QCD at hadron colliders Lecture 2: Showers, Jets and fixed-order predictions

Gavin Salam

CERN, Princeton & LPTHE/CNRS (Paris)

Maria Laach Herbtschule für Hochenenergiephysik September 2010, Germany

An extended (differently ordered, 2009) version of these lectures is available from:

http://www.lpthe.jussieu.fr/~salam/teaching/PhD-courses.html

or equivalently

http://bit.ly/dqoIpj

$$\frac{2p_1.p_2}{(2p_1.k)(2p_2.k)} = \frac{1}{E^2(1-\cos^2\theta)}$$

So final expression for soft gluon emission is

$$d\mathcal{S} = \frac{2\alpha_{\rm s}C_F}{\pi} \, \frac{dE}{E} \frac{d\theta}{\sin\theta} \, \frac{d\phi}{2\pi}$$

NB:

- It diverges for $E \rightarrow 0$ infrared (or soft) divergence
- It diverges for heta
 ightarrow 0 and $heta
 ightarrow \pi$ collinear divergence

$$\frac{2p_1.p_2}{(2p_1.k)(2p_2.k)} = \frac{1}{E^2(1-\cos^2\theta)}$$

So final expression for soft gluon emission is

$$d\mathcal{S} = \frac{2\alpha_{\rm s}C_F}{\pi} \, \frac{dE}{E} \frac{d\theta}{\sin\theta} \, \frac{d\phi}{2\pi}$$

NB:

- It diverges for $E \rightarrow 0$ infrared (or soft) divergence
- It diverges for $\theta \to 0$ and $\theta \to \pi$ collinear divergence

$$\frac{2p_1.p_2}{(2p_1.k)(2p_2.k)} = \frac{1}{E^2(1-\cos^2\theta)}$$

So final expression for soft gluon emission is

$$dS = \frac{2\alpha_{\rm s}C_F}{\pi} \frac{dE}{E} \frac{d\theta}{\sin\theta} \frac{d\phi}{2\pi}$$

NB:

- It diverges for $E \rightarrow 0$ infrared (or soft) divergence
- ▶ It diverges for $\theta \rightarrow 0$ and $\theta \rightarrow \pi$ collinear divergence

$$\frac{2p_1.p_2}{(2p_1.k)(2p_2.k)} = \frac{1}{E^2(1-\cos^2\theta)}$$

So final expression for soft gluon emission is

$$dS = \frac{2\alpha_{\rm s}C_F}{\pi} \frac{dE}{E} \frac{d\theta}{\sin\theta} \frac{d\phi}{2\pi}$$

NB:

- It diverges for $E \rightarrow 0$ infrared (or soft) divergence
- ▶ It diverges for $\theta \rightarrow 0$ and $\theta \rightarrow \pi$ collinear divergence

Yesterday we discussed the total cross section & real-virtual cancellation

Today let's look at more "exclusive" quantities — structure of final state

Let's try and integrate emission probability to get the mean number of gluons emitted off a quark with energy $\sim Q$:

$$\langle N_g \rangle \simeq \frac{2\alpha_{\rm s}C_F}{\pi} \int^Q \frac{dE}{E} \int^{\pi/2} \frac{d\theta}{\theta}$$

This diverges unless we cut the integral off for transverse momenta $(k_t \simeq E\theta)$ below some non-perturbative threshold, $Q_0 \sim \Lambda_{QCD}$. On the grounds that perturbation no longer applies for $k_t \sim \Lambda_{QCD}$. Language of quarks and gluons becomes meaningless

With this cutoff, result is:

$$\langle N_g \rangle \simeq rac{lpha_{s} C_F}{\pi} \ln^2 rac{Q}{Q_0} + \mathcal{O}\left(lpha_{s} \ln Q
ight)$$

Let's try and integrate emission probability to get the mean number of gluons emitted off a quark with energy $\sim Q$:

$$\langle N_g \rangle \simeq \frac{2\alpha_{\rm s}C_F}{\pi} \int^Q \frac{dE}{E} \int^{\pi/2} \frac{d\theta}{\theta} \Theta(E\theta > Q_0)$$

This diverges unless we cut the integral off for transverse momenta $(k_t \simeq E\theta)$ below some non-perturbative threshold, $Q_0 \sim \Lambda_{QCD}$. On the grounds that perturbation no longer applies for $k_t \sim \Lambda_{QCD}$. Language of quarks and gluons becomes meaningless

With this cutoff, result is:

$$\langle N_g
angle \simeq rac{lpha_{
m s} C_F}{\pi} \ln^2 rac{Q}{Q_0} + \mathcal{O}\left(lpha_{
m s} \ln Q
ight)$$

Suppose we take $Q_0 = \Lambda_{QCD}$, how big is the result?

