# QCD at hadron colliders Lecture 4: some main tools at LHC 

Gavin Salam

CERN, Princeton \& LPTHE/CNRS (Paris)

Maria Laach Herbtschule für Hochenenergiephysik September 2010, Germany

If you work directly on LHC/Tevatron physics, what QCD tools will you run into?

## 1. Monte Carlo shower programs

 2. Fixed order codes3. Procedures to "merge" their predictions 4. Jet algorithms

If you work directly on LHC/Tevatron physics, what QCD tools will you run into?

1. Monte Carlo shower programs
2. Fixed order codes
3. Procedures to "merge" their predictions
4. Jet algorithms

## An example process

## SUSY example: gluino pair production

## Signal



Signal



Signal
jet

$\boldsymbol{F}_{\mathrm{T}}$
jet

Background


## Example SUSY searches

## Atlas selection [all hadronic]

- no lepton
- MET > 100 GeV
- $1^{\text {st. }} 2^{\text {nd }}$ jet $>100 \mathrm{GeV}$
- $3^{\text {rd }}, 4^{\text {th }}$ jet $>50 \mathrm{GeV}$
- MET / $m_{\text {eff }}>20 \%$


## Christian Autermann SUSY08 16.-21.6.08



CMS selection [leptonic incl.]
(optimized for $10 \mathrm{fb}^{-1}$, using genetic algorithm)

- 1 muon $\mathrm{pT}>30 \mathrm{GeV}$
- MET > 130 GeV
- $1^{\text {st, }}, 2^{\text {nd }}$ jet $>440 \mathrm{GeV}$
- $3^{\text {rd }}$ jet $>50 \mathrm{GeV}$
- $-0.95<\cos \left(\right.$ MET, $1^{\text {st }} j$ jet $)<0.3$
- $\cos \left(\right.$ MET, $\left.2^{\text {nd }} j e t\right)<0.85$



## Start with jet finding, because it's simple(st)



LO partons
Jet $\downarrow$ Def ${ }^{n}$


NLO partons

$$
\text { Jet } \downarrow \operatorname{Def}^{n}
$$


parton shower
Jet ${ }_{\downarrow}$ Def $^{n}$

hadron level
Jet ${ }_{\Downarrow} \operatorname{Def}^{n}$
jet 1 jet 2
jet 1 jet 2
jet 1
jet 2


Projection to jets provides "common" view of different event levels But projection is not unique: we must define what we mean by a jet

Define "distance" between every pair of particles: [Cacciari, GPS \& Soyez '08]

$$
d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}
$$

$$
\left[\Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}^{2}\right)\right]
$$

Define a single-particle distance

$$
d_{i B}=\frac{1}{p_{t i}^{2}}
$$

1. Find the smallest of $d_{i j}$ and $d_{i B}$
2. If it's a $d_{i j}$, merge $i$ and $j$ into a single particle
3. If it's a $d_{i B}$ call $i$ a jet and remove it from list
4. Update all distances, go to step 1


Define "distance" between every pair of particles: [Cacciari, GPS \& Soyez '08]

$$
d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}
$$

$$
\left[\Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}^{2}\right)\right]
$$

Define a single-particle distance

$$
d_{i B}=\frac{1}{p_{t i}^{2}}
$$

1. Find the smallest of $d_{i j}$ and $d_{i B}$
2. If it's a $d_{i j}$, merge $i$ and $j$ into a single particle
3. If it's a $d_{i B}$ call $i$ a jet and remove it from list
4. Update all distances, go to step 1


Define "distance" between every pair of particles: [Cacciari, GPS \& Soyez '08]

$$
d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}
$$

$$
\left[\Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}^{2}\right)\right]
$$

Define a single-particle distance

$$
d_{i B}=\frac{1}{p_{t i}^{2}}
$$

1. Find the smallest of $d_{i j}$ and $d_{i B}$
2. If it's a $d_{i j}$, merge $i$ and $j$ into a single particle
3. If it's a $d_{i B}$ call $i$ a jet and remove it from list
4. Update all distances, go to step 1


Define "distance" between every pair of particles: [Cacciari, GPS \& Soyez '08]

$$
d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}
$$

$$
\left[\Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}^{2}\right)\right]
$$

