QCD (for LHC)

Lecture 4

1. Merging parton showers and fixed order 2. Jets

Gavin Salam
LPTHE, CNRS and UPMC (Univ. Paris 6)

At the 2009 European School of High-Energy Physics June 2009, Bautzen, Germany

- Tree-level (LO) gives decent description of multi-jet structure
- NLO gives good normalisation
- Parton-shower gives good behaviour in soft-collinear regions and fully exclusive final state.

Can we combine the advantages of all three?

Difficulties in merging Tree-level(s) + PS ?

Suppose you ask for $Z+$ jet as your initial hard process in Pythia/Herwig.

- They contain the correct ME for $Z+j$.
- But you want $Z+2 j$ to be correct too.

Naive approach: you could also generate $\mathrm{Z}+2 \mathrm{j}$ events with Alpgen (or Madgraph, etc.) and run the shower from those configurations too.

Z+parton

shower Z+parton

shower Z+parton

Z+2partons

shower Z+parton

shower Z+2partons

shower Z+parton

shower Z+2partons

shower of Z+parton generates hard gluon

shower Z+parton

shower Z+2partons

shower of Z+parton generates hard gluon

shower Z+parton

Double counting + associated issues with virtual corrections are the main problems when merging PS +ME

Merging procedures

$\mathrm{ME}+\mathrm{PS}$ merging is an attempt to solve this. There are many variants.
One common one is "MLM matching" - a summary of it is:

- Introduce a cutoff $Q_{M E}$
- Use the matrix elements to generate tree-level events for $\mathrm{Z}+1$ parton, $\mathrm{Z}+2$ partons, $\ldots \mathrm{Z}+\mathrm{N}$ partons, where all partons must have $p_{t}>Q_{M E}$, and are separated from the others by some angle $R_{M E}$.

Numbers of events are in proportion to their cross sections with these cuts

- Take one of these tree level events, say with n-partons.
- Shower it with your favourite Parton Shower program.
- Identify all jets that have $p_{t}>Q_{\text {merge }}$ (chosen $\gtrsim Q_{M E}$)
- If each parton corresponds to one of the jets (\equiv is nearby in angle) and there are no extra jets above scale $Q_{\text {merge }}$, accept the event.
- Otherwise reject it.

$$
\left[\text { Replace } Q_{m e r g e} \rightarrow p_{t n} \text { if } n=N\right]
$$

shower Z+parton

shower Z+2partons

shower of Z+parton generates hard gluon
-Combining PS + FO

MLM example

- Hard jets above scale $Q_{\text {merge }}$ have distributions given by tree-level ME Rejection procedure eliminates "double-counted" jets from narton shower

 Rejection generates Sudakov form factors between individual jet scales
MLM example

- Hard jets above scale $Q_{\text {merge }}$ have distributions given by tree-level ME
- Rejection procedure eliminates "double-counted" jets from parton shower
- Rejection generates Sudakov form factors between individual jet scales How well? Depends on details of PS. One of the weaker points of MLM

Merging - other schemes

MLM is the standard merging available from Alpgen

There are several other merging procedures on the market

- MLM à la MadGraph
- CKKW

Mainly changes details of jet finding

- CKKW-L e.g. in Sherpa
e.g. in Ariadne
- Pseudo Shower
by Mrenna
They vary essentially in whether/how they match partons \& jets, the definitions of the jets, and some include analytic Sudakov form factors (e.g. CKKW).

They all involve some implicit form of p_{t} cutoff.
Usually physics well above cutoff is independent of cutoff?

- ME + PS merging helps get correct p_{t} dependence
- It works much better than plain parton showers
- Normalisation is still quite uncertain

Can we get parton-shower structure, with NLO accuracy (e.g. control of normalisation, pattern of radiation of extra parton)?

MC@NLO ideas

- Expand your Monte Carlo branching to first order in α_{s} Rather non-trivial - requires deep understanding of MC
- Calculate differences wrt true $\mathcal{O}\left(\alpha_{s}\right) \quad$ both in real and virtual pieces
- If your Monte Carlo gives correct soft and/or collinear limits, those differences are finite
- Generate extra partonic configurations with phase-space distributions proportional to those differences and shower them

Let's imagine a problem with one phase-space dimension, e.g. E. Expand Monte Carlo cross section for emission with energy E :

$$
\sigma^{M C} \equiv 1 \times \delta(E)+\alpha_{\mathrm{s}} \sigma_{1 R}^{M C}(E)+\alpha_{\mathrm{s}} \sigma_{1 V}^{M C} \delta(E)+\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)
$$

