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Introduction

This lecture will be about some of the different ways we

can make QCD predictions.

It’ll touch on:

◮ LO, NLO, NNLO calculations

◮ Parton-Shower Monte Carlos
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Introduction

Most of the examples will involve Z (& sometimes W )

production at hadron colliders.

Because Z , W decay to leptons and to neutrinos, both of

which are easily-taggable handles that are characteristic of
many new physics scenarios.
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Introduction SUSY example: gluino pair production
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Introduction Example SUSY searches
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Fixed order

What scale?
total X-section e+e− → Z → hadrons

Start simply and look back at cross section for e+e− → Z →hadrons (at√
s ≡ Q = MZ ).

In lecture 1 we wrote:

σtot = σqq̄








1
∣
∣
∣
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LO

+ 1.045
αs(Q)

π
︸ ︷︷ ︸

NLO

+ 0.94

(
αs(Q)

π

)2

︸ ︷︷ ︸

NNLO

+ · · ·








Who told us we should we should write the series
in terms of αs(Q)?

Q = MZ is the only physical scale in the problem, so not unreasonable.

But hardest possible gluon emission is E = Q/2. Should we have used Q/2?

And virtual gluons can have E > Q. Should we have used 2Q?
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Fixed order

What scale?
Scale dependence
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scale-dep. of σ(e+e- → hadrons)

Q = MZ LO
NLO

Start with the first order that “con-
tains QCD” (NLO).

Introduce arbitrary renormalisa-
tion scale for the coupling, µR

σnlo = σqq̄ (1 + c1αs(µR) )

Result depends on the choice of µR .

Convention: the uncertainty on
the result is the range of answers
obtained for Q/2 < µR < 2Q.
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Fixed order

What scale?
Scale dependence (cont.)

Let’s express results for arbitrary µR in terms of αs(Q):

σnlo(µR) = σqq̄ (1 + c1 αs(µR) )

= σqq̄

(

1 + c1 αs(Q) − 2c1b0 ln
µR

Q
α2

s (Q) + O
(
α3

s

)
)

As we vary the renormalisation scale µR , we introduce O
(
α2

s

)
pieces into

the X-section. I.e. generate some set of NNLO terms ∼ uncertainty on
X-section from missing NNLO calculation.

If we now calculate the full NNLO correction, then it will be structured so
as to cancel the O

(
α2

s

)
scale variation

σnnlo(µR) = σqq̄

[

1 + c1 αs(µR) +

(

c2 + 2c1b0 ln
µR

Q

)

α2
s (µR)

]

Remaining uncertainty is now O
(
α3

s

)
.
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αs(µR) =
αs(Q)

1 + 2b0 αs(Q) lnµR/Q

= αs(Q) − 2b0 α2
s (Q) lnµR/Q + O

(
α3

s

)
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Fixed order

What scale?
Scale dependence: NNLO
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See how at NNLO, scale depen-
dence is much flatter, final uncer-
tainty much smaller.

Because now we neglect

only α3
s instead of α2

s

Moral: not knowing exactly how
to set scale → blessing in disguise,
since it gives us handle on uncer-
tainty.

Scale variation ≡ standard procedure

Often a good guide

Except when it isn’t!

NB: if we had a large number of orders of perturbation theory, scale
dependence would just disappear.
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Fixed order

pp → Z + X

Now switch to looking at the Z

cross section in pp
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Fixed order

pp → Z + X

LO pp → Z

σlo

pp→Z =
∑

i

∫

dx1dx2 fqi
(x1, µ

2
F ) fq̄i

(x2, µ
2
F ) σ̂0,qi q̄i→Z (x1p1, x2p2) ,

◮ σ0,qi q̄i→Z ∝ αEW , knows nothing
about QCD like σe+e−→Z

◮ But σ0,qi q̄i→Z depends on PDFs.

◮ We have to choose a factorisation
scale, µF .

◮ Natural choice: µF = MZ , but one
should vary it (just like the
renorm. scale, µR , for αs).