Define a single-particle distance

$$
d_{i B}=\frac{1}{p_{t i}^{2}}
$$

1. Find the smallest of $d_{i j}$ and $d_{i B}$
2. If it's a $d_{i j}$, merge $i$ and $j$ into a single particle
3. If it's a $d_{i B}$ call $i$ a jet and remove it from list
4. Update all distances, go to step 1


Define "distance" between every pair of particles: [Cacciari, GPS \& Soyez '08]

$$
d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}
$$

$$
\left[\Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}^{2}\right)\right]
$$

Define a single-particle distance

$$
d_{i B}=\frac{1}{p_{t i}^{2}}
$$

1. Find the smallest of $d_{i j}$ and $d_{i B}$
2. If it's a $d_{i j}$, merge $i$ and $j$ into a single particle
3. If it's a $d_{i B}$ call $i$ a jet and remove it from list
4. Update all distances, go to step 1


Define "distance" between every pair of particles: [Cacciari, GPS \& Soyez '08]

$$
d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}
$$

$$
\left[\Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}^{2}\right)\right]
$$

Define a single-particle distance

$$
d_{i B}=\frac{1}{p_{t i}^{2}}
$$

1. Find the smallest of $d_{i j}$ and $d_{i B}$
2. If it's a $d_{i j}$, merge $i$ and $j$ into a single particle
3. If it's a $d_{i B}$ call $i$ a jet and remove it from list
4. Update all distances, go to step 1


Define "distance" between every pair of particles: [Cacciari, GPS \& Soyez '08]

$$
d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}
$$

$$
\left[\Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}^{2}\right)\right]
$$

Define a single-particle distance

$$
d_{i B}=\frac{1}{p_{t i}^{2}}
$$

1. Find the smallest of $d_{i j}$ and $d_{i B}$
2. If it's a $d_{i j}$, merge $i$ and $j$ into a single particle
3. If it's a $d_{i B}$ call $i$ a jet and remove it from list
4. Update all distances, go to step 1


Define "distance" between every pair of particles: [Cacciari, GPS \& Soyez '08]

$$
d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}
$$

$$
\left[\Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}^{2}\right)\right]
$$

Define a single-particle distance

$$
d_{i B}=\frac{1}{p_{t i}^{2}}
$$

1. Find the smallest of $d_{i j}$ and $d_{i B}$
2. If it's a $d_{i j}$, merge $i$ and $j$ into a single particle
3. If it's a $d_{i B}$ call $i$ a jet and remove it from list
4. Update all distances, go to step 1


Define "distance" between every pair of particles: [Cacciari, GPS \& Soyez '08]

$$
d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}
$$

$$
\left[\Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}^{2}\right)\right]
$$

Define a single-particle distance

$$
d_{i B}=\frac{1}{p_{t i}^{2}}
$$

1. Find the smallest of $d_{i j}$ and $d_{i B}$
2. If it's a $d_{i j}$, merge $i$ and $j$ into a single particle
3. If it's a $d_{i B}$ call $i$ a jet and remove it from list
4. Update all distances, go to step 1


Define "distance" between every pair of particles: [Cacciari, GPS \& Soyez '08]

$$
d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}
$$

$$
\left[\Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}^{2}\right)\right]
$$

Define a single-particle distance

$$
d_{i B}=\frac{1}{p_{t i}^{2}}
$$

1. Find the smallest of $d_{i j}$ and $d_{i B}$
2. If it's a $d_{i j}$, merge $i$ and $j$ into a single particle
3. If it's a $d_{i B}$ call $i$ a jet and remove it from list
4. Update all distances, go to step 1


Define "distance" between every pair of particles: [Cacciari, GPS \& Soyez '08]

$$
d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}
$$

$$
\left[\Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}^{2}\right)\right]
$$

Define a single-particle distance

$$
d_{i B}=\frac{1}{p_{t i}^{2}}
$$

1. Find the smallest of $d_{i j}$ and $d_{i B}$
2. If it's a $d_{i j}$, merge $i$ and $j$ into a single particle
3. If it's a $d_{i B}$ call $i$ a jet and remove it from list
4. Update all distances, go to step 1


Define "distance" between every pair of particles: [Cacciari, GPS \& Soyez '08]

$$
d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}
$$

$$
\left[\Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}^{2}\right)\right]
$$

Define a single-particle distance

$$
d_{i B}=\frac{1}{p_{t i}^{2}}
$$

1. Find the smallest of $d_{i j}$ and $d_{i B}$
2. If it's a $d_{i j}$, merge $i$ and $j$ into a single particle
3. If it's a $d_{i B}$ call $i$ a jet and remove it from list
4. Update all distances, go to step 1