Let's use $\alpha_s = \alpha_s(Q) = 1/(2b \ln Q/\Lambda)$ [Actually, over most of integration range this is optimistically small]

$$\langle N_g \rangle \simeq rac{lpha_{\sf s} C_F}{\pi} \ln^2 rac{Q}{\Lambda_{QCD}} o rac{C_F}{2b\pi} \ln rac{Q}{\Lambda_{QCD}}$$

NB: given form for $\alpha_{\rm s},$ this is actually $\sim 1/\alpha_{\rm s}$

Put in some numbers: Q = 100 GeV, $\Lambda_{QCD} \simeq 0.2$ GeV, $C_F = 4/3$, $b \simeq 0.6$,

 $\longrightarrow \langle N_g \rangle \simeq 2.2$

Perturbation theory assumes that first-order term, $\sim \alpha_{s}$ should be $\ll 1$.

But the final result is $\sim 1/lpha_{
m s} > 1...$ Is perturbation theory completely useless? Suppose we take $Q_0 = \Lambda_{QCD}$, how big is the result?

Let's use $\alpha_s = \alpha_s(Q) = 1/(2b \ln Q/\Lambda)$ [Actually, over most of integration range this is optimistically small]

$$\langle N_g \rangle \simeq rac{lpha_{\sf s} C_F}{\pi} \ln^2 rac{Q}{\Lambda_{QCD}} o rac{C_F}{2b\pi} \ln rac{Q}{\Lambda_{QCD}}$$

NB: given form for $\alpha_{\rm s},$ this is actually $\sim 1/\alpha_{\rm s}$

Put in some numbers: Q = 100 GeV, $\Lambda_{QCD} \simeq 0.2$ GeV, $C_F = 4/3$, $b \simeq 0.6$,

 $\longrightarrow \langle N_g \rangle \simeq 2.2$

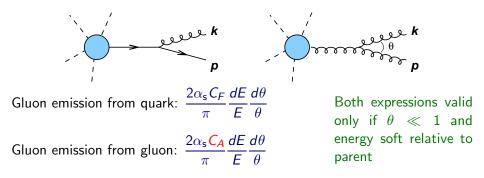
Perturbation theory assumes that first-order term, $\sim \alpha_s$ should be $\ll 1$. But the final result is $\sim 1/\alpha_s > 1...$

Is perturbation theory completely useless?

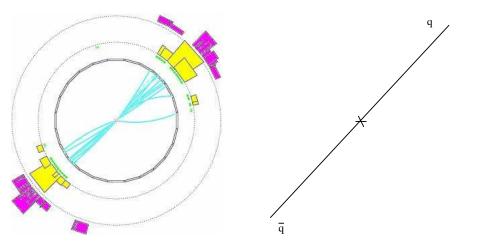
Given this failure of first-order perturbation theory, two possible avenues.

1. Continue calculating the next order(s) and see what happens

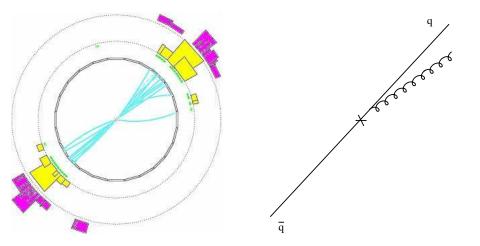
2. Try to see if there exist other observables for which perturbation theory is better behaved



