QCD at hadron colliders Lecture 1: Introduction

Gavin Salam

CERN, Princeton & LPTHE/CNRS (Paris)

Maria Laach Herbtschule für Hochenenergiephysik September 2010, Germany

QUANTUM CHROMODYNAMICS

The theory of quarks, gluons and their interactions

It's central to all modern colliders. (And QCD is what we're made of)

- Quarks (and anti-quarks): they come in 3 colours
- Gluons: a bit like photons in QED
 But there are 8 of them, and they're colour charged
- ► And a coupling, \(\alpha_s\), that's not so small and runs fast At LHC, in the range 0.08(@ 5 TeV) to \(\mathcal{O}\) (1)(@ 0.5 GeV)

I'll try to give you a feel for:

How QCD works

How theorists handle QCD at high-energy colliders

How experimenters can work with QCD at high-energy colliders

Quarks — 3 colours: $\psi_a = \begin{bmatrix} \psi_2 \end{bmatrix}$

$$\left(egin{array}{c} \psi_1 \ \psi_2 \ \psi_3 \end{array}
ight)$$

Quark part of Lagrangian:

Let's write down QCD in full detail

(There's a lot to absorb here — but it should become more palatable as we return to individual elements later)

A representation is: $t^{\mathcal{A}}=rac{1}{2}\lambda^{\mathcal{A}}$,

$$\begin{split} \lambda^{1} &= \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda^{2} &= \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda^{3} &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda^{4} &= \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \\ \lambda^{5} &= \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \ \lambda^{6} &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \ \lambda^{7} &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \ \lambda^{8} &= \begin{pmatrix} \frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{3}} & 0 \\ 0 & \frac{1}{\sqrt{3}} & 0 \\ 0 & 0 & -\frac{2}{\sqrt{3}} \end{pmatrix}, \end{split}$$

 ${\sf Lagrangian} + {\sf colour}$

Quarks — 3 colours: $\psi_a = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix}$

Quark part of Lagrangian:

$$\mathcal{L}_{q} = \bar{\psi}_{a}(i\gamma^{\mu}\partial_{\mu}\delta_{ab} - g_{s}\gamma^{\mu}t^{C}_{ab}\mathcal{A}^{C}_{\mu} - m)\psi_{b}$$

SU(3) local gauge symmetry $\leftrightarrow 8 \ (= 3^2 - 1)$ generators $t^1_{ab} \dots t^8_{ab}$ corresponding to 8 gluons $\mathcal{A}^1_{\mu} \dots \mathcal{A}^8_{\mu}$.

A representation is: $t^A = \frac{1}{2}\lambda^A$,

Lagrangian + colour

Quarks — 3 colours: $\psi_a = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix}$

Quark part of Lagrangian:

$$\mathcal{L}_{q} = \bar{\psi}_{a}(i\gamma^{\mu}\partial_{\mu}\delta_{ab} - g_{s}\gamma^{\mu}t^{C}_{ab}\mathcal{A}^{C}_{\mu} - m)\psi_{b}$$

SU(3) local gauge symmetry $\leftrightarrow 8 \ (= 3^2 - 1)$ generators $t^1_{ab} \dots t^8_{ab}$ corresponding to 8 gluons $\mathcal{A}^1_{\mu} \dots \mathcal{A}^8_{\mu}$.

A representation is: $t^A = \frac{1}{2}\lambda^A$,

$$\lambda^{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda^{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda^{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda^{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
$$\lambda^{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \ \lambda^{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \ \lambda^{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \ \lambda^{8} = \begin{pmatrix} \frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{3}} & 0 \\ 0 & 0 & \frac{-2}{\sqrt{3}} \end{pmatrix},$$

 $\text{Field tensor:} \ F^{A}_{\mu\nu} = \partial_{\mu}\mathcal{A}^{A}_{\nu} - \partial_{\nu}\mathcal{A}^{A}_{\nu} - g_{s} f_{ABC}\mathcal{A}^{B}_{\mu}\mathcal{A}^{C}_{\nu} \qquad [t^{A}, t^{B}] = \textit{i}f_{ABC}t^{C}$

 f_{ABC} are structure constants of SU(3) (antisymmetric in all indices — SU(2) equivalent was ϵ^{ABC}). Needed for gauge invariance of gluon part of Lagrangian:

$$\mathcal{L}_{G}=-rac{1}{4}F_{A}^{\mu
u}F^{A\,\mu
u}$$

Field tensor: $F^{A}_{\mu\nu} = \partial_{\mu}A^{A}_{\nu} - \partial_{\nu}A^{A}_{\nu} - g_{s}f_{ABC}A^{B}_{\mu}A^{C}_{\nu}$ $[t^{A}, t^{B}] = if_{ABC}t^{C}$

 f_{ABC} are structure constants of SU(3) (antisymmetric in all indices — SU(2) equivalent was ϵ^{ABC}). Needed for gauge invariance of gluon part of Lagrangian:

 $\mathcal{L}_{G} = -\frac{1}{4} F_{A}^{\mu\nu} F^{A\,\mu\nu}$

Two main approaches to solving it

- Numerical solution with discretized space time (lattice)
- Perturbation theory: assumption that coupling is small

Also: effective theories

- Put all the quark and gluon fields of QCD on a 4D-lattice NB: with imaginary time
- Figure out which field configurations are most likely (by Monte Carlo sampling).
- You've solved QCD

image credits: fdecomite [Flickr]

Lattice hadron masses

Lattice QCD is great at calculation static properties of a single hadron.