Define "distance" between every pair of particles: [Cacciari, GPS \& Soyez '08]

$$
d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}
$$

$$
\left[\Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}^{2}\right)\right]
$$

Define a single-particle distance

$$
d_{i B}=\frac{1}{p_{t i}^{2}}
$$

1. Find the smallest of $d_{i j}$ and $d_{i B}$
2. If it's a $d_{i j}$, merge $i$ and $j$ into a single particle
3. If it's a $d_{i B}$ call $i$ a jet and remove it from list
4. Update all distances, go to step 1


Define "distance" between every pair of particles: [Cacciari, GPS \& Soyez '08]

$$
d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}
$$

$$
\left[\Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}^{2}\right)\right]
$$

Define a single-particle distance

$$
d_{i B}=\frac{1}{p_{t i}^{2}}
$$

1. Find the smallest of $d_{i j}$ and $d_{i B}$
2. If it's a $d_{i j}$, merge $i$ and $j$ into a single particle
3. If it's a $d_{i B}$ call $i$ a jet and remove it from list
4. Update all distances, go to step 1


Define "distance" between every pair of particles: [Cacciari, GPS \& Soyez '08]

$$
d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}
$$

$$
\left[\Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}^{2}\right)\right]
$$

Define a single-particle distance

$$
d_{i B}=\frac{1}{p_{t i}^{2}}
$$

1. Find the smallest of $d_{i j}$ and $d_{i B}$
2. If it's a $d_{i j}$, merge $i$ and $j$ into a single particle
3. If it's a $d_{i B}$ call $i$ a jet and remove it from list
4. Update all distances, go to step 1


Define "distance" between every pair of particles: [Cacciari, GPS \& Soyez '08]

$$
d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}
$$

$$
\left[\Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}^{2}\right)\right]
$$

Define a single-particle distance

$$
d_{i B}=\frac{1}{p_{t i}^{2}}
$$

1. Find the smallest of $d_{i j}$ and $d_{i B}$
2. If it's a $d_{i j}$, merge $i$ and $j$ into a single particle
3. If it's a $d_{i B}$ call $i$ a jet and remove it from list
4. Update all distances, go to step 1


Define "distance" between every pair of particles: [Cacciari, GPS \& Soyez '08]

$$
d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}
$$

$$
\left[\Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}^{2}\right)\right]
$$

Define a single-particle distance

$$
d_{i B}=\frac{1}{p_{t i}^{2}}
$$

1. Find the smallest of $d_{i j}$ and $d_{i B}$
2. If it's a $d_{i j}$, merge $i$ and $j$ into a single particle
3. If it's a $d_{i B}$ call $i$ a jet and remove it from list
4. Update all distances, go to step 1


Define "distance" between every pair of particles: [Cacciari, GPS \& Soyez '08]

$$
d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}
$$

$$
\left[\Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}^{2}\right)\right]
$$

Define a single-particle distance

$$
d_{i B}=\frac{1}{p_{t i}^{2}}
$$

1. Find the smallest of $d_{i j}$ and $d_{i B}$
2. If it's a $d_{i j}$, merge $i$ and $j$ into a single particle
3. If it's a $d_{i B}$ call $i$ a jet and remove it from list
4. Update all distances, go to step 1


Define "distance" between every pair of particles: [Cacciari, GPS \& Soyez '08]

$$
d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}
$$

$$
\left[\Delta R_{i j}^{2}=\left(y_{i}-y_{j}\right)^{2}+\left(\phi_{i}-\phi_{j}^{2}\right)\right]
$$

Define a single-particle distance

$$
d_{i B}=\frac{1}{p_{t i}^{2}}
$$

1. Find the smallest of $d_{i j}$ and $d_{i B}$
2. If it's a $d_{i j}$, merge $i$ and $j$ into a single particle
3. If it's a $d_{i B}$ call $i$ a jet and remove it from list
4. Update all distances, go to step 1


Define "distance" between every pair of particles: [Cacciari, GPS \& Soyez '08]

$$
d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}
$$



The algorithm involves two parameters:

1. $R$, the angular reach for the jets
2. A $p_{t}$ threshold for the final jets to be considered relevant
3. If it's a $d_{i j}$, merge $i$ and $j$ into a single particle
4. If it's a $d_{i B}$ call $i$ a jet and remove it from list
5. Update all distances, go to step 1


