QCD (for LHC) Lecture 3: predictive methods

Gavin Salam

LPTHE, CNRS and UPMC (Univ. Paris 6)

At the 2009 European School of High-Energy Physics June 2009, Bautzen, Germany

This lecture will be about some of the different ways we can make QCD predictions.

It'll touch on:

LO, NLO, NNLO calculationsParton-Shower Monte Carlos

Most of the examples will involve Z (& sometimes W) production at hadron colliders.

Because Z, W decay to leptons and to neutrinos, both of which are easily-taggable handles that are characteristic of many new physics scenarios.

SUSY example: gluino pair production

SUSY example: gluino pair production

Example SUSY searches

Atlas selection [all hadronic]

- no lepton
- MET > 100 GeV
- 1^{st,}2nd jet > 100 GeV
- 3rd,4th jet > 50 GeV
- MET / m_{eff} > 20%

CMS selection [leptonic incl.]

(optimized for 10fb⁻¹, using genetic algorithm)

- 1 muon pT > 30 GeV
- MET > 130 GeV
- 1st, 2nd jet > 440 GeV
- 3rd jet > 50 GeV
- -0.95 < cos(MET,1stjet)<0.3

 $\begin{array}{l} \underset{\mathsf{L} \in \mathsf{What scale}}{\mathsf{QCD lecture 3 (p. 6)}} \\ \texttt{total X-section } e^+e^- \to Z \to \texttt{hadrons} \end{array}$

Start simply and look back at cross section for $e^+e^- \rightarrow Z \rightarrow$ hadrons (at $\sqrt{s} \equiv Q = M_Z$).

In lecture 1 we wrote:

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(\underbrace{1}_{\text{LO}} + \underbrace{1.045 \frac{\alpha_{s}(Q)}{\pi}}_{\text{NLO}} + \underbrace{0.94 \left(\frac{\alpha_{s}(Q)}{\pi}\right)^{2}}_{\text{NNLO}} + \cdots \right)$$

Who told us we should we should write the series in terms of $\alpha_{s}(Q)$?

 $Q = M_Z$ is the only physical scale in the problem, so not unreasonable. But hardest possible gluon emission is E = Q/2. Should we have used Q/2? And virtual gluons can have E > Q. Should we have used 2Q?

Start with the first order that "contains QCD" (NLO).

Introduce arbitrary **renormalisation scale** for the coupling, μ_R

 $\sigma^{\rm NLO} = \sigma_{q\bar{q}} \left(1 + c_1 \alpha_{\rm s}(\mu_R) \right)$

Result depends on the choice of μ_R .

Convention: the uncertainty on the result is the range of answers obtained for $Q/2 < \mu_R < 2Q$.

Start with the first order that "contains QCD" (NLO).

Introduce arbitrary **renormalisation scale** for the coupling, μ_R

 $\sigma^{\rm NLO} = \sigma_{q\bar{q}} \left(1 + c_1 \alpha_{\rm s}(\mu_R) \right)$

Result depends on the choice of μ_R .

Convention: the uncertainty on the result is the range of answers obtained for $Q/2 < \mu_R < 2Q$. (

Let's express results for arbitrary μ_R in terms of $\alpha_s(Q)$:

$$\sigma^{\text{NLO}}(\mu_{\mathcal{R}}) = \sigma_{q\bar{q}} \left(1 + c_1 \alpha_{\text{s}}(\mu_{\mathcal{R}}) \right)$$
$$= \sigma_{q\bar{q}} \left(1 + c_1 \alpha_{\text{s}}(Q) - 2c_1 b_0 \ln \frac{\mu_{\mathcal{R}}}{Q} \alpha_{\text{s}}^2(Q) + \mathcal{O}\left(\alpha_{\text{s}}^3\right) \right)$$

As we vary the renormalisation scale μ_R , we introduce $\mathcal{O}(\alpha_s^2)$ pieces into the X-section. I.e. generate some set of NNLO terms ~ uncertainty on X-section from missing NNLO calculation.