Plot shows σlo

pp→Z differentially as a function of rapidity (y) of Z . Band is
uncertainty due to variation of µF .



QCD lecture 3 (p. 11)

Fixed order

pp → Z + X

LO pp → Z

σlo

pp→Z =
∑

i

∫

dx1dx2 fqi
(x1, µ

2
F ) fq̄i
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F ) σ̂0,qi q̄i→Z (x1p1, x2p2) ,

◮ σ0,qi q̄i→Z ∝ αEW , knows nothing
about QCD like σe+e−→Z
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◮ We have to choose a factorisation
scale, µF .

◮ Natural choice: µF = MZ , but one
should vary it (just like the
renorm. scale, µR , for αs). MZ/2 ≤ µF ≤ 2MZ
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Fixed order

pp → Z + X

pp → Z + X at (N)NLO

σnlo

pp→Z =
∑

i ,j

∫

dx1dx2 fi(x1, µ
2
F ) fj (x2, µ

2
F ) [σ̂0,ij→Z (x1, x2)+

+ αs(µR)σ̂1,ij→Z (x1, x2, µF )]

◮ New channels open up (gq → Zq)

◮ Now X-sct depends on renorm
scale µR and fact. scale µF

often vary µR = µF together

not necessarily “right”

◮ But σ̂1 piece cancels large LO
dependence on µF

◮ At NNLO dependence on µR and
µF is further cancelled

ZZ

ZZLO NLO
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Fixed order

pp → Z + X

Rules of thumb

In hadron-collider QCD calculations:

◮ Choose a sensible central scale for your process

◮ Vary µF , µR by a factor of two around that central value

◮ LO: good only to within factor of two Despite αs ≃ 0.1

◮ NLO: good to within 10 − 20%

◮ NNLO: good to a few percent

The above rules fail if NLO/NNLO involve characteristically new
production channels and/or large ratios of scales.
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Fixed order

pp → Z + X

Calculations for more complex processes
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Fixed order

pp → Z + X

Diagrams / processes / orders

 Z + n partons→ij

x
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ø

x x x x x x 0 loops (tree−level)

2 loops

1 loop

0 1 2 3 4 5 6

o o o

ø

The bottleneck in getting NpLO predictions is usually either the calculation
of the p-loop diagram, or figuring out how to combine (cancel) divergences

between 2-loops, 1-loop & tree-level.
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QCD lecture 3 (p. 15)

Fixed order

pp → Z + X

Diagrams / processes / orders

αs
0

αs
2

αs
3

αs
1

 Z + n partons→ij

x

o

ø

x x x x x x 0 loops (tree−level)

2 loops

1 loop

0 1 2 3 4 5 6

o o o

ø
X

Z

i j

Z

ij

The bottleneck in getting NpLO predictions is usually either the calculation
of the p-loop diagram, or figuring out how to combine (cancel) divergences

between 2-loops, 1-loop & tree-level.



QCD lecture 3 (p. 15)

Fixed order

pp → Z + X

Diagrams / processes / orders

αs
0

αs
2

αs
3

αs
1

 Z + n partons→ij

x

o

ø

x x x x x x 0 loops (tree−level)

2 loops

1 loop

0 1 2 3 4 5 6

o o o

ø
X

Z

i j

Z

ij

The bottleneck in getting NpLO predictions is usually either the calculation
of the p-loop diagram, or figuring out how to combine (cancel) divergences

between 2-loops, 1-loop & tree-level.



QCD lecture 3 (p. 15)

Fixed order

pp → Z + X

Diagrams / processes / orders

αs
0

αs
2

αs
3

αs
1

 Z + n partons→ij

x

o

ø

x x x x x x 0 loops (tree−level)

2 loops

1 loop

0 1 2 3 4 5 6

o o o

ø
2

Z

i j

The bottleneck in getting NpLO predictions is usually either the calculation
of the p-loop diagram, or figuring out how to combine (cancel) divergences

between 2-loops, 1-loop & tree-level.