Define "distance" between every pair of particles: [Cacciari, GPS \& Soyez '08]

$$
d_{i j}=\frac{1}{\max \left(p_{t i}^{2}, p_{t j}^{2}\right)} \frac{\Delta R_{i j}^{2}}{R^{2}}
$$



The algorithm involves two parameters:

1. $R$, the angular reach for the jets
2. A $p_{t}$ threshold for the final jets to be considered relevant [lt's the default algorithm for ATLAS \& CMS]
3. If it's a $d_{i j}$, merge $i$ and $j$ into a single particle
4. If it's a $d_{i B}$ call i a jet and remove it from list
5. Update all distances, go to step 1


What accuracy are our predictions?
It matters if we're say a signal is just an excess over expected backgrounds...

Start simply and look back at cross section for $e^{+} e^{-} \rightarrow Z \rightarrow$ hadrons (at $\sqrt{s} \equiv Q=M_{Z}$ ).

In lecture 1 we wrote:

$$
\sigma_{\text {tot }}=\sigma_{q \bar{q}}(\underbrace{1}_{\mathrm{LO}}+\underbrace{1.045 \frac{\alpha_{\mathrm{s}}(Q)}{\pi}}_{\mathrm{NLO}}+\underbrace{0.94\left(\frac{\alpha_{\mathrm{s}}(Q)}{\pi}\right)^{2}}_{\mathrm{NNLO}}+\cdots)
$$

Who told us we should we should write the series in terms of $\alpha_{\mathrm{s}}(Q)$ ?
$Q=M_{z}$ is the only physical scale in the problem, so not unreasonable. But hardest possible gluon emission is $E=Q / 2$. Should we have used $Q / 2$ ? And virtual gluons can have $E>Q$. Should we have used $2 Q$ ?

## Scale dependence

Start with the first order that "contains QCD" (NLO).

Introduce arbitrary renormalisation scale for the coupling, $\mu_{R}$

$$
\sigma^{\mathrm{NLO}}=\sigma_{q \bar{q}}\left(1+c_{1} \alpha_{\mathrm{s}}\left(\mu_{R}\right)\right)
$$

Result depends on the choice of $\mu_{R}$.

## Scale dependence



Start with the first order that "contains QCD" (NLO).

Introduce arbitrary renormalisation scale for the coupling, $\mu_{R}$

$$
\sigma^{\mathrm{NLO}}=\sigma_{q \bar{q}}\left(1+c_{1} \alpha_{\mathrm{s}}\left(\mu_{R}\right)\right)
$$

Result depends on the choice of $\mu_{R}$.

Convention: the uncertainty on the result is the range of answers obtained for $Q / 2<\mu_{R}<2 Q$.

## Scale dependence (cont.)

Let's express results for arbitrary $\mu_{R}$ in terms of $\alpha_{\mathrm{s}}(Q)$ :

$$
\sigma^{\mathrm{NLO}}\left(\mu_{R}\right)=\sigma_{q \bar{q}}\left(1+c_{1} \alpha_{\mathrm{s}}\left(\mu_{R}\right)\right)
$$

Let's express results for arbitrary $\mu_{R}$ in terms of $\alpha_{s}(Q)$ :

$$
\sigma^{\mathrm{NLO}\left(\mu_{R}\right)=\sigma_{q \bar{q}}(1} \begin{aligned}
\alpha_{\mathrm{s}}\left(\mu_{R}\right) & =\frac{\alpha_{\mathrm{s}}(Q)}{1+2 b_{0} \alpha_{\mathbf{s}}(Q) \ln \mu_{R} / Q} \\
& =\alpha_{\mathbf{s}}(Q)-2 b_{0} \alpha_{\mathrm{s}}^{2}(Q) \ln \mu_{R} / Q+\mathcal{O}\left(\alpha_{\mathrm{s}}^{3}\right)
\end{aligned}
$$

## Scale dependence (cont.)

Let's express results for arbitrary $\mu_{R}$ in terms of $\alpha_{\mathrm{s}}(Q)$ :

$$
\begin{aligned}
\sigma^{\mathrm{NLO}}\left(\mu_{R}\right) & =\sigma_{q \bar{q}}\left(1+c_{1} \alpha_{\mathrm{s}}\left(\mu_{R}\right)\right) \\
& =\sigma_{q \bar{q}}\left(1+c_{1} \alpha_{\mathrm{s}}(Q)-2 c_{1} b_{0} \ln \frac{\mu_{R}}{Q} \alpha_{\mathrm{s}}^{2}(Q)+\mathcal{O}\left(\alpha_{\mathrm{s}}^{3}\right)\right)
\end{aligned}
$$