If we now calculate the full NNLO correction, then it will be structured so as to cancel the $\mathcal{O}\left(\alpha_{\rm s}^2\right)$ scale variation

$$\sigma^{\text{NNLO}}(\mu_R) = \sigma_{q\bar{q}} \left[1 + c_1 \alpha_{\text{s}}(\mu_R) + \left(c_2 + 2c_1 b_0 \ln \frac{\mu_R}{Q} \right) \alpha_{\text{s}}^2(\mu_R) \right]$$

Scale dependence (cont.)

Let's express results for arbitrary μ_R in terms of $\alpha_s(Q)$:

$$\sigma^{\text{NLO}}(\mu_R) = \sigma_{q\bar{q}} \left(1 \begin{array}{c} \alpha_{\mathsf{s}}(\mu_R) = \frac{\alpha_{\mathsf{s}}(Q)}{1 + 2b_0 \, \alpha_{\mathsf{s}}(Q) \, \ln \mu_R / Q} \\ = \sigma_{q\bar{q}} \end{array} \right) = \alpha_{\mathsf{s}}(Q) - 2b_0 \, \alpha_{\mathsf{s}}^2(Q) \, \ln \mu_R / Q + \mathcal{O} \left(\alpha_{\mathsf{s}}^3 \right)$$

As we vary the renormalisation scale μ_R , we introduce $\mathcal{O}(\alpha_s^2)$ pieces into the X-section. I.e. generate some set of NNLO terms ~ uncertainty on X-section from missing NNLO calculation.

If we now calculate the full NNLO correction, then it will be structured so as to cancel the $\mathcal{O}\left(\alpha_{\rm s}^2\right)$ scale variation

$$\sigma^{\text{NNLO}}(\mu_R) = \sigma_{q\bar{q}} \left[1 + c_1 \alpha_{\mathfrak{s}}(\mu_R) + \left(c_2 + 2c_1 b_0 \ln \frac{\mu_R}{Q} \right) \alpha_{\mathfrak{s}}^2(\mu_R) \right]$$

Let's express results for arbitrary μ_R in terms of $\alpha_s(Q)$:

$$\sigma^{\text{NLO}}(\mu_R) = \sigma_{q\bar{q}} \left(1 + c_1 \alpha_{\text{s}}(\mu_R) \right)$$
$$= \sigma_{q\bar{q}} \left(1 + c_1 \alpha_{\text{s}}(Q) - 2c_1 b_0 \ln \frac{\mu_R}{Q} \alpha_{\text{s}}^2(Q) + \mathcal{O}\left(\alpha_{\text{s}}^3\right) \right)$$

As we vary the renormalisation scale μ_R , we introduce $\mathcal{O}(\alpha_s^2)$ pieces into the X-section. I.e. generate some set of NNLO terms ~ uncertainty on X-section from missing NNLO calculation.

If we now calculate the full NNLO correction, then it will be structured so as to cancel the $\mathcal{O}(\alpha_s^2)$ scale variation

$$\sigma^{\text{NNLO}}(\mu_R) = \sigma_{q\bar{q}} \left[1 + c_1 \alpha_{s}(\mu_R) + \left(c_2 + 2c_1 b_0 \ln \frac{\mu_R}{Q} \right) \alpha_{s}^2(\mu_R) \right]$$

(

Let's express results for arbitrary μ_R in terms of $\alpha_s(Q)$:

$$\begin{aligned} \sigma^{\text{\tiny NLO}}(\mu_R) &= \sigma_{q\bar{q}} \left(1 + c_1 \,\alpha_{\mathsf{s}}(\mu_R) \right) \\ &= \sigma_{q\bar{q}} \left(1 + c_1 \,\alpha_{\mathsf{s}}(Q) - 2c_1 b_0 \ln \frac{\mu_R}{Q} \,\alpha_{\mathsf{s}}^2(Q) + \mathcal{O}\left(\alpha_{\mathsf{s}}^3\right) \right) \end{aligned}$$

As we vary the renormalisation scale μ_R , we introduce $\mathcal{O}(\alpha_s^2)$ pieces into the X-section. I.e. generate some set of NNLO terms ~ uncertainty on X-section from missing NNLO calculation.

