumes that first-order term, $\sim \alpha_{\mathrm{s}}$ should be $\ll 1$.
But the final result is $\sim 1 / \alpha_{s}>1$...
Is perturbation theory completely useless?

Given this failure of first-order perturbation theory, two possible avenues.

1. Continue calculating the next $\operatorname{order}(\mathrm{s})$ and see what happens
2. Try to see if there exist other observables for which perturbation theory is better behaved

Gluon emission from quark: $\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \frac{d E}{E} \frac{d \theta}{\theta}$
Gluon emission from gluon: $\frac{2 \alpha_{\mathrm{s}} C_{A}}{\pi} \frac{d E}{E} \frac{d \theta}{\theta}$
Both expressions valid only if $\theta \ll 1$ and energy soft relative to parent

- Same divergence structures, regardless of where gluon is emitted from
- All that changes is the colour factor $\left(C_{F}=4 / 3 \mathrm{v} . C_{A}=3\right)$
- Expect low-order structure $\left(\alpha_{\mathrm{s}} \ln ^{2} Q\right)$ to be replicated at each new order

Picturing a QCD event

Start of with $\mathbf{q} \bar{q}$

Picturing a QCD event

A gluon gets emitted at small angles

Picturing a QCD event

It radiates a further gluon

Picturing a QCD event

And so forth

Meanwhile the same happened on other side of event

And then a non-perturbative transition occurs

Giving a pattern of hadrons that "remembers" the gluon branching Hadrons mostly produced at small angle wrt $q \bar{q}$ directions or with low energy

It turns out you can calculate the gluon multiplicity analytically, by summing all orders (n) of perturbation theory:

$$
\begin{aligned}
\left\langle N_{g}\right\rangle & \sim \sum_{n} \frac{1}{(n!)^{2}}\left(\frac{C_{A}}{\pi b} \ln \frac{Q}{\Lambda}\right)^{n} \\
& \sim \exp \sqrt{\frac{4 C_{A}}{\pi b} \ln \frac{Q}{\Lambda}}
\end{aligned}
$$

Compare to data for hadron multiplicity $(Q \equiv \sqrt{s})$

Including some other higher-order terms and fitting overall normalisation

charged hadron multiplicity in $e^{+} e^{-}$events adapted from ESW

It's great that putting together all orders of gluon emission works so well!

This, together with a "hadronisation model", is part of what's contained in Monte Carlo event generators like Pythia, Herwig \& Sherpa.

But are there things that we can calculate about the final state using just one or two orders perturbation theory?

Infrared and Collinear Safety (definition)

For an observable's distribution to be calculable in [fixed-order] perturbation theory, the observable should be infra-red safe, i.e. insensitive to the emission of soft or collinear gluons. In particular if \vec{p}_{i} is any momentum occurring in its definition, it must be invariant under the branching

$$
\vec{p}_{i} \rightarrow \vec{p}_{j}+\vec{p}_{k}
$$

whenever \vec{p}_{j} and \vec{p}_{k} are parallel [collinear] or one of them is small [infrared].
[QCD and Collider Physics (Ellis, Stirling \& Webber)]

Examples

Infrared and Collinear Safety (definition)

For an observable's distribution to be calculable in [fixed-order] perturbation theory, the observable should be infra-red safe, i.e. insensitive to the emission of soft or collinear gluons. In particular if \vec{p}_{i} is any momentum occurring in its definition, it must be invariant under the branching

$$
\vec{p}_{i} \rightarrow \vec{p}_{j}+\vec{p}_{k}
$$

whenever \vec{p}_{j} and \vec{p}_{k} are parallel [collinear] or one of them is small [infrared].
[QCD and Collider Physics (Ellis, Stirling \& Webber)]

Examples

- Multiplicity of gluons is not IRC safe [modified by soft/collinear splitting]
- Energy of hardest particle is not IRC safe [modified by collinear splitting]
- Energy flow into a cone is IRC safe [soft emissions don't change energy flow collinear emissions don't change its direction]

The original (finite) jet definition
An event has 2 jets if at least a fraction $(1-\epsilon)$ of event energy is contained in two cones of half-angle δ.

Sterman-Weinberg jets

The original (finite) jet definition
An event has 2 jets if at least a fraction ($1-\epsilon$) of event energy is contained in two cones of half-angle δ.

$$
\sigma_{2-j e t}=\sigma_{q \bar{q}}\left(1+\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \int \frac{d E}{E} \frac{d \theta}{\sin \theta}\left(R\left(\frac{E}{Q}, \theta\right) \times\right.\right.
$$

$$
\left.\left.\times\left(1-\Theta\left(\frac{E}{Q}-\epsilon\right) \Theta(\theta-\delta)\right)-V\left(\frac{E}{Q}, \theta\right)\right)\right)
$$

For small E or small θ this is just like total cross section - full
cancellation of divergences between real and virtual terms. out.

The original (finite) jet definition
An event has 2 jets if at least a fraction ($1-\epsilon$) of event energy is contained in two cones of half-angle δ.

$$
\begin{aligned}
& \sigma_{2-j e t}=\sigma_{q \bar{q}}\left(1+\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \int \frac{d E}{E} \frac{d \theta}{\sin \theta}\left(R\left(\frac{E}{Q}, \theta\right) \times\right.\right. \\
&\left.\left.\times\left(1-\Theta\left(\frac{E}{Q}-\epsilon\right) \Theta(\theta-\delta)\right)-V\left(\frac{E}{Q}, \theta\right)\right)\right)
\end{aligned}
$$

- For small E or small θ this is just like total cross section - full cancellation of divergences between real and virtual terms.
- For large E and large θ a finite piece of real emission cross section is cut out.
- Overall final contribution dominated by scales $\sim Q$ - cross section is perturbatively calculation.

Near 'perfect' 2-jet event

2 well-collimated jets of particles.
Nearly all energy contained in two cones.

Cross section for this to occur is
$\sigma_{2-\mathrm{jet}}=\sigma_{q \bar{q}}\left(1-c_{1} \alpha_{\mathrm{s}}+c_{2} \alpha_{\mathrm{s}}^{2}+\ldots\right)$
where c_{1}, c_{2} all ~ 1.

How many jets?

- Most of energy contained in 3 (fairly) collimated cones
- Cross section for this to happen is

$$
\sigma_{3-\mathrm{jet}}=\sigma_{q \bar{q}}\left(c_{1}^{\prime} \alpha_{\mathrm{s}}+c_{2}^{\prime} \alpha_{\mathrm{s}}^{2}+\ldots\right)
$$

where the coefficients are all $\mathcal{O}(1)$

Cross section for extra gluon diverges Cross section for extra jet is small, $\mathcal{O}\left(\alpha_{\mathrm{s}}\right)$

NB: Sterman-Weinberg procedure gets complex for multi-jet events. 4th lecture will discuss modern approaches for defining jets.

- QCD at colliders mixes weak and strong coupling
- No calculation technique is rigorous over that whole domain
- Gluon emission repaints a quark's colour
- That implies that gluons carry colour too
- Quarks emit gluons, which emit other gluons: this gives characteristic "shower" structure of QCD events, and is the basis of Monte Carlo simulations
- To use perturbation theory one must measure quantities that insensitive to the (divergent) soft \& collinear splittings, like jets.