As we vary the renormalisation scale $\mu_{R}$, we introduce $\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)$ pieces into the X -section. I.e. generate some set of NNLO terms $\sim$ uncertainty on X-section from missing NNLO calculation.

as to cancel the $\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)$ scale variation


## Scale dependence (cont.)

Let's express results for arbitrary $\mu_{R}$ in terms of $\alpha_{\mathrm{s}}(Q)$ :

$$
\begin{aligned}
\sigma^{\mathrm{NLO}}\left(\mu_{R}\right) & =\sigma_{q \bar{q}}\left(1+c_{1} \alpha_{\mathrm{s}}\left(\mu_{R}\right)\right) \\
& =\sigma_{q \bar{q}}\left(1+c_{1} \alpha_{\mathrm{s}}(Q)-2 c_{1} b_{0} \ln \frac{\mu_{R}}{Q} \alpha_{\mathrm{s}}^{2}(Q)+\mathcal{O}\left(\alpha_{\mathrm{s}}^{3}\right)\right)
\end{aligned}
$$

As we vary the renormalisation scale $\mu_{R}$, we introduce $\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)$ pieces into the X -section. I.e. generate some set of NNLO terms $\sim$ uncertainty on X-section from missing NNLO calculation.

If we now calculate the full NNLO correction, then it will be structured so as to cancel the $\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)$ scale variation

$$
\begin{gathered}
\sigma^{\mathrm{NNLO}}\left(\mu_{R}\right)=\sigma_{q \bar{q}}\left[1+c_{1} \alpha_{\mathrm{s}}\left(\mu_{R}\right)+c_{2}\left(\mu_{R}\right) \alpha_{\mathrm{s}}^{2}\left(\mu_{R}\right)\right] \\
c_{2}\left(\mu_{R}\right)=c_{2}(Q)+2 c_{1} b_{0} \ln \frac{\mu_{R}}{Q}
\end{gathered}
$$

Remaining uncertainty is now $\mathcal{O}\left(\alpha_{\mathrm{s}}^{3}\right)$.

## Scale dependence: NNLO

See how at NNLO, scale dependence is much flatter, final uncertainty much smaller.

## Scale dependence: NNLO

See how at NNLO, scale dependence is much flatter, final uncertainty much smaller.

Because now we neglect only $\alpha_{\mathrm{s}}^{3}$ instead of $\alpha_{\mathrm{s}}^{2}$

Moral: not knowing exactly how to set scale $\rightarrow$ blessing in disguise, since it gives us handle on uncertainty.


NB: if we had a large number of orders of perturbation theory, scale dependence would just disappear.

## Scale dependence: NNLO



See how at NNLO, scale dependence is much flatter, final uncertainty much smaller.

Because now we neglect only $\alpha_{\mathrm{s}}^{3}$ instead of $\alpha_{\mathrm{s}}^{2}$

Moral: not knowing exactly how to set scale $\rightarrow$ blessing in disguise, since it gives us handle on uncertainty.

> Scale variation $\equiv$ standard procedure Often a good guide Except when it isn't!

NB: if we had a large number of orders of perturbation theory, scale dependence would just disappear.

Now switch to looking at the $Z$
cross section in $p p$

$$
\sigma_{p p \rightarrow z}^{\mathrm{LO}}=\sum_{i} \int d x_{1} d x_{2} f_{q_{i}}\left(x_{1}, \mu_{F}^{2}\right) f_{\bar{q}_{i}}\left(x_{2}, \mu_{F}^{2}\right) \hat{\sigma}_{0, q_{i} \bar{q}_{i} \rightarrow z}\left(x_{1} p_{1}, x_{2} p_{2}\right),
$$

$-\sigma_{0, q_{i}} \bar{q}_{i} \rightarrow Z \propto \alpha_{E W}$, knows nothing about QCD
like $\sigma_{e^{+} e^{-} \rightarrow Z}$