If we now calculate the full NNLO correction, then it will be structured so as to cancel the $\mathcal{O}(\alpha_s^2)$ scale variation

$$\sigma^{\text{NNLO}}(\mu_R) = \sigma_{q\bar{q}} \left[1 + c_1 \alpha_{s}(\mu_R) + \left(c_2 + 2c_1 b_0 \ln \frac{\mu_R}{Q} \right) \alpha_{s}^2(\mu_R) \right]$$

```
QCD lecture 3 (p. 9)
Fixed order
What scale?
```

Scale dependence: NNLO

See how at NNLO, scale dependence is much flatter, final uncertainty much smaller.

Because now we neglect only $lpha_{
m s}^3$ instead of $lpha_{
m s}^2$

Moral: not knowing exactly how to set scale \rightarrow blessing in disguise, since it gives us handle on uncertainty.

Scale variation ≡ standard procedure Often a good guide Except when it isn't!

NB: if we had a large number of orders of perturbation theory, scale dependence would just disappear.

```
QCD lecture 3 (p. 9)
Fixed order
What scale?
```

scale-dep. of $\sigma(e^+e^- \rightarrow hadrons)$ 1.1 $Q = M_7$ LO 1.08 NI O $\sigma_{ee} \rightarrow \text{hadrons} \ / \ \sigma_{ee} \rightarrow \text{qq}$ NNLO 1.06 1.04 1.02 1 conventional range 0.98 0.5 < x_u < 2 0.96 0.1 10 μ_{R}/Q

Scale dependence: NNLO

See how at NNLO, scale dependence is much flatter, final uncertainty much smaller.

Because now we neglect only $\alpha_{\rm s}^{\rm 3}$ instead of $\alpha_{\rm s}^{\rm 2}$

Moral: not knowing exactly how to set scale \rightarrow blessing in disguise, since it gives us handle on uncertainty.

Scale variation ≡ standard procedure Often a good guide Except when it isn't!

NB: if we had a large number of orders of perturbation theory, scale dependence would just disappear.

```
QCD lecture 3 (p. 9)
Fixed order
What scale?
```

scale-dep. of $\sigma(e^+e^- \rightarrow hadrons)$ 1.1 $Q = M_7$ LO 1.08 NI O $\sigma_{ee} \rightarrow \text{hadrons} \ / \ \sigma_{ee} \rightarrow \text{qq}$ NNLO 1.06 1.04 1.02 1 conventional range 0.98 $0.5 < x_{_{11}} < 2$ 0.96 0.1 10 μ_{R}/Q

Scale dependence: NNLO

See how at NNLO, scale dependence is much flatter, final uncertainty much smaller.

```
Because now we neglect only \alpha_{\rm s}^{\rm 3} instead of \alpha_{\rm s}^{\rm 2}
```

Moral: not knowing exactly how to set scale \rightarrow blessing in disguise, since it gives us handle on uncertainty.

$$\label{eq:Scale variation} \begin{split} \text{Scale variation} &\equiv \text{standard procedure} \\ & \text{Often a good guide} \\ & \text{Except when it isn't!} \end{split}$$

NB: if we had a large number of orders of perturbation theory, scale dependence would just disappear.

Now switch to looking at the Z cross section in pp

QCD lecture 3 (p. 11) Fixed order $pp \rightarrow Z + X$

LO $pp \rightarrow Z$

$$\sigma_{pp\to Z}^{\rm LO} = \sum_{i} \int dx_1 dx_2 f_{q_i}(x_1, \mu_F^2) f_{\bar{q}_i}(x_2, \mu_F^2) \hat{\sigma}_{0, q_i \bar{q}_i \to Z}(x_1 p_1, x_2 p_2),$$

► $\sigma_{0,q_i\bar{q}_i \to Z} \propto \alpha_{EW}$, knows nothing about QCD like $\sigma_{e^+e^- \to Z}$

c

- ▶ But $\sigma_{0,q_i\bar{q}_i \rightarrow Z}$ depends on PDFs.
- We have to choose a factorisation scale, μ_F.
- Natural choice: μ_F = M_Z, but one should vary it (just like the renorm. scale, μ_R, for α_s).