With true NLO real/virtual terms as $\alpha_{\mathrm{s}} \sigma_{1 R}(E)$ and $\alpha_{\mathrm{s}} \sigma_{1 V} \delta(E)$, define
$\mathrm{MC@NLO}=\mathrm{MC} \times\left(1+\alpha_{\mathrm{s}}\left(\sigma_{1 V}-\sigma_{1 V}^{M C}\right)+\alpha_{\mathrm{s}} \int d E\left(\sigma_{1 R}(E)-\sigma_{1 R}^{M C}(E)\right)\right)$
All weights finite, but can be ± 1
Processes include Frixione, Laenen, Motylinski, Nason, Webber, White '02-'08 Higgs boson, single vector boson, vector boson pair, heavy quark pair, single top (with and without associated W), lepton pair and associated Higgs+W/Z

Aims to work around MC@NLO limitations

- the (small fraction of) negative weights
- the tight interconnection with a specific MC

Principle

- Write a simplified Monte Carlo that generates just one emission (the hardest one) which alone gives the correct NLO result.

Essentially uses special Sudakov $\Delta\left(k_{t}\right)=\exp \left(-\int\right.$ exact real-radition probability above $\left.k_{t}\right)$

- Lets your default parton-shower do branchings below that k_{t}.

Processes include
$p p \rightarrow$ Heavy-quark pair, Higgs, single vector-boson
Alioli, Frixione, Nason, Oleari, Re '07-08
$p p \rightarrow W^{\prime}, e^{+} e^{-} \rightarrow t \bar{t}$
Papaefstathiou, Latunde-Dada

figure from talk by Frixione '04

Solid: MC@NLO
Dashed: HERWIG $\times \frac{\sigma_{N L O}}{\sigma_{L O}}$
Dotted: NLO

- MC@NLO gets right normalisation
- correct behaviour at low p_{t} (\sim rescaled Herwig)
- correct behaviour at high p_{t} (\sim NLO)

Summary of merging/matching

- You can merge many different tree-levels $(Z+1, Z+2, Z+3, \ldots)$ with parton showering together into a consistent sample.

Shapes should be OK, normalisation is rather uncertain
Procedures are flexible and general - but not necessarily the final word

- You can merge NLO accuracy with parton showers for simple processes (at most one light jet - single top case)

Two main methods: MC@NLO / POWHEG
It is hard theory work - must be done on a case by case basis

- Incorporation of different multiplicities ($Z+1, Z+2, Z+3, \ldots$) consistently at NLO for each multiplicity, together with parton showering, is a current research problem.

We've completed our tour of predictive methods in collider QCD (LO, NLO, NNLO; parton showers; mergings and matchings)

The last topic of these lectures is jets
They've already arisen in various contexts; now look at them in detail

Jets are what we see.
Clearly(?) 2 jets here

Seeing v. defining jets

Jets are what we see.
Clearly(?) 2 jets here

Seeing v. defining jets

Jets are what we see.
Clearly(?) 2 jets here

How many jets do you see?

Seeing v. defining jets

Jets are what we see.
Clearly(?) 2 jets here

How many jets do you see?

Jets are what we see.
Clearly(?) 2 jets here

How many jets do you see?
Do you really want to ask yourself this question for 10^{9} events?

Seeing v. defining jets

Jets are what we see.
Clearly(?) 2 jets here

How many jets do you see?
Do you really want to ask yourself this question for 10^{9} events?

Jet \mid Def n

NLO partons
Jet ${ }_{\downarrow} \operatorname{Def}^{n}$

parton shower

$$
\text { Jet } \downarrow \text { Def }^{n}
$$

hadron level Jet ${ }_{\Downarrow} \operatorname{Def}^{n}$

jet 1 jet 2
jet 1
jet 2
jet 1
jet 2

Projection to jets provides "universal" view of event

Jet (definitions) provide central link between expt., "theory" and theory

Jet (definitions) provide central link between expt., "theory" and theory And jets are an input to almost all analyses

The construction of a jet is unavoidably ambiguous. On at least two fronts:

1. which particles get put together into a common jet? Jet algorithm

+ parameters, e.g. jet angular radius R

2. how do you combine their momenta?

Recombination scheme
Most commonly used: direct 4 -vector sums (E-scheme)

Taken together, these different elements specify a choice of jet definition

The construction of a jet is unavoidably ambiguous. On at least two fronts:

1. which particles get put together into a common jet? Jet algorithm

+ parameters, e.g. jet angular radius R

2. how do you combine their momenta?

Recombination scheme
Most commonly used: direct 4 -vector sums (E-scheme)

Taken together, these different elements specify a choice of jet definition
cf. Les Houches '07 nomenclature accord

The construction of a jet is unavoidably ambiguous. On at least two fronts:

1. which particles get put together into a common jet?

Jet algorithm

+ parameters, e.g. jet angular radius R

2. how do you combine their momenta?