E.g. the hadron mass spectrum

Durr et al '08

How big a lattice do you need for an LHC collision @ 14 TeV?

Lattice spacing:
$$rac{1}{14 \; {
m TeV}} \sim 10^{-5} \, {
m fm}$$

Lattice extent:

- ► non-perturbative dynamics for quark/hadron near rest takes place on timescale $t \sim \frac{1}{0.5 \text{ GeV}} \sim 0.4 \text{ fm}/c$
- \blacktriangleright But quarks at LHC have effective boost factor $\sim 10^4$
- \blacktriangleright So lattice extent should be \sim 4000 fm

 Relies on idea of order-by-order expansion small coupling, $\alpha_{\sf s} \ll 1$

Interaction vertices of Feynman rules:

These expressions are fairly complex, so you really don't want to have to deal with too many orders of them! i.e. α_s had better be small...

A gluon emission **repaints** the quark colour. A gluon itself carries colour and anti-colour.

What does "ggg" Feynman rule mean?

A gluon emission also repaints the gluon colours. Because a gluon carries colour + anti-colour, it emits \sim twice as strongly as a quark (just has colour)

QCD lecture 1 (p. 14) Basic methods

Quick guide to colour algebra

$$Tr(t^{A}t^{B}) = T_{R}\delta^{AB}, \quad T_{R} = \frac{1}{2}$$

$$\sum_{A} t^{A}_{ab}t^{A}_{bc} = C_{F}\delta_{ac}, \quad C_{F} = \frac{N^{2}_{c} - 1}{2N_{c}} = \frac{4}{3}$$

$$\sum_{C,D} f^{ACD}f^{BCD} = C_{A}\delta^{AB}, \quad C_{A} = N_{c} = 3$$

$$t^{A}_{ab}t^{A}_{cd} = \frac{1}{2}\delta_{bc}\delta_{ad} - \frac{1}{2N_{c}}\delta_{ab}\delta_{cd} \text{ (Fierz)}$$

$$\frac{b}{c} = \frac{1}{2}$$

$$\int \frac{-1}{2N_{c}} \frac{-1}{2N_{c}}\delta_{ab}\delta_{cd} \text{ (Fierz)}$$

Quick guide to colour algebra

$$Tr(t^{A}t^{B}) = T_{R}\delta^{AB}, \quad T_{R} = \frac{1}{2}$$

$$\sum_{A} t^{A}_{ab}t^{A}_{bc} = C_{F}\delta_{ac}, \quad C_{F} = \frac{N^{2}_{c} - 1}{2N_{c}} = \frac{4}{3}$$

$$\sum_{C,D} f^{ACD}f^{BCD} = C_{A}\delta^{AB}, \quad C_{A} = N_{c} = 3$$

$$t^{A}_{ab}t^{A}_{cd} = \frac{1}{2}\delta_{bc}\delta_{ad} - \frac{1}{2N_{c}}\delta_{ab}\delta_{cd} \text{ (Fierz)}$$

$$\frac{b}{c} = \frac{1}{2} \int_{C} \frac{-1}{2N_{c}} \frac{-1}{2N_{c}} \int_{C} \frac{-1}{2N_{c}} \frac{-1}{2N_{c}} \int_{C} \frac{-1}{2N_$$

QCD lecture 1 (p. 14) Basic methods

Quick guide to colour algebra

$$Tr(t^{A}t^{B}) = T_{R}\delta^{AB}, \quad T_{R} = \frac{1}{2}$$

$$\sum_{A} t^{A}_{ab}t^{A}_{bc} = C_{F}\delta_{ac}, \quad C_{F} = \frac{N^{2}_{c} - 1}{2N_{c}} = \frac{4}{3}$$

$$\sum_{C,D} f^{ACD}f^{BCD} = C_{A}\delta^{AB}, \quad C_{A} = N_{c} = 3$$

$$t^{A}_{ab}t^{A}_{cd} = \frac{1}{2}\delta_{bc}\delta_{ad} - \frac{1}{2N_{c}}\delta_{ab}\delta_{cd} \text{ (Fierz)}$$

$$\frac{b}{c} = \frac{1}{2} \sqrt{-\frac{1}{2N_{c}}}$$

QCD lecture 1 (p. 14) Basic methods

Quick guide to colour algebra

$$Tr(t^{A}t^{B}) = T_{R}\delta^{AB}, \quad T_{R} = \frac{1}{2}$$

$$\sum_{A} t^{A}_{ab}t^{A}_{bc} = C_{F}\delta_{ac}, \quad C_{F} = \frac{N^{2}_{c} - 1}{2N_{c}} = \frac{4}{3}$$

$$\sum_{C,D} f^{ACD}f^{BCD} = C_{A}\delta^{AB}, \quad C_{A} = N_{c} = 3$$

$$t^{A}_{ab}t^{A}_{cd} = \frac{1}{2}\delta_{bc}\delta_{ad} - \frac{1}{2N_{c}}\delta_{ab}\delta_{cd} \text{ (Fierz)}$$

$$\frac{b}{c} = \frac{1}{2} \sqrt{-\frac{1}{2N_{c}}}$$

QCD lecture 1 (p. 15) Basic methods

All couplings run (QED, QCD, EW), i.e. they depend on the momentum scale (Q^2) of your process.