Plot shows $\sigma_{pp\to Z}^{\text{LO}}$ differentially as a function of rapidity (y) of Z. Band is uncertainty due to variation of μ_F .

QCD lecture 3 (p. 11) Fixed order $\square pp \rightarrow Z + X$

LO $pp \rightarrow Z$

$$\sigma_{pp\to Z}^{\rm LO} = \sum_{i} \int dx_1 dx_2 f_{q_i}(x_1, \mu_F^2) f_{\bar{q}_i}(x_2, \mu_F^2) \hat{\sigma}_{0, q_i \bar{q}_i \to Z}(x_1 p_1, x_2 p_2),$$

► $\sigma_{0,q_i\bar{q}_i \to Z} \propto \alpha_{EW}$, knows nothing about QCD like $\sigma_{e^+e^- \to Z}$

0

- ▶ But $\sigma_{0,q_i\bar{q}_i \rightarrow Z}$ depends on PDFs.
- We have to choose a factorisation scale, μ_F.
- Natural choice: μ_F = M_Z, but one should vary it (just like the renorm. scale, μ_R, for α_s).

Plot shows $\sigma_{pp \to Z}^{\text{LO}}$ differentially as a function of rapidity (y) of Z. Band is uncertainty due to variation of μ_F .

QCD lecture 3 (p. 12) Fixed order $\square pp \rightarrow Z + X$

 $pp \rightarrow Z + X$ at (N)NLO

$$\sigma_{pp \to Z}^{\text{NLO}} = \sum_{i,j} \int dx_1 dx_2 f_i(x_1, \mu_F^2) f_j(x_2, \mu_F^2) \left[\hat{\sigma}_{0,ij \to Z}(x_1, x_2) + \alpha_{\mathsf{s}}(\mu_R) \hat{\sigma}_{1,ij \to Z}(x_1, x_2, \mu_F) \right]$$

• New channels open up $(gq \rightarrow Zq)$

r

Now X-sct depends on renorm scale μ_R and fact. scale μ_F often vary μ_R = μ_F together not necessarily "right"

- But
 *^ˆ*₁ piece cancels large LO
 dependence on μ_F
- At NNLO dependence on μ_R and μ_F is further cancelled

QCD lecture 3 (p. 12) Fixed order $pp \rightarrow Z + X$

 $pp \rightarrow Z + X$ at (N)NLO

$$\sigma_{pp \to Z}^{\text{NLO}} = \sum_{i,j} \int dx_1 dx_2 f_i(x_1, \mu_F^2) f_j(x_2, \mu_F^2) \left[\hat{\sigma}_{0,ij \to Z}(x_1, x_2) + \alpha_{\mathsf{s}}(\mu_R) \hat{\sigma}_{1,ij \to Z}(x_1, x_2, \mu_F) \right]$$

- New channels open up $(gq \rightarrow Zq)$
- Now X-sct depends on renorm scale μ_R and fact. scale μ_F often vary μ_R = μ_F together not necessarily "right"
- But
 *ô*₁ piece cancels large LO
 dependence on μ_F
- At NNLO dependence on µ_R and µ_F is further cancelled

Anastasiou et al '03; $\mu_R=\mu_F$

QCD lecture 3 (p. 12) Fixed order $pp \rightarrow Z + X$

 $pp \rightarrow Z + X$ at (N)NLO

$$\sigma_{pp \to Z}^{\text{NLO}} = \sum_{i,j} \int dx_1 dx_2 f_i(x_1, \mu_F^2) f_j(x_2, \mu_F^2) \left[\hat{\sigma}_{0,ij \to Z}(x_1, x_2) + \alpha_{\mathsf{s}}(\mu_R) \hat{\sigma}_{1,ij \to Z}(x_1, x_2, \mu_F) \right]$$