- But $\sigma_{0, q_{i} \bar{q}_{i} \rightarrow z}$ depends on PDFs.
- We have to choose a factorisation scale, $\mu_{F}$.
- Natural choice: $\mu_{F}=M_{Z}$, but one should vary it (just like the renorm. scale, $\mu_{R}$, for $\alpha_{\mathrm{s}}$ ).

$$
\sigma_{p p \rightarrow Z}^{\mathrm{LO}}=\sum_{i} \int d x_{1} d x_{2} f_{q_{i}}\left(x_{1}, \mu_{F}^{2}\right) f_{\bar{q}_{i}}\left(x_{2}, \mu_{F}^{2}\right) \hat{\sigma}_{0, q_{i} \bar{q}_{i} \rightarrow Z}\left(x_{1} p_{1}, x_{2} p_{2}\right),
$$

- $\sigma_{0, q_{i} \bar{q}_{i} \rightarrow Z} \propto \alpha_{E W}$, knows nothing about QCD

$$
\text { like } \sigma_{e^{+} e^{-} \rightarrow Z}
$$

- But $\sigma_{0, q_{i} \bar{q}_{i} \rightarrow z}$ depends on PDFs.
- We have to choose a factorisation scale, $\mu_{F}$.
- Natural choice: $\mu_{F}=M_{Z}$, but one should vary it (just like the renorm. scale, $\mu_{R}$, for $\alpha_{\mathrm{s}}$ ).


Plot shows $\sigma_{p p \rightarrow Z}^{\mathrm{LO}}$ differentially as a function of rapidity $(y)$ of $Z$. Band is uncertainty due to variation of $\mu_{F}$.

$$
\begin{aligned}
\sigma_{p p \rightarrow Z}^{\mathrm{NLO}}=\sum_{i, j} \int d x_{1} d x_{2} f_{i}\left(x_{1}, \mu_{F}^{2}\right) f_{j}\left(x_{2}, \mu_{F}^{2}\right) & {\left[\hat{\sigma}_{0, i j \rightarrow Z}\left(x_{1}, x_{2}\right)+\right.} \\
& \left.+\alpha_{\mathrm{s}}\left(\mu_{R}\right) \hat{\sigma}_{1, i j \rightarrow z}\left(x_{1}, x_{2}, \mu_{F}\right)\right]
\end{aligned}
$$

- New channels open up $(g q \rightarrow Z q)$
- Now X-sct depends on renorm scale $\mu_{R}$ and fact. scale $\mu_{F}$ often vary $\mu_{R}=\mu_{F}$ together not necessarily "right"

But $\hat{\sigma}_{1}$ piece cancels large LO
 dependence on $\mu_{F}$

At NMLO dependence on $\mu_{R}$ and $\mu_{F}$ is further cancelled

## $p p \rightarrow Z+X$ at (N)NLO

$$
\sigma_{p p \rightarrow z}^{\mathrm{NLO}}=\sum_{i, j} \int d x_{1} d x_{2} f_{i}\left(x_{1}, \mu_{F}^{2}\right) f_{j}\left(x_{2}, \mu_{F}^{2}\right)\left[\hat{\sigma}_{0, j \rightarrow z}\left(x_{1}, x_{2}\right)+\right.
$$

$$
\left.+\alpha_{\mathbf{s}}\left(\mu_{R}\right) \hat{\sigma}_{1, i j \rightarrow z}\left(x_{1}, x_{2}, \mu_{F}\right)\right]
$$

- New channels open up ( $g q \rightarrow Z q$ )
- Now X-sct depends on renorm scale $\mu_{R}$ and fact. scale $\mu_{F}$ often vary $\mu_{R}=\mu_{F}$ together not necessarily "right"
- But $\hat{\sigma}_{1}$ piece cancels large LO dependence on $\mu_{F}$



## $p p \rightarrow Z+X$ at (N)NLO

$$
\begin{aligned}
\sigma_{P \rho \rightarrow z}^{\mathrm{NLO}}=\sum_{i, j} \int d x_{1} d x_{2} f_{i}\left(x_{1}, \mu_{F}^{2}\right) f_{j}\left(x_{2}, \mu_{F}^{2}\right) & {\left[\hat{\sigma}_{0, i j \rightarrow z}\left(x_{1}, x_{2}\right)+\right.} \\
& \left.+\alpha_{\mathrm{s}}\left(\mu_{R}\right) \hat{\sigma}_{1, i j \rightarrow z}\left(x_{1}, x_{2}, \mu_{F}\right)\right]
\end{aligned}
$$