The QCD coupling, $\alpha_s(Q^2)$, runs fast:

$$Q^2 \frac{\partial \alpha_s}{\partial Q^2} = \beta(\alpha_s), \qquad \beta(\alpha_s) = -\alpha_s^2(b_0 + b_1\alpha_s + b_2\alpha_s^2 + \ldots),$$

$$b_0 = \frac{11C_A - 2n_f}{12\pi}, \qquad b_1 = \frac{17C_A^2 - 5C_An_f - 3C_Fn_f}{24\pi^2} = \frac{153 - 19n_f}{24\pi^2}$$

Note sign: Asymptotic Freedom, due to gluon to self-interaction 2004 Novel prize: Gross, Politzer & Wilczek

 QCD lecture 1 (p. 15) Basic methods

All couplings run (QED, QCD, EW), i.e. they depend on the momentum scale (Q^2) of your process.

The QCD coupling, $\alpha_s(Q^2)$, runs fast:

$$Q^2 \frac{\partial \alpha_s}{\partial Q^2} = \beta(\alpha_s), \qquad \beta(\alpha_s) = -\alpha_s^2(b_0 + b_1\alpha_s + b_2\alpha_s^2 + \ldots),$$

$$b_0 = \frac{11C_A - 2n_f}{12\pi}, \qquad b_1 = \frac{17C_A^2 - 5C_An_f - 3C_Fn_f}{24\pi^2} = \frac{153 - 19n_f}{24\pi^2}$$

Note sign: Asymptotic Freedom, due to gluon to self-interaction 2004 Novel prize: Gross, Politzer & Wilczek

At high scales Q, coupling becomes small

⇒quarks and gluons are almost free, interactions are weak

At low scales, coupling becomes strong

⇒quarks and gluons interact strongly — confined into hadrons

Perturbation theory fails.

QCD lecture 1 (p. 16) Basic methods

Running coupling (cont.)

Solve
$$Q^2 \frac{\partial \alpha_s}{\partial Q^2} = -b_0 \alpha_s^2 \implies \alpha_s(Q^2) = \frac{\alpha_s(Q_0^2)}{1 + b_0 \alpha_s(Q_0^2) \ln \frac{Q^2}{Q_0^2}} = \frac{1}{b_0 \ln \frac{Q^2}{\Lambda^2}}$$

 $\Lambda \simeq 0.2$ GeV (aka Λ_{QCD}) is the fundamental scale of QCD, at which coupling blows up.

- A sets the scale for hadron masses (NB: A not unambiguously defined wrt higher orders)
- ► Perturbative calculations valid for scales Q ≫ Λ.

QCD lecture 1 (p. 16) Basic methods Perturbation theory

Running coupling (cont.)

Solve
$$Q^2 \frac{\partial \alpha_s}{\partial Q^2} = -b_0 \alpha_s^2 \Rightarrow \alpha_s(Q^2) = \frac{\alpha_s(Q_0^2)}{1 + b_0 \alpha_s(Q_0^2) \ln \frac{Q^2}{Q_0^2}} = \frac{1}{b_0 \ln \frac{Q^2}{\Lambda^2}}$$

 $\Lambda \simeq 0.2$ GeV (aka Λ_{QCD}) is the fundamental scale of QCD, at which coupling blows up.

- Λ sets the scale for hadron masses (NB: Λ not unambiguously defined wrt higher orders)
- ► Perturbative calculations valid for scales Q ≫ Λ.

QCD perturbation theory (PT) & LHC?

- ► The "new physics" at colliders is searched for at scales Q ~ p_t ~ 50 GeV - 5 TeV The coupling certainly is small there!
- ▶ But we're colliding protons, $m_p \simeq 0.94$ GeV The coupling is large!

When we look at QCD events (this one is interpreted as $e^+e^- \rightarrow Z \rightarrow q\bar{q}$), we see:

- hadrons (PT doesn't hold for them)
- lots of them so we can't say 1 quark/gluon ~ 1 hadron, and we limit ourselves to 1 or 2 orders of PT.

QCD perturbation theory (PT) & LHC?

- ► The "new physics" at colliders is searched for at scales Q ~ p_t ~ 50 GeV - 5 TeV The coupling certainly is small there!
- ▶ But we're colliding protons, $m_p \simeq 0.94$ GeV The coupling is large!