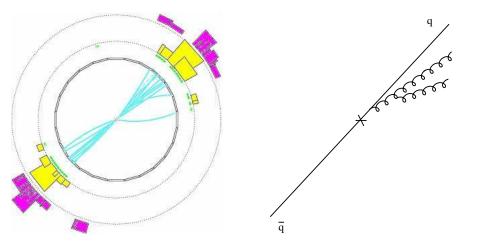
- Same divergence structures, regardless of where gluon is emitted from
- All that changes is the colour factor ($C_F = 4/3$ v. $C_A = 3$)
- Expect low-order structure $(\alpha_s \ln^2 Q)$ to be replicated at each new order



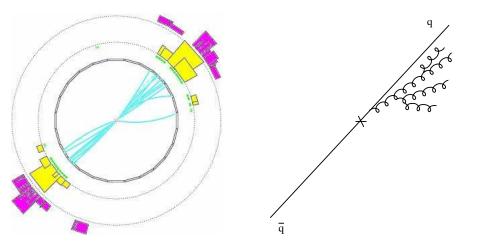
Start of with qq



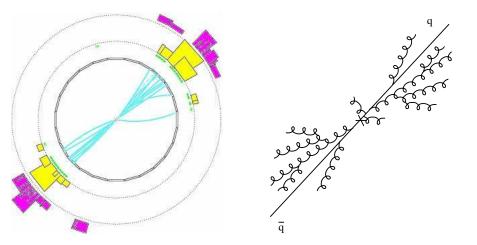
A gluon gets emitted at small angles



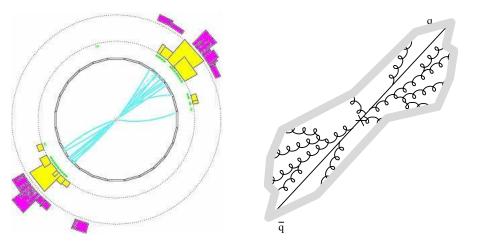
It radiates a further gluon



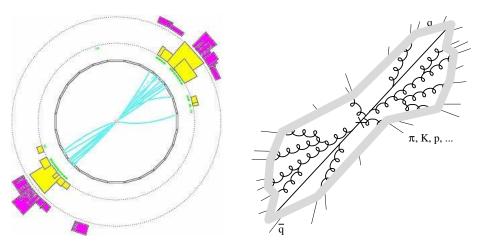
And so forth



Meanwhile the same happened on other side of event



And then a non-perturbative transition occurs



Giving a pattern of hadrons that "remembers" the gluon branching Hadrons mostly produced at small angle wrt $q\bar{q}$ directions or with low energy QCD lecture 2 (p. 10) Soft-collinear implications How many gluons are emitted?

Gluon v. hadron multiplicity

It turns out you can calculate the gluon multiplicity analytically, by summing all orders (n) of perturbation theory:

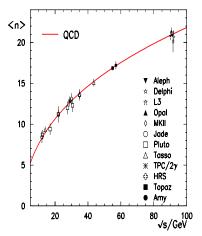
$$\langle N_g
angle \sim \sum_n \frac{1}{(n!)^2} \left(\frac{C_A}{\pi b} \ln \frac{Q}{\Lambda} \right)^n$$

 $\sim \exp \sqrt{\frac{4C_A}{\pi b} \ln \frac{Q}{\Lambda}}$

Compare to data for hadron multiplicity $(Q \equiv \sqrt{s})$ Including some other higher-order terms

and fitting overall normalisation

Agreement is amazing!



charged hadron multiplicity $\label{eq:energy} \text{in } e^+e^- \text{ events} \\ \text{adapted from ESW}$

We don't want to have to do analytical calculations for every observable an experimenter measures.

[too many experimenters, observables too complex, too few theorists]

Resort to parton showers

Using the soft-collinear approximation to make predictions about events' detailed structure

How can we get a computer program to generate all the nested ensemble of soft/collinear emissions?