Recombination scheme
Most commonly used: direct 4 -vector sums (E-scheme)

Taken together, these different elements specify a choice of jet definition
cf. Les Houches '07 nomenclature accord

> Ambiguity complicates life, but gives flexibility in one's view of events $$
\rightarrow \text { Jets non-trivial! }
$$

Sequential recombination (k_{t}, etc.)

- bottom-up
- successively undoes QCD branching

Cone

- top-down
- centred around idea of an 'invariant', directed energy flow

Majority of QCD branching is soft \& collinear, with following divergences:

$$
\left[d k_{j}\right]\left|M_{g \rightarrow g_{i} g_{j}}^{2}\left(k_{j}\right)\right| \simeq \frac{2 \alpha_{\mathrm{s}} C_{A}}{\pi} \frac{d E_{j}}{\min \left(E_{i}, E_{j}\right)} \frac{d \theta_{i j}}{\theta_{i j}}, \quad\left(E_{j} \ll E_{i}, \quad \theta_{i j} \ll 1\right)
$$

To invert branching process, take pair with strongest divergence between them - they're the most likely to belong together.

This is basis of $\mathbf{k}_{\mathbf{t}} /$ Durham algorithm $\left(e^{+} e^{-}\right)$:

1. Calculate (or update) distances between all particles i and j :

$$
y_{i j}=\frac{2 \min \left(E_{i}^{2}, E_{j}^{2}\right)\left(1-\cos \theta_{i j}\right)}{Q^{2}}
$$

2. Find smallest of $y_{i j}$

- If $>y_{\text {cut }}$, stop clustering
- Otherwise recombine i and j, and repeat from step 1

inclusive k_{t} algorithm

- Introduce angular radius R (NB: dimensionless!)

$$
d_{i j}=\min \left(p_{t i}^{2}, p_{t j}^{2}\right) \frac{\Delta R_{i j}^{2}}{R^{2}}, \quad d_{i B}=p_{t i}^{2} \quad\left[\Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}\right)^{2}\right]
$$

- 1. Find smallest of $d_{i j}, d_{i B}$

2. if $i j$, recombine them
3. if $i B$, call i a jet and remove from list of particles
4. repeat from step 1 until no particles left.
S.D. Ellis \& Soper, '93; the simplest to use

Jets all separated by at least R on y, ϕ cylinder.
NB: number of jets not IR safe (soft jets near beam); number of jets above p_{t} cut is IR safe.

Sequential recombination

k_{t} alg.: Find smallest of

$$
d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}, \quad d_{i B}=k_{t i}^{2}
$$

If $d_{i j}$ recombine; if $d_{i B}, i$ is a jet Example clustering with k_{t} algorithm, $R=0.7$
ϕ assumed 0 for all towers

Sequential recombination

k_{t} alg.: Find smallest of

$$
d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}, \quad d_{i B}=k_{t i}^{2}
$$

If $d_{i j}$ recombine; if $d_{i B}, i$ is a jet
Example clustering with k_{t} algorithm, $R=0.7$
ϕ assumed 0 for all towers

Sequential recombination

k_{t} alg.: Find smallest of

$$
d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}, \quad d_{i B}=k_{t i}^{2}
$$

If $d_{i j}$ recombine; if $d_{i B}, i$ is a jet
Example clustering with k_{t} algorithm, $R=0.7$
ϕ assumed 0 for all towers

Sequential recombination

k_{t} alg.: Find smallest of

$$
d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}, \quad d_{i B}=k_{t i}^{2}
$$

If $d_{i j}$ recombine; if $d_{i B}, i$ is a jet
Example clustering with k_{t} algorithm, $R=0.7$
ϕ assumed 0 for all towers

Sequential recombination

k_{t} alg.: Find smallest of

$$
d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}, \quad d_{i B}=k_{t i}^{2}
$$

If $d_{i j}$ recombine; if $d_{i B}, i$ is a jet
Example clustering with k_{t} algorithm, $R=0.7$
ϕ assumed 0 for all towers

Sequential recombination

k_{t} alg.: Find smallest of

$$
d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}, \quad d_{i B}=k_{t i}^{2}
$$

If $d_{i j}$ recombine; if $d_{i B}, i$ is a jet
Example clustering with k_{t} algorithm, $R=0.7$
ϕ assumed 0 for all towers

Sequential recombination

k_{t} alg.: Find smallest of

$$
d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}, \quad d_{i B}=k_{t i}^{2}
$$

If $d_{i j}$ recombine; if $d_{i B}, i$ is a jet
Example clustering with k_{t} algorithm, $R=0.7$
ϕ assumed 0 for all towers

Sequential recombination

k_{t} alg.: Find smallest of

$$
d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}, \quad d_{i B}=k_{t i}^{2}
$$

If $d_{i j}$ recombine; if $d_{i B}, i$ is a jet
Example clustering with k_{t} algorithm, $R=0.7$
ϕ assumed 0 for all towers