- When we look at QCD events (this one is interpreted as $e^+e^- \rightarrow Z \rightarrow q\bar{q}$), we see:
- hadrons (PT doesn't hold for them)
- lots of them so we can't say 1 quark/gluon
 ~ 1 hadron, and we limit ourselves to 1 or 2 orders of PT.

Neither lattice QCD nor perturbative QCD can offer a full solution to using QCD at colliders

What the community has settled on is perturbative QCD inputs + non-perturbative *modelling/factorisation*

These lectures:

- Examine how perturbation theory allows us to understand why QCD events look the way they do.
- Look at the methods available to carry out QCD predictions at hadron colliders
- Discuss how knowledge of QCD can help us search for new physics

QCD lecture 1 (p. 19) $L_{e^+e^-} \rightarrow q\bar{q}$ $L_{\text{Soft-collinear emission}}$

Soft gluon amplitude

Start with
$$\gamma^* \rightarrow q\bar{q}$$
:

 $\mathcal{M}_{q\bar{q}} = -\bar{u}(p_1)ie_q\gamma_\mu v(p_2)$

Emit a gluon:

$$\mathcal{M}_{q\bar{q}g} = \bar{u}(p_1) ig_s \not\in t^A \frac{i}{\not p_1' + \not k} ie_q \gamma_\mu v(p_2)$$
$$- \bar{u}(p_1) ie_q \gamma_\mu \frac{i}{\not p_2' + \not k} ig_s \not\in t^A v(p_2)$$

Make gluon $soft \equiv k \ll p_{1,2}$; ignore terms suppressed by powers of k:

$$\mathcal{M}_{q\bar{q}g}\simeq ar{u}(p_1)ie_q\gamma_\mu t^A v(p_2)\,g_s\left(rac{p_1.\epsilon}{p_1.k}-rac{p_2.\epsilon}{p_2.k}
ight)$$

QCD lecture 1 (p. 19) $L_{e^+e^-} \rightarrow q\bar{q}$ $L_{\text{Soft-collinear emission}}$

Soft gluon amplitude

Start with
$$\gamma^*
ightarrow q ar{q}$$
:

$$\mathcal{M}_{q\bar{q}} = -\bar{u}(p_1)ie_q\gamma_\mu v(p_2)$$

Emit a gluon:

$$\mathcal{M}_{q\bar{q}g} = \bar{u}(p_1)ig_s \not\in t^A \frac{i}{\not p_1' + \not k}ie_q \gamma_\mu v(p_2) \qquad \stackrel{-ie_{\gamma_\mu}}{\longrightarrow} \stackrel{\rho_1}{\longrightarrow} \stackrel{-ie_{\gamma_\mu}}{\longrightarrow} \stackrel{\rho_1}{\longrightarrow} \stackrel{-ie_{\gamma_\mu}}{\longrightarrow} \stackrel{\rho_1}{\longrightarrow} \stackrel{-ie_{\gamma_\mu}}{\longrightarrow} \stackrel{\rho_1}{\longrightarrow} \stackrel{ie_{\gamma_\mu}}{\longrightarrow} \stackrel{\rho_1}{\longrightarrow} \stackrel{ie_{\gamma_\mu}}{\longrightarrow} \stackrel{\rho_1}{\longrightarrow} \stackrel{ie_{\gamma_\mu}}{\longrightarrow} \stackrel{\rho_1}{\longrightarrow} \stackrel{\rho_2}{\longrightarrow} \stackrel{$$

Make gluon $soft \equiv k \ll p_{1,2}$; ignore terms suppressed by powers of k:

$$\mathcal{M}_{q\bar{q}g} \simeq \bar{u}(p_1)ie_q \gamma_\mu t^A v(p_2) g_s\left(rac{p_1.\epsilon}{p_1.k} - rac{p_2.\epsilon}{p_2.k}
ight)$$

QCD lecture 1 (p. 19) $\dot{L}e^+e^- \rightarrow q\bar{q}$ Soft-collinear emission

 $\bar{u}(p_1)ig_s \not\in t^A \frac{i}{\not p_1' + \not k}ie_q \gamma_\mu v(p_2) = -ig_s \bar{u}(p_1) \not\in \frac{\not p_1' + \not k}{(p_1 + k)^2}e_q \gamma_\mu t^A v(p_2)$ Use AB = 2A.B - BA: $= -ig_s \bar{u}(p_1)[2\epsilon.(p_1+k) - (p_1'+k)\epsilon'] \frac{1}{(p_1+k)^2} e_q \gamma_\mu t^A v(p_2)$ Use $\bar{u}(p_1)p_1 = 0$ and $k \ll p_1(p_1, \overline{k} \text{ massless})$ $\simeq -ig_s \overline{u}(p_1)[2\epsilon.p_1] rac{1}{(p_1+k)^2} e_q \gamma_\mu t^A v(p_2)$ $= -ig_s \frac{p_1 \cdot \epsilon}{p_1 \cdot k} \quad \underbrace{\bar{u}(p_1)e_q \gamma_{\mu} t^A v(p_2)}_{}$ pure QED spinor structure