- New channels open up $(gq \rightarrow Zq)$
- Now X-sct depends on renorm scale μ_R and fact. scale μ_F often vary μ_R = μ_F together not necessarily "right"
- But
 *ô*₁ piece cancels large LO
 dependence on μ_F
- At NNLO dependence on μ_R and μ_F is further cancelled

In hadron-collider QCD calculations:

- Choose a sensible central scale for your process
- ▶ Vary μ_F , μ_R by a factor of two around that central value
- ► LO: good only to within factor of two
- NLO: good to within 10 20%
- NNLO: good to a few percent

The above rules fail if NLO/NNLO involve characteristically new production channels and/or large ratios of scales.

Despite $\alpha_{\rm s} \simeq 0.1$

Calculations for more complex processes

x	x	x	x	x	x	x	0 loops (tree-level)
ο	ο	ο	0				1 loop
ø	ø						2 loops
0	1	2	3	4	5	6	

ı.

ij \rightarrow Z + n partons

QCD lecture 3 (p. 15) Fixed order $\square pp \rightarrow Z + X$

ij \rightarrow Z + n partons

QCD lecture 3 (p. 15) Fixed order $\square pp \rightarrow Z + X$

ij \rightarrow Z + n partons

QCD lecture 3 (p. 15) Fixed order $\square pp \rightarrow Z + X$

ij \rightarrow Z + n partons

QCD lecture 3 (p. 15) Fixed order $\square pp \rightarrow Z + X$

ij \rightarrow Z + n partons

QCD lecture 3 (p. 15) Fixed order $\square pp \rightarrow Z + X$

ij \rightarrow Z + n partons

Diagrams / processes / orders

Z @ LO

Diagrams / processes / orders

Z @ NLO

ij \rightarrow Z + n partons

Diagrams / processes / orders

ij \rightarrow Z + n partons

Diagrams / processes / orders

QCD lecture 3 (p. 15)
Fixed order
$pp \rightarrow Z + X$

QCD lecture 3 (p. 15)
Fixed order
$\square_{pp} \rightarrow Z + X$

QCD lecture 3 (p. 15)
Fixed order
$\square pp \rightarrow Z + X$

QCD lecture 3 (p. 15)
Fixed order
$\square_{pp} \rightarrow Z + X$

QCD lecture 3 (p. 15)
Fixed order
$\square_{pp} \rightarrow Z + X$

 Tree-level / LO: 2 → 6 - 8 ALPGEN, CompHep, Helac/Helas, Madgraph, Sherpa
 1-loop / NLO: 2 → 3 MCFM, NLOJet++, PHOX-family + various single-process codes some 2 → 4 starting to appear (W+3j, ttbb)

▶ 2-loop / NNLO:
$$2 \rightarrow 1$$
 (W,Z,H)

FEWZ, FeHiP, HNNLO

Example of complexity of the calculations, for $gg \rightarrow N$ gluons:

Njets	2	3	4	5	6	7	
# diags	4	25	220	2485	34300	5×10 ⁵	10 ⁷

Programs like Alpgen, Helac/Helas, Sherpa avoid Feynman diagrams and use methods that recursively build up amplitudes Tree-level / LO: 2 → 6 - 8 ALPGEN, CompHep, Helac/Helas, Madgraph, Sherpa
 1-loop / NLO: 2 → 3 MCFM, NLOJet++, PHOX-family + various single-process codes some 2 → 4 starting to appear (W+3j, ttbb)

▶ 2-loop / NNLO:
$$2 \rightarrow 1$$
 (W,Z,H)

FEWZ, FeHiP, HNNLO

Example of complexity of the calculations, for $gg \rightarrow N$ gluons:

Njets	2	3	4	5 6		7	8
# diags	4	25	220	2485	34300	5×10 ⁵	10 ⁷

Programs like Alpgen, Helac/Helas, Sherpa avoid Feynman diagrams and use methods that recursively build up amplitudes

In what form are these calculations made available?