Sequential recombination

k_{t} alg.: Find smallest of

$$
d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}, \quad d_{i B}=k_{t i}^{2}
$$

If $d_{i j}$ recombine; if $d_{i B}, i$ is a jet
Example clustering with k_{t} algorithm, $R=0.7$
ϕ assumed 0 for all towers

Sequential recombination

k_{t} alg.: Find smallest of

$$
d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}, \quad d_{i B}=k_{t i}^{2}
$$

If $d_{i j}$ recombine; if $d_{i B}, i$ is a jet
Example clustering with k_{t} algorithm, $R=0.7$
ϕ assumed 0 for all towers

Sequential recombination

k_{t} alg.: Find smallest of

$$
d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}, \quad d_{i B}=k_{t i}^{2}
$$

If $d_{i j}$ recombine; if $d_{i B}, i$ is a jet
Example clustering with k_{t} algorithm, $R=0.7$
ϕ assumed 0 for all towers

Sequential recombination

k_{t} alg.: Find smallest of

$$
d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}, \quad d_{i B}=k_{t i}^{2}
$$

If $d_{i j}$ recombine; if $d_{i B}, i$ is a jet
Example clustering with k_{t} algorithm, $R=0.7$
ϕ assumed 0 for all towers

Sequential recombination

k_{t} alg.: Find smallest of

$$
d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}, \quad d_{i B}=k_{t i}^{2}
$$

If $d_{i j}$ recombine; if $d_{i B}, i$ is a jet
Example clustering with k_{t} algorithm, $R=0.7$
ϕ assumed 0 for all towers

Sequential recombination

k_{t} alg.: Find smallest of

$$
d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}, \quad d_{i B}=k_{t i}^{2}
$$

If $d_{i j}$ recombine; if $d_{i B}, i$ is a jet
Example clustering with k_{t} algorithm, $R=0.7$
ϕ assumed 0 for all towers

Sequential recombination

k_{t} alg.: Find smallest of

$$
d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}, \quad d_{i B}=k_{t i}^{2}
$$

If $d_{i j}$ recombine; if $d_{i B}, i$ is a jet Example clustering with k_{t} algorithm, $R=0.7$
ϕ assumed 0 for all towers

Sequential recombination

k_{t} alg.: Find smallest of

$$
d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}, \quad d_{i B}=k_{t i}^{2}
$$

If $d_{i j}$ recombine; if $d_{i B}, i$ is a jet
Example clustering with k_{t} algorithm, $R=0.7$
ϕ assumed 0 for all towers

Sequential recombination

k_{t} alg.: Find smallest of

$$
d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}, \quad d_{i B}=k_{t i}^{2}
$$

If $d_{i j}$ recombine; if $d_{i B}, i$ is a jet Example clustering with k_{t} algorithm, $R=0.7$
ϕ assumed 0 for all towers

Sequential recombination

k_{t} alg.: Find smallest of

$$
d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}, \quad d_{i B}=k_{t i}^{2}
$$

If $d_{i j}$ recombine; if $d_{i B}, i$ is a jet Example clustering with k_{t} algorithm, $R=0.7$
ϕ assumed 0 for all towers

Sequential recombination

k_{t} alg.: Find smallest of

$$
d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}, \quad d_{i B}=k_{t i}^{2}
$$

If $d_{i j}$ recombine; if $d_{i B}, i$ is a jet Example clustering with k_{t} algorithm, $R=0.7$
ϕ assumed 0 for all towers

Sequential recombination

k_{t} alg.: Find smallest of

$$
d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}, \quad d_{i B}=k_{t i}^{2}
$$

If $d_{i j}$ recombine; if $d_{i B}, i$ is a jet Example clustering with k_{t} algorithm, $R=0.7$
ϕ assumed 0 for all towers

Sequential recombination

k_{t} alg.: Find smallest of

$$
d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}, \quad d_{i B}=k_{t i}^{2}
$$

If $d_{i j}$ recombine; if $d_{i B}, i$ is a jet Example clustering with k_{t} algorithm, $R=0.7$
ϕ assumed 0 for all towers

Sequential recombination

k_{t} alg.: Find smallest of

$$
d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}, \quad d_{i B}=k_{t i}^{2}
$$

If $d_{i j}$ recombine; if $d_{i B}, i$ is a jet Example clustering with k_{t} algorithm, $R=0.7$
ϕ assumed 0 for all towers

Sequential recombination

k_{t} alg.: Find smallest of

$$
d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}, \quad d_{i B}=k_{t i}^{2}
$$

If $d_{i j}$ recombine; if $d_{i B}, i$ is a jet Example clustering with k_{t} algorithm, $R=0.7$
ϕ assumed 0 for all towers