QCD lecture 1 (p. 19) $L_{e^+e^-} \rightarrow q\bar{q}$ $L_{\text{Soft-collinear emission}}$

Soft gluon amplitude

Start with
$$\gamma^* \rightarrow q\bar{q}$$
:

$$\mathcal{M}_{q\bar{q}} = -\bar{u}(p_1)ie_q\gamma_\mu v(p_2)$$

Emit a gluon:

$$\mathcal{M}_{q\bar{q}g} = \bar{u}(p_1)ig_s \not\in t^A \frac{i}{\not p_1' + \not k}ie_q \gamma_\mu v(p_2) \qquad \stackrel{-ie_{\gamma_\mu}}{\longrightarrow} \stackrel{\rho_1}{\longrightarrow} \stackrel{\rho_2}{\longrightarrow} \stackrel{\rho_1}{\longrightarrow} \stackrel{\rho_1}{\longrightarrow} \stackrel{\rho_1}{\longrightarrow} \stackrel{\rho_1}{\longrightarrow} \stackrel{\rho_2}{\longrightarrow} \stackrel{\rho_2}{\longrightarrow}$$

Make gluon soft $\equiv k \ll p_{1,2}$; ignore terms suppressed by powers of k:

$$\mathcal{M}_{q\bar{q}g} \simeq \bar{u}(p_1)ie_q \gamma_{\mu} t^A v(p_2) g_s \left(\frac{p_1 \cdot \epsilon}{p_1 \cdot k} - \frac{p_2 \cdot \epsilon}{p_2 \cdot k}\right) \qquad \notp' v(p) = 0, \\ \notp' \not k + \not k \not p' = 2p \cdot k$$

Squared amplitude

$$|M_{q\bar{q}g}^{2}| \simeq \sum_{A,\text{pol}} \left| \bar{u}(p_{1})ie_{q}\gamma_{\mu}t^{A}v(p_{2}) g_{s}\left(\frac{p_{1}.\epsilon}{p_{1}.k} - \frac{p_{2}.\epsilon}{p_{2}.k}\right) \right|^{2}$$
$$= -|M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\left(\frac{p_{1}}{p_{1}.k} - \frac{p_{2}}{p_{2}.k}\right)^{2} = |M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\frac{2p_{1}.p_{2}}{(p_{1}.k)(p_{2}.k)}$$

Include phase space:

$$d\Phi_{q\bar{q}g}|M_{q\bar{q}g}^2|\simeq (d\Phi_{q\bar{q}}|M_{q\bar{q}}^2|) \frac{d^3\vec{k}}{2E(2\pi)^3} C_F g_s^2 \frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)}$$

Note property of factorisation into hard $q\bar{q}$ piece and soft-gluon emission piece, dS.

$$dS = EdE \, d\cos\theta \, \frac{d\phi}{2\pi} \cdot \frac{2\alpha_{\rm s}C_F}{\pi} \frac{2p_1.p_2}{(2p_1.k)(2p_2.k)}$$

$$\begin{array}{l} \theta \equiv \theta_{p_1 k} \\ \phi = \mathsf{azimuth} \end{array}$$

Squared amplitude

$$|M_{q\bar{q}g}^{2}| \simeq \sum_{A,\text{pol}} \left| \bar{u}(p_{1})ie_{q}\gamma_{\mu}t^{A}v(p_{2}) g_{s}\left(\frac{p_{1}.\epsilon}{p_{1}.k} - \frac{p_{2}.\epsilon}{p_{2}.k}\right) \right|^{2}$$
$$= -|M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\left(\frac{p_{1}}{p_{1}.k} - \frac{p_{2}}{p_{2}.k}\right)^{2} = |M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\frac{2p_{1}.p_{2}}{(p_{1}.k)(p_{2}.k)}$$

Include phase space:

$$d\Phi_{q\bar{q}g}|M^2_{q\bar{q}g}| \simeq (d\Phi_{q\bar{q}}|M^2_{q\bar{q}}|) \ rac{d^3 \vec{k}}{2E(2\pi)^3} C_F g_s^2 rac{2p_1.p_2}{(p_1.k)(p_2.k)}$$

Note property of factorisation into hard $q\bar{q}$ piece and soft-gluon emission piece, dS.

$$dS = EdE \, d\cos\theta \, \frac{d\phi}{2\pi} \cdot \frac{2\alpha_{\rm s}C_{\rm F}}{\pi} \frac{2p_{1}p_{2}}{(2p_{1}.k)(2p_{2}.k)}$$

$$\begin{aligned} \theta &\equiv \theta_{P1k} \\ \phi &= \text{azimuth} \end{aligned}$$

$$|M_{q\bar{q}g}^{2}| \simeq \sum_{A,\text{pol}} \left| \bar{u}(p_{1})ie_{q}\gamma_{\mu}t^{A}v(p_{2}) g_{s}\left(\frac{p_{1}.\epsilon}{p_{1}.k} - \frac{p_{2}.\epsilon}{p_{2}.k}\right) \right|^{2}$$
$$= -|M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\left(\frac{p_{1}}{p_{1}.k} - \frac{p_{2}}{p_{2}.k}\right)^{2} = |M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\frac{2p_{1}.p_{2}}{(p_{1}.k)(p_{2}.k)}$$