- New channels open up ( $g q \rightarrow Z q$ )
- Now X-sct depends on renorm scale $\mu_{R}$ and fact. scale $\mu_{F}$ often vary $\mu_{R}=\mu_{F}$ together not necessarily "right"
- But $\hat{\sigma}_{1}$ piece cancels large LO dependence on $\mu_{F}$
- At NNLO dependence on $\mu_{R}$ and


Anastasiou et al '03; $\mu_{R}=\mu_{F}$ $\mu_{F}$ is further cancelled

## Rules of thumb

In hadron-collider QCD calculations:

- Choose a sensible central scale for your process
- Vary $\mu_{F}, \mu_{R}$ by a factor of two around that central value
- LO: good only to within factor of two
- NLO: good to within $10-20 \%$
- NNLO: good to a few percent

The above rules fail if NLO/NNLO involve characteristically new production channels and/or large ratios of scales.







Z @ LO


Z @ NLO


Z @ NNLO


Z+jet @ LO


Z+jet @ NLO


Z+jet @ NNLO



## Z+2jets @ NLO



The bottleneck in getting $\mathrm{N}^{p} \mathrm{LO}$ predictions is usually either the calculation of the p-loop diagram, or figuring out how to combine (cancel) divergences
between 2-loops, 1-loop \& tree-level.

Z+2jets @ NLO


The bottleneck in getting $\mathrm{N}^{p} \mathrm{LO}$ predictions is usually either the calculation of the p-loop diagram, or figuring out how to combine (cancel) divergences between 2-loops, 1-loop \& tree-level.

- Tree-level / LO: $2 \rightarrow 6$ - 8

ALPGEN, CompHep, Helac/Helas, Madgraph, Sherpa, Whizard

- 1-loop / NLO: $2 \rightarrow 3$

MCFM, NLOJet++, PHOX-family + various single-process codes Several $2 \rightarrow 4$ (and first $2 \rightarrow 5$ ) have appeared in past 18 months:

Denner et al $(t t b b)$, HELAC-NLO $(t t j j, t t b \bar{b})$ Blackhat $(W / Z+3 j, W+4 j)$, Rocket $(W+3 j)$

- 2-loop / NNLO: $2 \rightarrow 1(\mathrm{~W}, \mathrm{Z}, \mathrm{H})$

FEWZ, FeHiP, HNNLO

Example of complexity of the calculations, for $\mathrm{gg} \rightarrow \mathrm{N}$ gluons:

| Njets | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# diags | 4 | 25 | 220 | 2485 | 34300 | $5 \times 10^{5}$ | $10^{7}$ |

Programs like Alpgen, Helac/Helas, Sherpa avoid Feynman diagrams

- Tree-level / LO: $2 \rightarrow 6$ - 8

ALPGEN, CompHep, Helac/Helas, Madgraph, Sherpa, Whizard

- 1-loop / NLO: $2 \rightarrow 3$

MCFM, NLOJet++, PHOX-family + various single-process codes Several $2 \rightarrow 4$ (and first $2 \rightarrow 5$ ) have appeared in past 18 months:

Denner et al $(t t b b)$, HELAC-NLO $(t t j j, t t b \bar{b})$ Blackhat $(W / Z+3 j, W+4 j)$, Rocket $(W+3 j)$

- 2-loop / NNLO: $2 \rightarrow 1(\mathrm{~W}, \mathrm{Z}, \mathrm{H})$

FEWZ, FeHiP, HNNLO

Example of complexity of the calculations, for gg $\rightarrow \mathrm{N}$ gluons:

| Njets | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# diags | 4 | 25 | 220 | 2485 | 34300 | $5 \times 10^{5}$ | $10^{7}$ |

Programs like Alpgen, Helac/Helas, Sherpa avoid Feynman diagrams and use methods that recursively build up amplitudes

Fixed-order programs give controlled accuracy, but (partonic) final states and (at NLO, NNLO) divergent weights.

Monte Carlo Parton Shower programs give a "sensible" (hadronic) final state, with unit event weights, but ill-controlled accuracy.

How well do parton showers reproduce the LO/NLO results?

## Multijet events



Generate hard dijet events, shower and hadronise them with Herwig.