Sequential recombination

k_{t} alg.: Find smallest of

$$
d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}, \quad d_{i B}=k_{t i}^{2}
$$

If $d_{i j}$ recombine; if $d_{i B}, i$ is a jet Example clustering with k_{t} algorithm, $R=0.7$
ϕ assumed 0 for all towers

Sequential recombination

k_{t} alg.: Find smallest of

$$
d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}, \quad d_{i B}=k_{t i}^{2}
$$

If $d_{i j}$ recombine; if $d_{i B}, i$ is a jet Example clustering with k_{t} algorithm, $R=0.7$
ϕ assumed 0 for all towers

Sequential recombination

k_{t} alg.: Find smallest of

$$
d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} / R^{2}, \quad d_{i B}=k_{t i}^{2}
$$

If $d_{i j}$ recombine; if $d_{i B}, i$ is a jet Example clustering with k_{t} algorithm, $R=0.7$
ϕ assumed 0 for all towers

Cone algorithms today

Unifying idea: momentum flow within a cone only marginally modified by QCD branching
 But cones come in many variants

Processing	Progressive Removal	Split-Merge	Split-Drop
Seeded, Fixed (FC)	GetJet CellJet		
Seeded, Iterative (IC)	CMS Cone	JetClu (CDF) ATLAS cone	
Seeded, It. + Midpoints $\left(\mathrm{IC}_{m p}\right)$		CDF MidPoint D0 Run II cone	PxCone
Seedless (SC)		SISCone	

Cone algorithms today

Unifying idea: momentum flow within a cone only marginally modified by QCD branching
But cones come in many variants

Processing	Progressive Removal	Split-Merge	Split-Drop
Seeded, Fixed (FC)	GetJet CellJet		
Seeded, Iterative (IC)	CMS Cone	JetClu (CDF) ATLAS cone	
Seeded, It. + Midpoints $\left(\mathrm{IC}_{m p}\right)$		CDF MidPoint D0 Run II cone	PxCone
Seedless (SC)		SISCone	

\dagger JetClu also has "ratcheting"

Cone algorithms today

Unifying idea: momentum flow within a cone only marginally modified by QCD branching
But cones come in many variants

Processing	Progressive Removal	Split-Merge	Split-Drop
Seeded, Fixed (FC)	GetJlet Cell Jet		
Seeded, Iterative (IC)	CMS Cone	JetClu (CDF)	
ATLAS cone			

\dagger JetClu also has "ratcheting"

One of the simpler cones

e.g. CMS iterative cone

One of the simpler cones
e.g. CMS iterative cone

- Take hardest particle as seed for cone axis
- Draw cone around seed

e.g. CMS iterative cone
- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable

One of the simpler cones
e.g. CMS iterative cone

- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable

One of the simpler cones
e.g. CMS iterative cone

- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable

One of the simpler cones
e.g. CMS iterative cone

- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable

One of the simpler cones
e.g. CMS iterative cone

- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable

One of the simpler cones
e.g. CMS iterative cone

- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable

One of the simpler cones
e.g. CMS iterative cone

- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable

One of the simpler cones
e.g. CMS iterative cone

- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable
- Convert contents into a "jet" and remove from event

One of the simpler cones
e.g. CMS iterative cone

- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable
- Convert contents into a "jet" and remove from event

One of the simpler cones
e.g. CMS iterative cone

- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable
- Convert contents into a "jet" and remove from event

One of the simpler cones
e.g. CMS iterative cone

- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable
- Convert contents into a "jet" and remove from event

One of the simpler cones
e.g. CMS iterative cone

- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable
- Convert contents into a "jet" and remove from event

One of the simpler cones
e.g. CMS iterative cone

- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable
- Convert contents into a "jet" and remove from event

One of the simpler cones
e.g. CMS iterative cone

- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable
- Convert contents into a "jet" and remove from event

One of the simpler cones
e.g. CMS iterative cone

- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable
- Convert contents into a "jet" and remove from event

One of the simpler cones
e.g. CMS iterative cone

- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable
- Convert contents into a "jet" and remove from event

One of the simpler cones
e.g. CMS iterative cone

- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable
- Convert contents into a "jet" and remove from event

One of the simpler cones
e.g. CMS iterative cone

- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable
- Convert contents into a "jet" and remove from event

One of the simpler cones
e.g. CMS iterative cone

- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable
- Convert contents into a "jet" and remove from event

One of the simpler cones
e.g. CMS iterative cone

- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable
- Convert contents into a "jet" and remove from event

One of the simpler cones
e.g. CMS iterative cone

- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable
- Convert contents into a "jet" and remove from event

One of the simpler cones
e.g. CMS iterative cone

- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable
- Convert contents into a "jet" and remove from event

One of the simpler cones
e.g. CMS iterative cone

- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable
- Convert contents into a "jet" and remove from event

One of the simpler cones
e.g. CMS iterative cone

- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable
- Convert contents into a "jet" and remove from event

One of the simpler cones
e.g. CMS iterative cone

- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable
- Convert contents into a "jet" and remove from event

$\underline{\text { One of the simpler cones }}$
e.g. CMS iterative cone
- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable
- Convert contents into a "jet" and remove from event

Notes

- "Hardest particle" is collinear unsafe

$\underline{\text { One of the simpler cones }}$
e.g. CMS iterative cone
- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable
- Convert contents into a "jet" and remove from event

Notes

- "Hardest particle" is collinear unsafe more right away...

Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \Longrightarrow perturbative calculations give ∞

Collinear Safe

Infinities cancel

Collinear Unsafe

Infinities do not cancel

Collinear Unsafe

Collinear Safe

Infinities cancel
$\alpha_{s}^{n} \times(-\infty) \quad \alpha_{s}^{n} \times(+\infty)$

Infinities do not cancel

Invalidates perturbation theory

Real life does not have infinities, but pert. infinity leaves a real-life trace

$$
\alpha_{\mathrm{s}}^{2}+\alpha_{\mathrm{s}}^{3}+\alpha_{\mathrm{s}}^{4} \times \infty \rightarrow \alpha_{\mathrm{s}}^{2}+\alpha_{\mathrm{s}}^{3}+\alpha_{\mathrm{s}}^{4} \times \ln p_{t} / \Lambda \rightarrow \alpha_{\mathrm{s}}^{2}+\underbrace{\alpha_{\mathrm{s}}^{3}+\alpha_{\mathrm{s}}^{3}}_{\text {BOTH WASTED }}
$$

Among consequences of IR unsafety:

Real life does not have infinities, but pert. infinity leaves a real-life trace

$$
\alpha_{\mathrm{s}}^{2}+\alpha_{\mathrm{s}}^{3}+\alpha_{\mathrm{s}}^{4} \times \infty \rightarrow \alpha_{\mathrm{s}}^{2}+\alpha_{\mathrm{s}}^{3}+\alpha_{\mathrm{s}}^{4} \times \ln p_{t} / \Lambda \rightarrow \alpha_{\mathrm{s}}^{2}+\underbrace{\alpha_{\mathrm{s}}^{3}+\alpha_{\mathrm{s}}^{3}}_{\text {BOTH WASTED }}
$$

Among consequences of IR unsafety:

	Last meaningful order			Known at
	JetClu, ATLAS cone [IC-SM]	MidPoint [${ }^{\text {c }} \mathrm{m}_{m}$-SM]	CMS it. cone [IC-PR]	
Inclusive jets	LO	NLO	NLO	NLO (\rightarrow NNLO)
$W / Z+1$ jet	LO	NLO	NLO	NLO
3 jets	none	LO	LO	NLO [nlojet++]
$W / Z+2$ jets	none	LO	LO	NLO [MCFM]
$m_{\text {jet }}$ in $2 j+X$	none	none	none	LO

Multi-jet contexts much more sensitive: ubiquitous at LHC

Real life does not have infinities, but pert. infinity leaves a real-life trace

$$
\alpha_{\mathrm{s}}^{3}+\alpha_{\mathrm{s}}^{4} \times \infty \rightarrow \alpha_{\mathrm{s}}^{2}+\alpha_{\mathrm{s}}^{3}+\alpha_{\mathrm{s}}^{4} \times \ln p_{t} / \Lambda \rightarrow \alpha_{\mathrm{s}}^{2}+\underbrace{\alpha_{\mathrm{s}}^{3}+\alpha_{\mathrm{s}}^{3}}_{\text {BOTH WASTED }}
$$

Among consequences of IR unsafety:

	Last meaningful order			Known at
	JetClu, ATLAS cone [IC-SM]	MidPoint [ic $\mathrm{C}_{\text {me }}$-SM]	CMS it. cone [IC-PR]	
Inclusive jets	LO	NLO	NLO	NLO (\rightarrow NNLO)
$W / Z+1$ jet	LO	NLO	NLO	NLO
3 jets	none	LO	LO	NLO [nlojet++]
$W / Z+2 \text { jets }$	none	LO	LO	NLO [MCFM]
	NB: $50,000,000 \$ / £ /$ CHF/€ investment in NLO			

Multi-jet contexts much more sensitive: ubiquitous at LHC
And LHC will rely on QCD for background double-checks extraction of cross sections, extraction of parameters
-Cones

Essential characteristic of cones?

-Cones

(Some) cone algorithms give circular jets in $y-\phi$ plane

Much appreciated by experiments
e.g. for acceptance

QCD lecture 4 (p. 31)
 Jets
 Essential characteristic of cones?
 -Cones

Essential characteristic of cones?