Include phase space:

$$d\Phi_{q\bar{q}g}|M^2_{q\bar{q}g}| \simeq (d\Phi_{q\bar{q}}|M^2_{q\bar{q}}|) \frac{d^3\vec{k}}{2E(2\pi)^3} C_F g_s^2 \frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)}$$

Note property of factorisation into hard $q\bar{q}$ piece and soft-gluon emission piece, dS.

$$dS = EdE \, d\cos\theta \, \frac{d\phi}{2\pi} \cdot \frac{2\alpha_{\rm s}C_{\rm F}}{\pi} \frac{2p_{\rm 1}.p_{\rm 2}}{(2p_{\rm 1}.k)(2p_{\rm 2}.k)}$$

 $\theta \equiv \theta_{P1k}$ $\phi = \text{azimuth}$ QCD lecture 1 (p. 20) $L_{e^+e^-} \rightarrow q\bar{q}$ $L_{\text{Soft-collinear emission}}$

Squared amplitude

$$|M_{q\bar{q}g}^{2}| \simeq \sum_{A,\text{pol}} \left| \bar{u}(p_{1})ie_{q}\gamma_{\mu}t^{A}v(p_{2}) g_{s}\left(\frac{p_{1}.\epsilon}{p_{1}.k} - \frac{p_{2}.\epsilon}{p_{2}.k}\right) \right|^{2}$$
$$= -|M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\left(\frac{p_{1}}{p_{1}.k} - \frac{p_{2}}{p_{2}.k}\right)^{2} = |M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\frac{2p_{1}.p_{2}}{(p_{1}.k)(p_{2}.k)}$$

Include phase space:

$$d\Phi_{qar{q}g}|M^2_{qar{q}g}| \simeq (d\Phi_{qar{q}}|M^2_{qar{q}}|) \; rac{d^3ec{k}}{2E(2\pi)^3} C_F g_s^2 rac{2p_1.p_2}{(p_1.k)(p_2.k)}$$

Note property of factorisation into hard $q\bar{q}$ piece and soft-gluon emission piece, dS.

$$dS = EdE \, d\cos\theta \, \frac{d\phi}{2\pi} \cdot \frac{2\alpha_{\rm s}C_{\rm F}}{\pi} \frac{2p_{1}.p_{2}}{(2p_{1}.k)(2p_{2}.k)}$$

 $\theta \equiv \theta_{p_1 k}$ $\phi = \text{azimuth}$ QCD lecture 1 (p. 20) $L_{e^+e^-} \rightarrow q\bar{q}$ $L_{\text{Soft-collinear emission}}$

Squared amplitude

$$|M_{q\bar{q}g}^{2}| \simeq \sum_{A,\text{pol}} \left| \bar{u}(p_{1})ie_{q}\gamma_{\mu}t^{A}v(p_{2}) g_{s}\left(\frac{p_{1}.\epsilon}{p_{1}.k} - \frac{p_{2}.\epsilon}{p_{2}.k}\right) \right|^{2}$$
$$= -|M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\left(\frac{p_{1}}{p_{1}.k} - \frac{p_{2}}{p_{2}.k}\right)^{2} = |M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\frac{2p_{1}.p_{2}}{(p_{1}.k)(p_{2}.k)}$$

Include phase space:

$$d\Phi_{q\bar{q}g}|M_{q\bar{q}g}^2| \simeq \left(d\Phi_{q\bar{q}}|M_{q\bar{q}}^2|\right) \frac{d^3\vec{k}}{2E(2\pi)^3} C_F g_s^2 \frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)}$$

Note property of factorisation into hard $q\bar{q}$ piece and soft-gluon emission piece, dS.

$$dS = EdE \, d\cos\theta \, \frac{d\phi}{2\pi} \cdot \frac{2\alpha_{\rm s}C_F}{\pi} \frac{2p_1 \cdot p_2}{(2p_1 \cdot k)(2p_2 \cdot k)}$$

 $\theta \equiv \theta_{p_1 k}$ $\phi = \text{azimuth}$ QCD lecture 1 (p. 20) $L_{e^+e^-} \rightarrow q\bar{q}$ $L_{\text{Soft-collinear emission}}$

Squared amplitude

$$|M_{q\bar{q}g}^{2}| \simeq \sum_{A,\text{pol}} \left| \bar{u}(p_{1})ie_{q}\gamma_{\mu}t^{A}v(p_{2}) g_{s}\left(\frac{p_{1}.\epsilon}{p_{1}.k} - \frac{p_{2}.\epsilon}{p_{2}.k}\right) \right|^{2}$$
$$= -|M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\left(\frac{p_{1}}{p_{1}.k} - \frac{p_{2}}{p_{2}.k}\right)^{2} = |M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\frac{2p_{1}.p_{2}}{(p_{1}.k)(p_{2}.k)}$$