For a process that starts at order α_s^n , the fully inclusive N^pLO cross section for producing some object "A" is

$$\sigma_{pp \to A+X}^{N^{p_{\mathrm{LO}}}} = \sum_{i,j} \int dx_1 dx_2 f_i(x_1, \mu_F^2) f_j(x_2, \mu_F^2) \times \\ \times \sum_{m=0}^{p} \alpha_{\mathrm{s}}^{n+m}(\mu_R) \hat{\sigma}_{m,ij \to A+X}(x_1 x_2 s, \mu_R, \mu_F),$$

The $\sigma_{m,ij \rightarrow A}(x_1x_2s, \mu_R, \mu_F)$ are analytical functions that you'll find in a paper somewhere and you can just implement them in your own program and do the integral.

E.g. earliest (N)NLO calculations of $t\bar{t}$, W, Z X-scts

They tell you nothing about

- ▶ where A is produced in your detector, which direction it decays in
- ▶ what else ("X") is produced in associated with A

Matrix-Element Monte Carlos (weighted)

E.g. for LO (tree-level) calculation $ij \rightarrow Z + n$ jets with cuts: Alpgen, etc.

- Generate random phase-space configurations for Z + n partons
- ► Call a user-written subroutine to decide whether event passes cuts.
- If it does, include the event weight (tree-level squared amplitude, PDFs) in the evaluation of the cross section.

Additionally for NLO:

MCFM, NLOJet, Phox family, etc.

Generate random phase-space configurations for Z+n+1 partons
 & if pass user cuts, include tree-level weight in cross section

• Generate random phase-space configurations for Z + n partons

& if pass user cuts, include 1-loop-level weight in cross section NB: loop-level Z+n and tree-level Z+n+1 only converge if taken together and if your cuts are infrared and collinear safe

The W+3-jet cross section at Tevatron. An analysis involving a jet-algorithm that cluster the partons into jets, cuts on the jets, cuts on the lepton from the W and cuts on the missing energy.

State of the art!

Berger et al, '09 also: Ellis, Melnikov & Zanderighi '09

(N)NLO Matrix-Element Monte Carlos, are a powerful combination of accuracy and flexibility.

As long as you want to calculate an IR and collinear safe observable (e.g. jets, W's, Z's — but not $\pi, K, p, ...$)

And if you don't mind dealing with (wildly) fluctuating positive and negative event weights.

And you don't intend to study regions of phase space that involve multiple scales.

QCD lecture 3 (p. 22) -Fixed order $\square pp \rightarrow Z + X$

Scatter plots: weights from NLOJet++

Outliers in NLO case: near-divergent real and virtual configurations

Parton showers

How can we reinterpret perturbation theory so as to get something more physical (and finite)?

The "right" question to ask is: what is the probability of **not** radiating a gluon above a scale k_t ?

$$P(\text{no emission above } k_t) = 1 - \frac{2\alpha_s C_F}{\pi} \int^Q \frac{dE}{E} \int^{\pi/2} \frac{d\theta}{\theta} \Theta(E\theta - k_t)$$

In the soft-collinear limit, it's quite easy to calculate the full probability of nothing happening: it's just the exponential of the first order:

$$P(\text{nothing} > k_t) \equiv \Delta(k_t, Q) \simeq \exp\left[-\frac{2\alpha_s C_F}{\pi} \int^Q \frac{dE}{E} \int^{\pi/2} \frac{d\theta}{\theta} \Theta(E\theta - k_t)\right]$$

 $\begin{array}{l} {\sf NB1:} \ \Delta \ \text{is bounded} \longrightarrow 0 < \Delta(k_t,Q) < 1 \\ {\sf NB2:} \ \text{to do this properly, running coupling should be inside integral} \\ + \ \text{replace} \ dE/E \ \text{with full collinear splitting function} \end{array}$

$\Delta(k_t, Q)$ is known as a **Sudakov Form Factor**

Probability distribution for first emission (e.g. $q \bar{q}
ightarrow q \bar{q} g$) is simple

$$\frac{dP}{dk_{t1}} = \frac{d}{dk_{t1}}\Delta(k_{t1},Q)$$

Easy to generate this distribution by Monte Carlo Take flat random number 0 < r < 1 and solve $\Delta(k_t, Q) = r$

Now we have a $q\bar{q}g$ system.