QCD lecture 3 (p. 15)

Fixed order

pp → Z + X

Diagrams / processes / orders

αs
0

αs
2

αs
3

αs
1

 Z + n partons→ij

x

o

ø

x x x x x x 0 loops (tree−level)

2 loops

1 loop

0 1 2 3 4 5 6

o o o

ø
X

Z

i j

Z

ij

The bottleneck in getting NpLO predictions is usually either the calculation
of the p-loop diagram, or figuring out how to combine (cancel) divergences

between 2-loops, 1-loop & tree-level.



QCD lecture 3 (p. 15)

Fixed order
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Diagrams / processes / orders
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Fixed order

pp → Z + X
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Fixed order

pp → Z + X

The limits of what we know

◮ Tree-level / LO: 2 → 6 − 8
ALPGEN, CompHep, Helac/Helas, Madgraph, Sherpa

◮ 1-loop / NLO: 2 → 3
MCFM, NLOJet++, PHOX-family + various single-process codes

some 2 → 4 starting to appear (W+3j, tt̄bb̄)

◮ 2-loop / NNLO: 2 → 1 (W,Z,H) FEWZ, FeHiP, HNNLO

Example of complexity of the calculations, for gg → N gluons:

Njets 2 3 4 5 6 7 8

# diags 4 25 220 2485 34300 5x105 107

Programs like Alpgen, Helac/Helas, Sherpa avoid Feynman diagrams

and use methods that recursively build up amplitudes
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Fixed order

pp → Z + X

In what form are these calculations made available?
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Fixed order

pp → Z + X

Fully inclusive calculations

For a process that starts at order αn
s , the fully inclusive NpLO cross section

for producing some object “A” is

σn
p
lo

pp→A+X =
∑

i ,j

∫

dx1dx2 fi (x1, µ
2
F ) fj(x2, µ

2
F )×

×
p

∑

m=0

αn+m
s (µR) σ̂m,ij→A+X (x1x2s, µR , µF ) ,

The σm,ij→A(x1x2s, µR , µF ) are analytical functions that you’ll find in a
paper somewhere and you can just implement them in your own program

and do the integral.
E.g. earliest (N)NLO calculations of tt̄, W, Z X-scts

They tell you nothing about

◮ where A is produced in your detector, which direction it decays in

◮ what else (“X”) is produced in associated with A
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Fixed order

pp → Z + X

Exclusive calculations

Matrix-Element Monte Carlos (weighted)

E.g. for LO (tree-level) calculation ij → Z + n jets with cuts: Alpgen, etc.

◮ Generate random phase-space configurations for Z + n partons

◮ Call a user-written subroutine to decide whether event passes cuts.

◮ If it does, include the event weight (tree-level squared amplitude, PDFs)
in the evaluation of the cross section.

Additionally for NLO: MCFM, NLOJet, Phox family, etc.

◮ Generate random phase-space configurations for Z +n+1 partons
& if pass user cuts, include tree-level weight in cross section

◮ Generate random phase-space configurations for Z +n partons
& if pass user cuts, include 1-loop-level weight in cross section

NB: loop-level Z +n and tree-level Z +n+1 only converge

if taken together and if your cuts are infrared and collinear safe
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Fixed order

pp → Z + X

Example: W + 3 jets

20 30 40 50 60 70 80 90

10
-3

10
-2

10
-1

dσ
 / 

dE
T
   

 [
 p

b 
/ G

eV
 ]

LO
NLO
CDF data

20 30 40 50 60 70 80 90
Third Jet E

T
   [ GeV ]

0.5

1

1.5

2 LO / NLO
CDF / NLO

NLO scale dependence

W + 3 jets

BlackHat+Sherpa

LO scale dependence

The W+3-jet cross section
at Tevatron. An analysis
involving a jet-algorithm
that cluster the partons
into jets, cuts on the jets,
cuts on the lepton from the
W and cuts on the missing
energy.