Include phase space:

$$d\Phi_{q\bar{q}g}|M_{q\bar{q}g}^2| \simeq \left(d\Phi_{q\bar{q}}|M_{q\bar{q}}^2|\right) \frac{d^3\vec{k}}{2E(2\pi)^3} C_F g_s^2 \frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)}$$

Note property of factorisation into hard $q\bar{q}$ piece and soft-gluon emission piece, dS.

$$dS = EdE \ d\cos\theta \ \frac{d\phi}{2\pi} \cdot \frac{2\alpha_{s}C_{F}}{\pi} \frac{2p_{1}.p_{2}}{(2p_{1}.k)(2p_{2}.k)} \qquad \begin{array}{l} \theta \equiv \theta_{p_{1}k} \\ \phi = \text{azimuth} \end{array}$$

$$\frac{2p_1.p_2}{(2p_1.k)(2p_2.k)} = \frac{1}{E^2(1-\cos^2\theta)}$$

So final expression for soft gluon emission is

$$d\mathcal{S} = \frac{2\alpha_{\rm s}C_F}{\pi} \, \frac{dE}{E} \frac{d\theta}{\sin\theta} \, \frac{d\phi}{2\pi}$$

NB:

- It diverges for $E \rightarrow 0$ infrared (or soft) divergence
- It diverges for heta
 ightarrow 0 and $heta
 ightarrow \pi$ collinear divergence

$$\frac{2p_1.p_2}{(2p_1.k)(2p_2.k)} = \frac{1}{E^2(1-\cos^2\theta)}$$

So final expression for soft gluon emission is

$$d\mathcal{S} = \frac{2\alpha_{\rm s}C_F}{\pi} \, \frac{dE}{E} \frac{d\theta}{\sin\theta} \, \frac{d\phi}{2\pi}$$

NB:

- It diverges for $E \rightarrow 0$ infrared (or soft) divergence
- It diverges for $\theta \to 0$ and $\theta \to \pi$ collinear divergence

$$\frac{2p_1.p_2}{(2p_1.k)(2p_2.k)} = \frac{1}{E^2(1-\cos^2\theta)}$$

So final expression for soft gluon emission is

$$dS = \frac{2\alpha_{\rm s}C_F}{\pi} \frac{dE}{E} \frac{d\theta}{\sin\theta} \frac{d\phi}{2\pi}$$

NB:

- It diverges for $E \rightarrow 0$ infrared (or soft) divergence
- ▶ It diverges for $\theta \rightarrow 0$ and $\theta \rightarrow \pi$ collinear divergence

$$\frac{2p_1.p_2}{(2p_1.k)(2p_2.k)} = \frac{1}{E^2(1-\cos^2\theta)}$$

So final expression for soft gluon emission is

$$dS = \frac{2\alpha_{\rm s}C_F}{\pi} \frac{dE}{E} \frac{d\theta}{\sin\theta} \frac{d\phi}{2\pi}$$

NB:

- It diverges for $E \rightarrow 0$ infrared (or soft) divergence
- ▶ It diverges for $\theta \rightarrow 0$ and $\theta \rightarrow \pi$ collinear divergence

Real-virtual cancellations: total X-sctn

Total cross section: sum of all real and virtual diagrams

QCD lecture 1 (p. 22)

-Total X-sct

Total cross section must be *finite*. If real part has divergent integration, so must virtual part. (Unitarity, conservation of probability)

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} R(E/Q,\theta) - \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} V(E/Q,\theta) \right)$$

R(*E*/*Q*, θ) parametrises real matrix element for hard emissions, *E* ~ *Q*.
 V(*E*/*Q*, θ) parametrises virtual corrections for all momenta.

Real-virtual cancellations: total X-sctn

Total cross section: sum of all real and virtual diagrams

QCD lecture 1 (p. 22)

Total X-sct

Total cross section must be *finite*. If real part has divergent integration, so must virtual part. (Unitarity, conservation of probability)

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} R(E/Q,\theta) - \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} V(E/Q,\theta) \right)$$

R(E/Q, θ) parametrises real matrix element for hard emissions, E ~ Q.
 V(E/Q, θ) parametrises virtual corrections for all momenta.

Real-virtual cancellations: total X-sctn

Total cross section: sum of all real and virtual diagrams

QCD lecture 1 (p. 22)

Total X-sct

Total cross section must be *finite*. If real part has divergent integration, so must virtual part. (Unitarity, conservation of probability)

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} R(E/Q,\theta) - \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} V(E/Q,\theta) \right)$$

R(E/Q, θ) parametrises real matrix element for hard emissions, E ~ Q.
 V(E/Q, θ) parametrises virtual corrections for all momenta.

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} \left(R(E/Q,\theta) - V(E/Q,\theta) \right) \right)$$

- From calculation: $\lim_{E\to 0} R(E/Q, \theta) = 1$.
- ► For every divergence $R(E/Q, \theta)$ and $V(E/Q, \theta)$ should cancel:

$$\lim_{E\to 0}(R-V)=0\,,\qquad \qquad \lim_{\theta\to 0,\pi}(R-V)=0$$

Result:

- corrections to σ_{tot} come from hard ($E \sim Q$), large-angle gluons
- Soft gluons don't matter:

Correct renorm: scale for $\alpha_i: \mu \sim Q$ — perturbation theory valid.