The way to frame the question is: what is the probability of **not** radiating a gluon above a scale k_t ?

$$P(\text{no emission above } k_t) = 1 - \frac{2\alpha_s C_F}{\pi} \int^Q \frac{dE}{E} \int^{\pi/2} \frac{d\theta}{\theta} \Theta(E\theta - k_t)$$

In the soft-collinear limit, it's quite easy to calculate the full probability of nothing happening: it's just the exponential of the first order:

$$P(\text{nothing} > k_t) \equiv \Delta(k_t, Q) \simeq \exp\left[-\frac{2\alpha_s C_F}{\pi} \int^Q \frac{dE}{E} \int^{\pi/2} \frac{d\theta}{\theta} \Theta(E\theta - k_t)\right]$$

 $\label{eq:NB1: } \begin{array}{l} \Delta \text{ is bounded} \longrightarrow 0 < \Delta(k_t,Q) < 1 \\ \\ \text{NB2: to do this properly, running coupling should be inside integral} \\ \\ + \text{ replace } dE/E \text{ with full collinear splitting function} \end{array}$

$\Delta(k_t, Q)$ is known as a **Sudakov Form Factor**

Probability distribution for first emission (e.g. q ar q o q ar q g) is simple

$$\frac{dP}{dk_{t1}} = \frac{d}{dk_{t1}}\Delta(k_{t1},Q)$$

Easy to generate this distribution by Monte Carlo Take flat random number 0 < r < 1 and solve $\Delta(k_t, Q) = r$

Now we have a $q\bar{q}g$ system.

We next work out a Sudakov for there being no emission from the $q\bar{q}g$ system above scale k_{t2} (< k_{t1}): $\Delta^{qqg}(k_{t2}, k_{t1})$, and use this to generate k_{t2} .

Then generate k_{t3} emission from the $q\bar{q}gg$ system ($k_{t3} < k_{t2}$). Etc.

Repeat until you reach a non-perturbative cutoff scale Q_0 , and then stop.

This gives you one "parton-shower" event

$\Delta(k_t, Q)$ is known as a **Sudakov Form Factor**

Probability distribution for first emission (e.g. q ar q o q ar q g) is simple

$$\frac{dP}{dk_{t1}} = \frac{d}{dk_{t1}}\Delta(k_{t1},Q)$$

Easy to generate this distribution by Monte Carlo Take flat random number 0 < r < 1 and solve $\Delta(k_t, Q) = r$

Now we have a $q\bar{q}g$ system.

We next work out a Sudakov for there being no emission from the $q\bar{q}g$ system above scale k_{t2} (< k_{t1}): $\Delta^{qqg}(k_{t2}, k_{t1})$, and use this to generate k_{t2} .

Then generate k_{t3} emission from the $q\bar{q}gg$ system ($k_{t3} < k_{t2}$). Etc.

Repeat until you reach a non-perturbative cutoff scale Q_0 , and then stop.

This gives you one "parton-shower" event

That was a description that roughly encompasses:

- The New Pythia shower Pythia 8.1, and the p_t ordered option of Pythia 6.4
- The Ariadne shower

Other showers:

- Old Pythia (& Sherpa): order in virtuality instead of k_t and each parton branches independently (+ angular veto) works fine on most data but misses some theoretically relevant contributions by far the most widely used shower
- Herwig (6.5 & ++): order in angle, and each parton branches independently
 Herwig++ fills more of phase space than 6.5

That was all for a "final-state" shower

Initial-state showers also need to deal carefully with PDF evolution

110.000

1. You select the beams and their energy ---INITIAL STATE---

IHEP ID	IDPDG ISI	MU1 ML	12 DA1	DA5	P-X	P-Y	P-2	ENERGY	MASS
1 P	2212 101	0	0 0	0	0,00	0,00	7000.0	7000.0	0.94
2 P	2212 102	0	0 0	0	0,00	0,00-	7000.0	7000.0	0.94
3 CMF	0 103	1	2 0	0	0.00	0.00	0.0	14000.0	140 0 0.0

2. You select the hard process (here Z + jet production) Herwig generates kinematics for the hard process

---HARD SUBPROCESS---

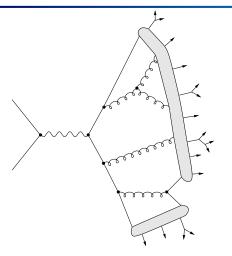
IHEP	ID	IDPDG	IST	M01	M02	DA1	DA2	P-X	P-Y	P-Z	ENERGY	MASS
4	UQRK	2	121	6	8	- 9	- 5	0,00	0,00	590.8	590.8	0.32
5	GLUON	21	122	6	- 4	17	- 8	0,00	0,00	-232,1	232.1	0.75
6	HARD	0	120	4	- 5	- 7	- 8	0,40	-9,40	358.7	823.0	740,63
- 7	ZO/GAMA*	23	123	6	- 7	- 22	- 7	-261,59	-217,31	329,3	481.6	88,56
8	UQRK	2	124	6	5	23	4	261,59	217,31	29,4	341.3	0,32