State of the art!
Berger et al, ’09

also: Ellis, Melnikov

& Zanderighi ’09
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Fixed order

pp → Z + X

(N)NLO Matrix-Element Monte Carlos, are a powerful

combination of accuracy and flexibility.

As long as you want to calculate an IR and collinear safe
observable (e.g. jets, W’s, Z’s — but not π, K , p, . . .)

And if you don’t mind dealing with (wildly) fluctuating
positive and negative event weights.

And you don’t intend to study regions of phase space that

involve multiple scales.
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Fixed order

pp → Z + X

Scatter plots: weights from NLOJet++
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Outliers in NLO case: near-divergent real and virtual
configurations
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Parton showers

Parton showers
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Parton showers Real life does not diverge

How can we reinterpret perturbation theory so as to get something more
physical (and finite)?

The “right” question to ask is: what is the probability of not radiating a

gluon above a scale kt?

P(no emission above kt) = 1 − 2αsCF

π

∫ Q dE

E

∫ π/2 dθ

θ
Θ(Eθ − kt)

In the soft-collinear limit, it’s quite easy to calculate the full probability of
nothing happening: it’s just the exponential of the first order:

P(nothing > kt) ≡ ∆(kt ,Q) ≃ exp

[

−2αsCF

π

∫ Q dE

E

∫ π/2 dθ

θ
Θ(Eθ − kt)

]

NB1: ∆ is bounded — 0 < ∆(kt , Q) < 1

NB2: to do this properly, running coupling should be inside integral

+ replace dE/E with full collinear splitting function
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Parton showers The parton shower

∆(kt ,Q) is known as a Sudakov Form Factor

Probability distribution for first emission (e.g. qq̄ → qq̄g) is simple

dP

dkt1
=

d

dkt1
∆(kt1,Q)

Easy to generate this distribution by Monte Carlo

Take flat random number 0 < r < 1 and solve ∆(kt , Q) = r

Now we have a qq̄g system.

We next work out a Sudakov for there being no emission from the qq̄g

system above scale kt2 (< kt1): ∆qqg (kt2, kt1), and use this to generate kt2.

Then generate kt3 emission from the qq̄gg system (kt3 < kt2). Etc.

Repeat until you reach a non-perturbative cutoff scale Q0, and then stop.

This gives you one “parton-shower” event
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Parton showers The parton shower

∆(kt ,Q) is known as a Sudakov Form Factor

Probability distribution for first emission (e.g. qq̄ → qq̄g) is simple

dP

dkt1
=

d

dkt1
∆(kt1,Q)

Easy to generate this distribution by Monte Carlo

Take flat random number 0 < r < 1 and solve ∆(kt , Q) = r

Now we have a qq̄g system.

We next work out a Sudakov for there being no emission from the qq̄g

system above scale kt2 (< kt1): ∆qqg (kt2, kt1), and use this to generate kt2.

Then generate kt3 emission from the qq̄gg system (kt3 < kt2). Etc.

Repeat until you reach a non-perturbative cutoff scale Q0, and then stop.

This gives you one “parton-shower” event
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Parton showers Shower variants

That was a description that roughly encompasses:

◮ The New Pythia shower Pythia 8.1, and the pt ordered option of Pythia 6.4

◮ The Ariadne shower

Other showers:

◮ Old Pythia (& Sherpa): order in virtuality instead of kt and each parton
branches independently (+ angular veto) works fine on most data

but misses some theoretically relevant contributions

by far the most widely used shower

◮ Herwig (6.5 & ++): order in angle, and each parton branches
independently Herwig++ fills more of phase space than 6.5

That was all for a “final-state” shower

◮ Initial-state showers also need to deal carefully with PDF evolution



QCD lecture 3 (p. 27)

Parton showers An example

1. You select the beams and their energy
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Parton showers An example

2. You select the hard process (here Z + jet production)
Herwig generates kinematics for the hard process
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Parton showers An example

3. Herwig “dresses” it with initial and final-state showers
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Parton showers Hadronisation Models
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Pictures from ESW book
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Parton showers MC comparisons to LEP data
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Parton showers

PS v. fixed order
Comparing tools

Parton-shower Monte Carlos do a good job of describing
most of the features of common events.