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} \left(R(E/Q,\theta) - V(E/Q,\theta) \right) \right)$$

- From calculation: $\lim_{E\to 0} R(E/Q, \theta) = 1$.
- For every divergence $R(E/Q, \theta)$ and $V(E/Q, \theta)$ should cancel:

$$\lim_{E\to 0}(R-V)=0\,,\qquad \qquad \lim_{\theta\to 0,\pi}(R-V)=0$$

- ▶ corrections to σ_{tot} come from hard ($E \sim Q$), large-angle gluons
- Soft gluons don't matter:
 - Physics reason: soft gluons emitted on long timescale ~ 1/(Eθ²) relative to collision (1/Q) — cannot influence cross section.
 - Transition to hadrons also occurs on long time scale (~ 1/Λ) and can also be ignored.
- Correct renorm, scale for α_{s} : $\mu \sim Q$ perturbation theory valid.

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} \left(R(E/Q,\theta) - V(E/Q,\theta) \right) \right)$$

- From calculation: $\lim_{E\to 0} R(E/Q, \theta) = 1$.
- For every divergence $R(E/Q, \theta)$ and $V(E/Q, \theta)$ should cancel:

$$\lim_{E\to 0}(R-V)=0\,,\qquad \qquad \lim_{\theta\to 0,\pi}(R-V)=0$$

- corrections to σ_{tot} come from hard ($E \sim Q$), large-angle gluons
- Soft gluons don't matter:
 - Physics reason: soft gluons emitted on long timescale ~ 1/(Eθ²) relative to collision (1/Q) cannot influence cross section.
 - ► Transition to hadrons also occurs on long time scale (~ 1/Λ) and can also be ignored.
- Correct renorm. scale for α_{s} : $\mu \sim Q$ perturbation theory valid.

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} \left(R(E/Q,\theta) - V(E/Q,\theta) \right) \right)$$

- From calculation: $\lim_{E\to 0} R(E/Q, \theta) = 1$.
- ► For every divergence $R(E/Q, \theta)$ and $V(E/Q, \theta)$ should cancel:

$$\lim_{E\to 0}(R-V)=0\,,\qquad \qquad \lim_{\theta\to 0,\pi}(R-V)=0$$

- ▶ corrections to σ_{tot} come from hard ($E \sim Q$), large-angle gluons
- Soft gluons don't matter:
 - Physics reason: soft gluons emitted on long timescale ~ 1/(Eθ²) relative to collision (1/Q) cannot influence cross section.
 - ► Transition to hadrons also occurs on long time scale (~ 1/Λ) and can also be ignored.
- Correct renorm. scale for $\alpha_{\sf s}$: $\mu \sim Q$ perturbation theory valid.

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} \left(R(E/Q,\theta) - V(E/Q,\theta) \right) \right)$$

- From calculation: $\lim_{E\to 0} R(E/Q, \theta) = 1$.
- ► For every divergence $R(E/Q, \theta)$ and $V(E/Q, \theta)$ should cancel:

$$\lim_{E\to 0}(R-V)=0\,,\qquad \qquad \lim_{\theta\to 0,\pi}(R-V)=0$$

- corrections to σ_{tot} come from hard ($E \sim Q$), large-angle gluons
- Soft gluons don't matter:
 - Physics reason: soft gluons emitted on long timescale ~ 1/(Eθ²) relative to collision (1/Q) cannot influence cross section.
 - ► Transition to hadrons also occurs on long time scale (~ 1/Λ) and can also be ignored.
- Correct renorm. scale for $\alpha_{\rm s}$: $\mu \sim Q$ perturbation theory valid.

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} \left(R(E/Q,\theta) - V(E/Q,\theta) \right) \right)$$

- From calculation: $\lim_{E\to 0} R(E/Q, \theta) = 1$.
- ► For every divergence $R(E/Q, \theta)$ and $V(E/Q, \theta)$ should cancel:

$$\lim_{E\to 0}(R-V)=0\,,\qquad \qquad \lim_{\theta\to 0,\pi}(R-V)=0$$

- ▶ corrections to σ_{tot} come from hard ($E \sim Q$), large-angle gluons
- Soft gluons don't matter:
 - Physics reason: soft gluons emitted on long timescale ~ 1/(Eθ²) relative to collision (1/Q) cannot influence cross section.
 - ► Transition to hadrons also occurs on long time scale (~ 1/Λ) and can also be ignored.
- ▶ Correct renorm. scale for α_s : $\mu \sim Q$ perturbation theory valid.

Dependence of total cross section on only *hard* gluons is reflected in 'good behaviour' of perturbation series:

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + 1.045 \frac{\alpha_{s}(Q)}{\pi} + 0.94 \left(\frac{\alpha_{s}(Q)}{\pi} \right)^{2} - 15 \left(\frac{\alpha_{s}(Q)}{\pi} \right)^{3} + \cdots \right)$$

(Coefficients given for $Q = M_Z$)