We next work out a Sudakov for there being no emission from the $q\bar{q}g$ system above scale k_{t2} (< k_{t1}): $\Delta^{qqg}(k_{t2}, k_{t1})$, and use this to generate k_{t2} .

Then generate k_{t3} emission from the $q\bar{q}gg$ system ($k_{t3} < k_{t2}$). Etc.

Repeat until you reach a non-perturbative cutoff scale Q_0 , and then stop.

This gives you one "parton-shower" event

$\Delta(k_t, Q)$ is known as a **Sudakov Form Factor**

Probability distribution for first emission (e.g. $q \bar{q}
ightarrow q \bar{q} g$) is simple

$$\frac{dP}{dk_{t1}} = \frac{d}{dk_{t1}}\Delta(k_{t1},Q)$$

Easy to generate this distribution by Monte Carlo Take flat random number 0 < r < 1 and solve $\Delta(k_t, Q) = r$

Now we have a $q\bar{q}g$ system.

We next work out a Sudakov for there being no emission from the $q\bar{q}g$ system above scale k_{t2} (< k_{t1}): $\Delta^{qqg}(k_{t2}, k_{t1})$, and use this to generate k_{t2} .

Then generate k_{t3} emission from the $q\bar{q}gg$ system ($k_{t3} < k_{t2}$). Etc.

Repeat until you reach a non-perturbative cutoff scale Q_0 , and then stop.

This gives you one "parton-shower" event

That was a description that roughly encompasses:

- **•** The New Pythia shower Pythia 8.1, and the p_t ordered option of Pythia 6.4
- The Ariadne shower

Other showers:

- Old Pythia (& Sherpa): order in virtuality instead of k_t and each parton branches independently (+ angular veto) works fine on most data but misses some theoretically relevant contributions by far the most widely used shower
- Herwig (6.5 & ++): order in angle, and each parton branches independently
 Herwig++ fills more of phase space than 6.5

That was all for a "final-state" shower

Initial-state showers also need to deal carefully with PDF evolution

MASS

0.94

I. You select the beams and their energy ---INITIAL STATE-- IHEP ID 1 P 2212 2212 101 0 0 0 0 0 0

2 P	2212 10	20	0	0	0	0,00	0,00-7	000.0	7000.0	0,94
3 CMF	0 103	31	2	0	0	0.00	0.00	0.0	14000.0	14000.0

2. You select the hard process (here Z + jet production) Herwig generates kinematics for the hard process

---HARD SUBPROCESS---

IHEP	ID	IDPDG	IST	M01	M02	DA1	DA2	P-X	P-Y	P-Z	ENERGY	MASS
4	UQRK	2	121	6	- 8	- 9	- 5	0,00	0,00	590.8	590.8	0,32
5	GLUON	21	122	6	- 4	17	8	0,00	0,00	-232,1	232.1	0.75
6	HARD	0	120	- 4	- 5	- 7	8	0,40	-9,40	358.7	823.0	740,63
- 7	ZO/GAMA*	23	123	6	- 7	- 22	- 7	-261,59	-217,31	329,3	481.6	88,56
8	UQRK	2	124	6	- 5	23	4	261,59	217.31	29,4	341.3	0,32