3. Herwig "dresses" it with initial and final-state showers

---PARTON SHOWERS---

IHEP ID 9 UQRK 10 CONE 11 GLUON 12 GLUON 13 GLUON 14 GLUON	0 21 21 21 21 21	IST 141 100 2 2 2 2 2 2	4 9 9 9	MO2 5 12 13 14 15	DA1 11 0 32 34 36 38	DA2 16 33 35 37 39	P-X 2.64 -0.27 -1.02 0.25 -0.87 -0.81	P-Y -9.83 0.96 3.59 1.46 1.62 4.17		1.0 6.7 4.0 5.1 3611.7	MASS -49.07 0.00 0.75- 0.75- 0.75- 0.75- 0.75-	INITIAL STATE
15 GLUON 16 UD 17 GLUON 18 CONE 19 GLUON 20 UD 21 UQRK	21 2101 94 0 21 2101 2	2 142 100 2 2 2	9 9 5 17 17 17	16 25 6 20 21 32	40 42 19 43 45 46	41 21 0 44 45	-0.19 0.00 -2.23 0.77 1.60 0.00 0.63	-1.01 0.00 0.44 0.64 0.58 0.00 -1.02	1054.6 -233.5 0.2 -2.1	1.0 2.8 2687.6	0.75- 0.32- -18.36 0.00 0.75 0.32 0.32	SHOWER
22 20/GAMA* 23 UQRK 24 CONE 25 UQRK 26 GLUON 27 GLUON 28 GLUON 29 GLUON 30 GLUON 31 GLUON	23 94	195	7 8 23 23 23 23 23 23 23 23	22 6 5 26 27 28 29 30 31 43	251 25 0 47 48 50 52 54 56 58	252 31 42 49 51 53 55 57 59	-257,66 258,06 0,21 26,82 8,50 73,27 73,66 67,58 6,98 1,24		324.8 33.9 -1.0 23.7 6.0 12.0 -6.3 -7.3 2.3 3.6	477,5 345,5 1,0 43,3 13,3 96,2 94,3 85,7 8,7	88,56 86,10 0,00 0,32 0,75 0,75 0,75 0,75 0,75 0,75	FINAL STATE SHOWER

Hadronisation Models

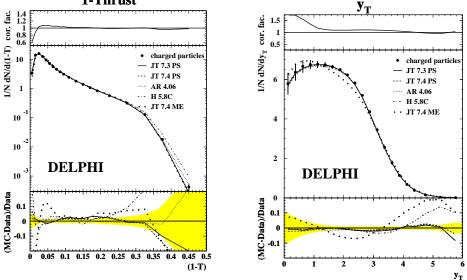


String Fragmentation (Pythia and friends) Cluster Fragmentation (Herwig) Pictures from ESW book

888

MC comparisons to LEP data

1-Thrust



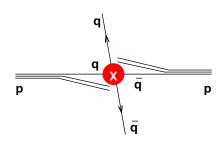
It's amazing that just soft/collinear "showering" + a hadronisation-model gives such a good description of the physics.

BUT:

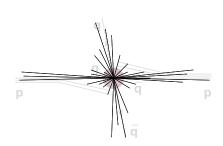
1. haven't we left out all the information that comes from exact Feynman diagrams?

2. what if we want to get back at the information about the "original" quarks?

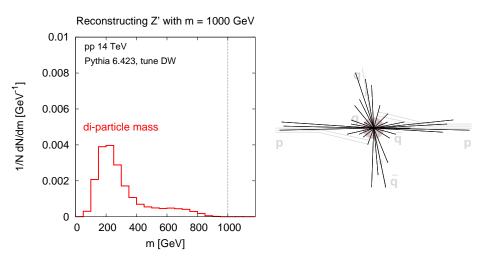
Take the leading hadrons: how much "unlike" the original quarks are they? To find out, check their pair invariant mass.