(Some) cone algorithms give circular jets in $y-\phi$ plane

Much appreciated by experiments e.g. for acceptance
k_{t} jets are irregular
Because soft junk clusters together first:

$$
d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2}
$$

Regularly held against k_{t}

Fix stable-cone finding \downarrow
 SISCone

GPS \& Soyez '07
Same family as Tev. Run II alg

Invent "cone-like" alg.

anti-kt
Cacciari, GPS \& Soyez '08

Soft stuff clusters with nearest neighbour

$$
k_{t}: d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} \longrightarrow \text { anti- } k_{\mathbf{t}}: d_{i j}=\frac{\Delta R_{i j}^{2}}{\max \left(k_{t i}^{2}, k_{t j}^{2}\right)}
$$

Hard stuff clusters with nearest neighbour
Privilege collinear divergence over soft divergence Cacciari, GPS \& Soyez '08

Soft stuff clusters with nearest neighbour

$$
k_{t}: d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} \longrightarrow \operatorname{anti}-k_{\mathrm{t}}: d_{i j}=\frac{\Delta R_{i j}^{2}}{\max \left(k_{t i}^{2}, k_{t j}^{2}\right)}
$$

Hard stuff clusters with nearest neighbour divergence over soft divergence Cacciari, GPS \& Soyez '08

Soft stuff clusters with nearest neighbour

$$
k_{t}: d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} \longrightarrow \text { anti- } \mathbf{k}_{\mathrm{t}}: d_{i j}=\frac{\Delta R_{i j}^{2}}{\max \left(k_{t i}^{2}, k_{t j}^{2}\right)}
$$

Hard stuff clusters with nearest neighbour divergence over soft divergence

Soft stuff clusters with nearest neighbour

$$
k_{t}: d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} \longrightarrow \text { anti- } \mathbf{k}_{\mathrm{t}}: d_{i j}=\frac{\Delta R_{i j}^{2}}{\max \left(k_{t i}^{2}, k_{t j}^{2}\right)}
$$

Hard stuff clusters with nearest neighbour divergence over soft divergence

Soft stuff clusters with nearest neighbour

$$
k_{t}: d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} \longrightarrow \text { anti- } \mathbf{k}_{\mathrm{t}}: d_{i j}=\frac{\Delta R_{i j}^{2}}{\max \left(k_{t i}^{2}, k_{t j}^{2}\right)}
$$

Hard stuff clusters with nearest neighbour divergence over soft divergence

Soft stuff clusters with nearest neighbour

$$
k_{t}: d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} \longrightarrow \text { anti- } \mathbf{k}_{\mathrm{t}}: d_{i j}=\frac{\Delta R_{i j}^{2}}{\max \left(k_{t i}^{2}, k_{t j}^{2}\right)}
$$

Hard stuff clusters with nearest neighbour divergence over soft divergence

Soft stuff clusters with nearest neighbour

$$
k_{t}: d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} \longrightarrow \operatorname{anti}-k_{\mathrm{t}}: d_{i j}=\frac{\Delta R_{i j}^{2}}{\max \left(k_{t i}^{2}, k_{t j}^{2}\right)}
$$

Hard stuff clusters with nearest neighbour divergence over soft divergence

Soft stuff clusters with nearest neighbour

$$
k_{t}: d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} \longrightarrow \text { anti- } \mathbf{k}_{\mathrm{t}}: d_{i j}=\frac{\Delta R_{i j}^{2}}{\max \left(k_{t i}^{2}, k_{t j}^{2}\right)}
$$

Hard stuff clusters with nearest neighbour divergence over soft divergence

Soft stuff clusters with nearest neighbour

$$
k_{t}: d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} \longrightarrow \text { anti- } \mathbf{k}_{\mathrm{t}}: d_{i j}=\frac{\Delta R_{i j}^{2}}{\max \left(k_{t i}^{2}, k_{t j}^{2}\right)}
$$

Hard stuff clusters with nearest neighbour divergence over soft divergence

Soft stuff clusters with nearest neighbour

$$
k_{t}: d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} \longrightarrow \operatorname{anti}-k_{\mathrm{t}}: d_{i j}=\frac{\Delta R_{i j}^{2}}{\max \left(k_{t i}^{2}, k_{t j}^{2}\right)}
$$

Hard stuff clusters with nearest neighbour divergence over soft divergence

Soft stuff clusters with nearest neighbour

$$
k_{t}: d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} \longrightarrow \operatorname{anti}-k_{t}: d_{i j}=\frac{\Delta R_{i j}^{2}}{\max \left(k_{t i}^{2}, k_{t j}^{2}\right)}
$$