Select events in which hardest jet has $p_{t}>500 \mathrm{GeV}$. Look at $p_{t}$ distribution of 3rd hardest jet

- Herwig doesn't do too bad a job of reproducing high- $p_{t}$ 3rd-jet rate But no uncertainty band Hard to know how trustworthy unless you also have NLO
- NLO does poor job at low $p_{t}$ large ratios of scales, $p_{t 3} / p_{t 1} \ll 1$, are dangerous in fixed-order calculations.

$$
\text { higher-orders } \sim \alpha_{\mathrm{s}} \ln \frac{p_{t 1}}{p_{t 3}} \sim 1
$$



Herwig: select $Z+$ 1 jet hard process.

Look at $p_{t}$ distribution of jets with highest $p_{t}, \quad 2 n d$ highest $p_{t}$, etc.

Compare to treelevel calculation

Mangano '08

Parton shower (Herwig) does very badly even just for 2nd jet. Why is this so much worse than in the pure jet case?

- Tree-level (LO) gives decent description of multi-jet structure
- NLO gives good normalisation
- Parton-shower gives good behaviour in soft-collinear regions and fully exclusive final state.

Can we combine the advantages of all three?
[Here we'll look at just Tree + Parton shower]


Z+parton


shower Z+parton

shower Z+parton


Z+2partons

shower Z+parton

shower Z+2partons

shower Z+parton

shower Z+2partons

shower of Z+parton generates hard gluon

shower Z+parton

shower Z+2partons

shower of Z+parton generates hard gluon

shower Z+parton


Double counting + associated issues with virtual corrections are the main problems when merging PS +ME

shower Z+parton

shower Z+2partons

shower of Z+parton generates hard gluon
 - Dejection generates Sudakov form factors betwnen individual iet scales

ACCEPT

shower Z+parton
ACCEPT

shower Z+2partons


- Hard jets above scale $Q_{\text {merge }}$ have distributions given by tree-level ME
- Rejection procedure eliminates "double-counted" jets from parton shower
- Rejection generates Sudakov form factors between individual jet scales How well? Depends on details of PS. One of the weaker points of MLM


- ME + PS merging helps get correct $p_{t}$ dependence
- It works much better than plain parton showers
- Normalisation is still quite uncertain




## Conclusions

## Conclusions

Over the course of these lectures we've seen some of the basic elements of QCD for hadron colliders.

We've slowly been approaching the frontiers of the subject:

- Can you do accurate matrix-element (loop) calculations for the multi-jet discovery signatures at LHC?

Blackhat/Rocket/HELAC-NLO teams are making big advances on NLO NNLO is still very tough, basically only for $p p \rightarrow H / W / Z$

- How do you put together the soft/collinear approximation (parton showers) and exact exact matrix-element calculations?

We've looked at tree-level + parton showers (need for cutoff is ugly) Also NLO + parton shower [MC@NLO, POWHEG, MENLOPS]

- How do you organise the information in an event to make signals emrge most clearly?

Novel ways of using jets

## EXTRAS

$\underline{Z+1 \text { jet }}$

$\alpha_{\mathbf{s}} \alpha_{E W}$
$\underline{Z+2}$ jets


Produced by parton shower
$\underline{Z+1 \text { jet }}$

$\alpha_{\mathrm{s}} \alpha_{E W}$
$\underline{Z+2}$ jets


Not produced by parton shower enhanced at high $p_{t}: \alpha_{\mathrm{s}}^{2} \alpha_{E W} \ln ^{2} \frac{p_{t}}{M_{z}}$

Why parton shower so poor for $\mathrm{Z}+$ jets?
$\underline{Z+1 \text { jet }}$

$\alpha_{\mathrm{s}} \alpha_{E W}$
$\underline{Z+2}$ jets


Not produced by parton shower enhanced at high $p_{t}: \alpha_{s}^{2} \alpha_{E W} \ln ^{2} \frac{p_{t}}{M_{z}}$
$\underline{Z+1 \text { jet }}$

q (=jet)
$\alpha_{s} \alpha_{E W}$
$\underline{Z+2}$ jets


Not produced by parton shower enhanced at high $p_{t}: \alpha_{s}^{2} \alpha_{E W} \ln ^{2} \frac{p_{t}}{M_{z}}$

Parton showers generate starting from hard process you asked for.
$Z / W+$ multijet production involves two classes of hard process
A. $Z+$ recoil jet; $\quad$ B. dijets + emission of $Z$ (missing from MC)