Take the leading hadrons: how much "unlike" the original quarks are they? To find out, check their pair invariant mass.

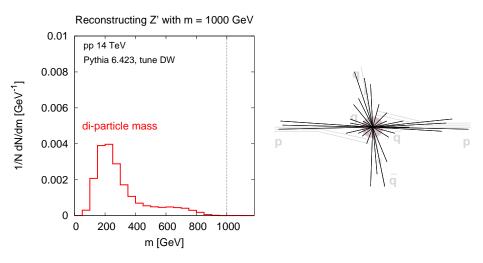


Take the leading hadrons: how much "unlike" the original quarks are they? To find out, check their pair invariant mass.

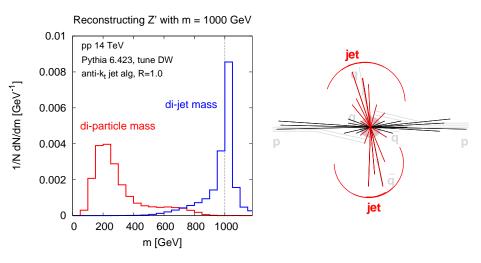


We really want to capture the bulk of the energy flow from the quark i.e. a $\ensuremath{\mathsf{JET}}$

We really want to capture the bulk of the energy flow from the quark i.e. a \mathbf{JET}



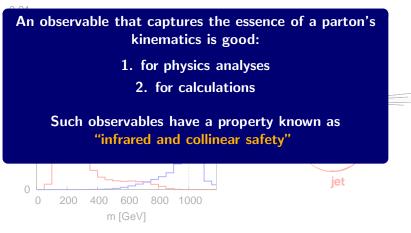
We really want to capture the bulk of the energy flow from the quark i.e. a $\ensuremath{\mathsf{JET}}$



1/N dN/dm [GeV⁻¹]

We really want to capture the bulk of the energy flow from the quark i.e. a $\ensuremath{\mathsf{JET}}$

Reconstructing Z' with m = 1000 GeV



For an observable's distribution to be calculable in [fixed-order] perturbation theory, the observable should be infra-red safe, i.e. insensitive to the emission of soft or collinear gluons. In particular if \vec{p}_i is any momentum occurring in its definition, it must be invariant under the branching

 $ec{p}_i
ightarrow ec{p}_j + ec{p}_k$

whenever \vec{p}_j and \vec{p}_k are parallel [collinear] or one of them is small[infrared].[QCD and Collider Physics (Ellis, Stirling & Webber)]

Examples

QCD lecture 2 (p. 21)

Better observables
IR/Collinear safety

- Multiplicity of gluons is not IRC safe [modified by soft/collinear splitting]
- Energy of hardest particle is not IRC safe [modified by collinear splitting]
- Energy flow into a cone is IRC safe [soft emissions don't change energy flow collinear emissions don't change its direction]

For an observable's distribution to be calculable in [fixed-order] perturbation theory, the observable should be infra-red safe, i.e. insensitive to the emission of soft or collinear gluons. In particular if \vec{p}_i is any momentum occurring in its definition, it must be invariant under the branching

 $ec{p}_i
ightarrow ec{p}_j + ec{p}_k$

whenever \vec{p}_j and \vec{p}_k are parallel [collinear] or one of them is small [infrared]. [QCD and Collider Physics (Ellis, Stirling & Webber)]

Examples

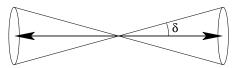
QCD lecture 2 (p. 21)

Better observables
 IR/Collinear safety

- Multiplicity of gluons is not IRC safe [modified by soft/collinear splitting]
- Energy of hardest particle is not IRC safe [modified by collinear splitting]
- Energy flow into a cone is IRC safe [soft emissions don't change energy flow collinear emissions don't change its direction]

The original (finite) jet definition

An event has 2 jets if at least a fraction $(1 - \epsilon)$ of event energy is contained in two cones of half-angle δ .