Including the fine detail needed for detector simulation

And all events have equal weight — just like data

But they rely on soft and collinear approximations, so do

not necessarily generate correct hard, large-angle radiation
And if you’re simulating backgrounds to BSM physics

it’s the rare, hard multi-jet configurations that are often of interest

Let’s check how well they do: compare LO/NLO

fixed-order calculations with parton showers.
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Parton showers

PS v. fixed order
Multijet events

jet 1

jet 2jet 3
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pt of 3rd hardest jet

Cambridge/Aachen jets, R=0.7

pt1/2 < µR = µF < 2pt1

pt1 > 500 GeV
pp, 14 TeV

NLOjet++

Herwig 6.5

Generate hard dijet events, shower
and hadronise them with Herwig.

Select events in which hardest jet
has pt > 500 GeV. Look at pt dis-
tribution of 3rd hardest jet

◮ Herwig doesn’t do too bad a job
of reproducing high-pt 3rd-jet
rate But no uncertainty band

Hard to know how trustworthy

unless you also have NLO

◮ NLO does poor job at low pt —
large ratios of scales,
pt3/pt1 ≪ 1, are dangerous in
fixed-order calculations.

higher-orders ∼ αs ln
pt1

pt3
∼ 1
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Parton showers

PS v. fixed order
Z + N jets

Herwig: select Z +
1 jet hard process.

Look at pt distri-
bution of jets with
highest pt , 2nd
highest pt , etc.

Compare to tree-
level calculation

Mangano ’08

Parton shower (Herwig) does very badly even just for 2nd jet.
Why is this so much worse than in the pure jet case?
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Parton showers

PS v. fixed order
Why parton shower so poor for Z+jets?

Z + 1 jet

g

Z

q (=jet)

αsαEW

Z + 2 jets

q (=jet)
g  (=jet)

g

Z

Produced by parton shower

Parton showers generate starting from hard process you asked for.

Z/W + multijet production involves two classes of hard process

A. Z + recoil jet; B. dijets + emission of Z (missing from MC)
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Parton showers

PS v. fixed order
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Z + 2 jets
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g

Not produced by parton shower
enhanced at high pt : α2

sαEW ln2 pt

MZ

Parton showers generate starting from hard process you asked for.

Z/W + multijet production involves two classes of hard process

A. Z + recoil jet; B. dijets + emission of Z (missing from MC)
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Parton showers

PS v. fixed order
Why parton shower so poor for Z+jets?

Z + 1 jet
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q (=jet)
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Not produced by parton shower
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MZ

Parton showers generate starting from hard process you asked for.

Z/W + multijet production involves two classes of hard process

A. Z + recoil jet; B. dijets + emission of Z (missing from MC)



QCD lecture 3 (p. 33)

Parton showers

PS v. fixed order
Why parton shower so poor for Z+jets?

Z + 1 jet

g

Z

q (=jet)

αsαEW

Z + 2 jets

Z

q (=jet)

g  (=jet)
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Not produced by parton shower
enhanced at high pt : α2

sαEW ln2 pt

MZ

Parton showers generate starting from hard process you asked for.

Z/W + multijet production involves two classes of hard process

A. Z + recoil jet; B. dijets + emission of Z (missing from MC)
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Summary Summary

We’ve seen a number of things:

◮ Idea of scale variation to estimate uncertainties in theory predictions

◮ How fixed-order predictions work

◮ How parton-shower Monte Carlo predictions work

◮ And how they compare

Some issues:

◮ Fixed order doesn’t work with big scale ratios

◮ Monte Carlos don’t always work for multijet structure

Tomorrow we’ll look some more at these issues and at
the question of hadron-collider observables
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