Hard stuff clusters with nearest neighbour divergence over soft divergence

Soft stuff clusters with nearest neighbour

$$
k_{t}: d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} \longrightarrow \text { anti- } \mathbf{k}_{\mathrm{t}}: d_{i j}=\frac{\Delta R_{i j}^{2}}{\max \left(k_{t i}^{2}, k_{t j}^{2}\right)}
$$

Hard stuff clusters with nearest neighbour divergence over soft divergence

Soft stuff clusters with nearest neighbour

$$
k_{t}: d_{i j}=\min \left(k_{t i}^{2}, k_{t j}^{2}\right) \Delta R_{i j}^{2} \longrightarrow \operatorname{anti}-k_{\mathrm{t}}: d_{i j}=\frac{\Delta R_{i j}^{2}}{\max \left(k_{t i}^{2}, k_{t j}^{2}\right)}
$$

Hard stuff clusters with nearest neighbour divergence over soft divergence Cacciari, GPS \& Soyez '08

anti- k_{t} gives cone-like jets without using stable cones

There is plenty more choice for (IR safe) jet finding (4 good algs are Cam/Aachen, anti- k_{t}, SISCone and k_{t})

Do all you can to avoid IR unsafe jet algorithms (ATLAS iterative cone, CMS iterative cone, etc.).

Think about the choice of parameters in your jet definition (what radius for what problem?)

Searching for high- p_{t} (boosted) heavy particles, such as a Higgs boson.

Because LHC will have $\sqrt{s} \gg m_{H}$, highly boosted Higgses, $p_{t H} \gg m_{H}$, are not so rare.

The boost factor collimates the Higgs decay into a single jet. Can we still identify it?

$p p \rightarrow Z H \rightarrow \nu \bar{\nu} b \bar{b}, @ 14 \mathrm{TeV}, m_{H}=115 \mathrm{GeV}$

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Cluster event, $C / A, R=1.2$

$p p \rightarrow Z H \rightarrow \nu \bar{\nu} b \bar{b}, @ 14 \mathrm{TeV}, m_{H}=115 \mathrm{GeV}$

Herwig $6.510+$ Jimmy $4.31+$ FastJet 2.3

Fill it in, \rightarrow show jets more clearly

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Consider hardest jet, $m=150 \mathrm{GeV}$

Zbb BACKGROUND
$200<\mathrm{p}_{\mathrm{t}}<250 \mathrm{GeV}$

arbitrary norm.

$p p \rightarrow Z H \rightarrow \nu \bar{\nu} b \bar{b}, @ 14 \mathrm{TeV}, m_{H}=115 \mathrm{GeV}$

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

split: $m=150 \mathrm{GeV}, \frac{\max \left(m_{1}, m 2\right)}{m}=0.92 \rightarrow$ repeat

Zbb BACKGROUND
$200<\mathrm{p}_{\mathrm{t}}<250 \mathrm{GeV}$

arbitrary norm.

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Zbb BACKGROUND
$200<\mathrm{p}_{\mathrm{tz}}<250 \mathrm{GeV}$

arbitrary norm.

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Zbb BACKGROUND
$200<p_{t z}<250 \mathrm{GeV}$

arbitrary norm.

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

$$
R_{\text {filt }}=0.3
$$

Zbb BACKGROUND
$200<p_{t z}<250 \mathrm{GeV}$

arbitrary norm.

Herwig $6.510+$ Jimmy $4.31+$ FastJet 2.3

$R_{\text {filt }}=0.3:$ take 3 hardest, $\mathrm{m}=117 \mathrm{GeV}$

Zbb BACKGROUND
$200<p_{t z}<250 \mathrm{GeV}$

arbitrary norm.

To conclude

mass peak

mass

New resonance (e.g. Z^{\prime}) where you see all decay products and reconstruct an invariant mass

QCD may:

- swamp signal
- smear signal
leptonic case easy; hadronic case harder

What kinds of searches?

mass edge
Signal

New resonance (e.g. R-parity conserving SUSY), where undetected new stable particle escapes detection.

Reconstruct only part of an invariant mass
\rightarrow kinematic edge.
QCD may:

- swamp signal
- smear signal
mass

What kinds of searches?

high-mass excess
Signal

QCD
prediction

Unreconstructed SUSY cascade. Study effective mass (sum of all transverse momenta).

Broad excess at high mass scales.
Knowledge of backgrounds is crucial is declaring discovery.

QCD is one way of getting handle on background.
mass

Classic references

QCD and collider physics
Ellis, Stirling \& Webber,
Cambridge University Press 1996
The Handbook of Perturbative QCD, the CTEQ Collaboration
http://www.phys.psu.edu/~cteq/

Advanced topics
Monte Carlos, Matching, Heavy-quarks, Jets, PDFs, etc. E.g.: transparencies from CTEQ-MCNet 2008 QCD school http://tr.im/oUWG