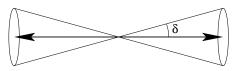


$$\sigma_{2-jet} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \frac{d\theta}{\sin\theta} \left(R\left(\frac{E}{Q}, \theta\right) \times \left(1 - \Theta\left(\frac{E}{Q} - \epsilon\right)\Theta(\theta - \delta) \right) - V\left(\frac{E}{Q}, \theta\right) \right) \right)$$

- For small E or small θ this is just like total cross section full cancellation of divergences between real and virtual terms.
- For large *E* and large θ a *finite piece* of real emission cross section is *cut out*.
- Overall final contribution dominated by scales ~ Q cross section is perturbatively calculable.

The original (finite) jet definition

An event has 2 jets if at least a fraction $(1 - \epsilon)$ of event energy is contained in two cones of half-angle δ .

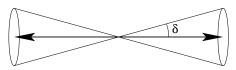


$$\sigma_{2-jet} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \frac{d\theta}{\sin\theta} \left(R\left(\frac{E}{Q}, \theta\right) \times \left(1 - \Theta\left(\frac{E}{Q} - \epsilon\right)\Theta(\theta - \delta) \right) - V\left(\frac{E}{Q}, \theta\right) \right) \right)$$

- For small *E* or small θ this is just like total cross section full cancellation of divergences between real and virtual terms.
- For large E and large θ a *finite piece* of real emission cross section is *cut out*.
- Overall final contribution dominated by scales ~ Q cross section is perturbatively calculable.

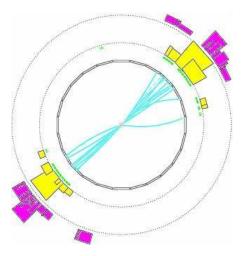
The original (finite) jet definition

An event has 2 jets if at least a fraction $(1 - \epsilon)$ of event energy is contained in two cones of half-angle δ .



$$\sigma_{2-jet} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \frac{d\theta}{\sin\theta} \left(R\left(\frac{E}{Q}, \theta\right) \times \left(1 - \Theta\left(\frac{E}{Q} - \epsilon\right)\Theta(\theta - \delta) \right) - V\left(\frac{E}{Q}, \theta\right) \right) \right)$$

- For small E or small θ this is just like total cross section full cancellation of divergences between real and virtual terms.
- For large E and large θ a *finite piece* of real emission cross section is *cut* out.
- Overall final contribution dominated by scales ~ Q cross section is perturbatively calculable.



Near 'perfect' 2-jet event

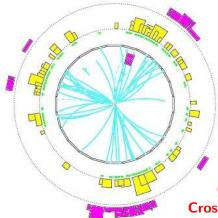
2 well-collimated jets of particles. Nearly all energy contained in two cones.

Cross section for this to occur is

 $\sigma_{2-\text{jet}} = \sigma_{q\bar{q}}(1 - c_1\alpha_s + c_2\alpha_s^2 + \ldots)$

where c_1, c_2 all ~ 1 .

QCD lecture 2 (p. 24) Better observables



How many jets?

- Most of energy contained in 3 (fairly) collimated cones
- Cross section for this to happen is

 $\sigma_{3-\text{jet}} = \sigma_{q\bar{q}} (c'_1 \alpha_s + c'_2 \alpha_s^2 + \ldots)$

where the coefficients are all $\mathcal{O}\left(1
ight)$

Cross section for extra gluon diverges Cross section for extra jet is small, $\mathcal{O}(\alpha_s)$

> NB: Sterman-Weinberg procedure gets complex for multi-jet events. 4th lecture will discuss modern approaches for defining jets.

- Soft-collinear divergences are universal property of QCD
- Lead to divergent predictions for many observables
- Regularising the divergences near Λ_{QCD} and summing over all orders in a soft/collinear approximation works remarkably well.
- A parton shower is an easily-used computer-implementation of that idea. [parton showers are ubiquitous in any collider context]
- But: not all observables are affected by these soft/collinear splittings. Those that are unaffected are called "IR/Collinear safe":
 - ▶ Tend to be good for practical physics studies (e.g. new physics searches)
 - Can also be calculated within plain fixed-order QCD