3. Herwig "dresses" it with initial and final-state showers

---PARTON SHOWERS---

IHEP	ID	IDPDG	IST	M01	M02	DA1	DA2	P-X	P-Y	P-Z	ENERGY	MASS		
9	UQRK	94	141	- 4	6	11	16	2,64	-9,83	592,2	590,2	-49,07		
10	CONE	0	100	- 4	- 5	0	0	-0,27	0.96	0.1	1.0	0,00		
11	GLUON	21	- 2	- 9	12	- 32	-33	-1.02	3,59	5.6	6.7	0.75-		
12	GLUON	21	2	9	13	- 34	35	0,25	1.46	3.6	4.0	0.75-		INITIAL
13	GLUON	21	- 2	9	14	- 36	- 37	-0,87	1.62	4.7	5.1	0.75-		STATE
14	GLUON	21	- 2	9	15	- 38	39	-0,81	4,17	3611.7	3611.7	0.75-		STAIL
15	GLUON	21	- 2	9	16	40	41	-0,19	-1.01	1727.7	1727.7	0.75-		SHOWER
16	UD	2101	- 2	9	25	42	41	0,00	0,00	1054.6	1054.6	0.32-		
17	GLUON	94	142	- 5	6	19	21	-2,23	0.44	-233,5	232,8	-18,36		
18	CONE	0	100	5	- 8	0	0	0.77	0.64	0.2	1.0	0.00		
19	GLUON	21	- 2	17	20	43	44	1,60	0,58	-2,1	2,8	0.75		
20	UD	2101	2	17	21	45	44	0.00	0,00	-2687.6	2687.6	0.32		
- 21	UQRK	2	- 2	17	- 32	46	45	0,63	-1,02	-4076.9	4076.9	0,32	U	
- 22	ZO/GAMA*	23	195	- 7	- 22	251	252	-257,66	-219,68	324.8	477.5	88,56	_	
23	UQRK	94	144	8	6	25	31	258,06	210,29	33.9	345.5	86.10		
24	CONE	0	100	- 8	- 5	0	0	0,21	0,17	-1.0	1.0	0,00		
25	UQRK	2	- 2	23	26	47	42	26,82	24.33	23.7	43.3	0.32		FINAL
26	GLUON	21	- 2	-23	- 27	48	49	8,50	8,18	6.0	13.3	0.75		STATE
27	GLUON	21	2	23	28	50	51	73,27	61,24	12.0	96,2	0.75		STATE
28	GLUON	21	- 2	23	- 29	52	53	73,66	58,54	-6.3	94.3	0.75		SHOWFR
- 29	GLUON	21	2	23	30	54	55	67,58	52,13	-7,3	85.7	0,75		
30	GLUON	21	- 2	23	31	56	57	6,98	4.60	2.3	8.7	0.75		
- 31	GLUON	21	- 2	- 23	43	-58	-59	1,24	1,26	3.6	4.1	0,75	0	

Hadronisation Models

String Fragmentation (Pythia and friends) Cluster Fragmentation (Herwig) Pictures from ESW book

888

MC comparisons to LEP data

1-Thrust

Parton-shower Monte Carlos do a good job of describing most of the features of common events.

Including the fine detail needed for detector simulation And all events have equal weight — just like data

But they rely on soft and collinear approximations, so do not necessarily generate correct hard, large-angle radiation

And if you're simulating backgrounds to BSM physics it's the rare, hard multi-jet configurations that are often of interest

Let's check how well they do: compare LO/NLO fixed-order calculations with parton showers.

QCD lecture 3 (p. 31) Parton showers

Multijet events

Generate hard dijet events, shower and hadronise them with Herwig.

Select events in which hardest jet has $p_t > 500$ GeV. Look at p_t distribution of 3rd hardest jet

- Herwig doesn't do too bad a job of reproducing high-pt 3rd-jet rate
 But no uncertainty band Hard to know how trustworthy unless you also have NLO
- NLO does poor job at low p_t large ratios of scales, p_{t3}/p_{t1} ≪ 1, are dangerous in fixed-order calculations. higher-orders ~ α_s ln ^{p_{t1}}/_{p_{t3}} ~ 1

QCD lecture 3 (p. 32) Parton showers

Parton shower (Herwig) does very badly even just for 2nd jet. Why is this so much worse than in the pure jet case?

Summary

We've seen a number of things:

- Idea of scale variation to estimate uncertainties in theory predictions
- How fixed-order predictions work
- How parton-shower Monte Carlo predictions work
- And how they compare

Some issues:

- Fixed order doesn't work with big scale ratios
- Monte Carlos don't always work for multijet structure

Tomorrow we'll look some more at these issues and at the question of hadron-collider observables