QCD at hadron colliders Lecture 4: some main tools at LHC

Gavin Salam

CERN, Princeton & LPTHE/CNRS (Paris)

Maria Laach Herbtschule für Hochenenergiephysik September 2010, Germany

If you work directly on LHC/Tevatron physics, what QCD tools will you run into?

- Monte Carlo shower programs
 - 2. Fixed order codes
- 3. Procedures to "merge" their predictions
 - 4. Jet algorithms

If you work directly on LHC/Tevatron physics, what QCD tools will you run into?

- 1. Monte Carlo shower programs
 - 2. Fixed order codes
- 3. Procedures to "merge" their predictions
 - 4. Jet algorithms

An example process

Signal

Background

Background

Example SUSY searches

Atlas selection [all hadronic]

- no lepton
- MET > 100 GeV
- 1st, 2nd jet > 100 GeV
- 3rd,4th jet > 50 GeV
- MET / m > 20%

CMS selection [leptonic incl.]

(optimized for 10fb⁻¹, using genetic algorithm)

- 1 muon pT > 30 GeV
- MET > 130 GeV
- 1st, 2nd jet > 440 GeV
- 3rd jet > 50 GeV
- $-0.95 < \cos(MET, 1^{st}jet) < 0.3$
- cos(MET,2ndjet) < 0.85

Start with jet finding, because it's simple(st)

Projection to jets provides "common" view of different event levels But projection is not unique: we must define what we mean by a jet

Define "distance" between every pair of particles: [Cacciari, GPS & Soyez '08]

$$d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}$$

$$[\Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j^2)]$$

Define a single-particle distance

$$d_{iB} = \frac{1}{p_{ti}^2}$$

- 1. Find the smallest of d_{ii} and d_{iB}
- 2. If it's a d_{ij} , merge i and j into a single particle
- 3. If it's a d_{iB} call i a jet and remove it from list
- 4. Update all distances, go to step 1

Define "distance" between every pair of particles: [Cacciari, GPS & Soyez '08]

$$d_{ij} = \frac{1}{\mathsf{max}(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}$$

Define a single-particle distance

$$d_{iB} = \frac{1}{p_{ti}^2}$$

- 1. Find the smallest of d_{ij} and d_{iB}
- 2. If it's a d_{ij} , merge i and j into a single particle
- 3. If it's a d_{iB} call i a jet and remove it from list
- 4. Update all distances, go to step 1

Define "distance" between every pair of particles: [Cacciari, GPS & Soyez '08]

$$d_{ij} = \frac{1}{\mathsf{max}(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}$$

Define a single-particle distance

$$d_{iB} = \frac{1}{p_{ti}^2}$$

- 1. Find the smallest of d_{ii} and d_{iB}
- 2. If it's a d_{ij} , merge i and j into a single particle
- 3. If it's a d_{iB} call i a jet and remove it from list
- 4. Update all distances, go to step 1

Define "distance" between every pair of particles: [Cacciari, GPS & Soyez '08]

$$d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}$$

Define a single-particle distance

$$d_{iB} = \frac{1}{p_{ti}^2}$$

- 1. Find the smallest of d_{ij} and d_{iB}
- 2. If it's a *d_{ij}*, merge *i* and *j* into a single particle
- 3. If it's a d_{iB} call i a jet and remove it from list
- 4. Update all distances, go to step 1

Define "distance" between every pair of particles: [Cacciari, GPS & Soyez '08]

$$d_{ij} = \frac{1}{\mathsf{max}(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}$$

Define a single-particle distance

$$d_{iB} = \frac{1}{p_{ti}^2}$$

- 1. Find the smallest of d_{ij} and d_{iB}
- 2. If it's a *d_{ij}*, merge *i* and *j* into a single particle
- 3. If it's a d_{iB} call i a jet and remove it from list
- 4. Update all distances, go to step 1

Define "distance" between every pair of particles: [Cacciari, GPS & Soyez '08]

$$d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}$$

Define a single-particle distance

$$d_{iB} = \frac{1}{p_{ti}^2}$$

- 1. Find the smallest of d_{ij} and d_{iB}
- 2. If it's a *d_{ij}*, merge *i* and *j* into a single particle
- 3. If it's a d_{iB} call i a jet and remove it from list
- 4. Update all distances, go to step 1

Define "distance" between every pair of particles: [Cacciari, GPS & Soyez '08]

$$d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}$$

Define a single-particle distance

$$d_{iB} = \frac{1}{p_{ti}^2}$$

- 1. Find the smallest of d_{ij} and d_{iB}
- 2. If it's a *d_{ij}*, merge *i* and *j* into a single particle
- 3. If it's a d_{iB} call i a jet and remove it from list
- 4. Update all distances, go to step 1

Define "distance" between every pair of particles: [Cacciari, GPS & Soyez '08]

$$d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}$$

Define a single-particle distance

$$d_{iB} = \frac{1}{p_{ti}^2}$$

- 1. Find the smallest of d_{ij} and d_{iB}
- 2. If it's a d_{ij} , merge i and j into a single particle
- 3. If it's a d_{iB} call i a jet and remove it from list
- 4. Update all distances, go to step 1

Define "distance" between every pair of particles: [Cacciari, GPS & Soyez '08]

$$d_{ij} = \frac{1}{\mathsf{max}(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}$$

Define a single-particle distance

$$d_{iB} = \frac{1}{p_{ti}^2}$$

- 1. Find the smallest of d_{ij} and d_{iB}
- 2. If it's a *d_{ij}*, merge *i* and *j* into a single particle
- 3. If it's a d_{iB} call i a jet and remove it from list
- 4. Update all distances, go to step 1

Define "distance" between every pair of particles: [Cacciari, GPS & Soyez '08]

$$d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}$$

Define a single-particle distance

$$d_{iB} = \frac{1}{p_{ti}^2}$$

- 1. Find the smallest of d_{ij} and d_{iB}
- 2. If it's a d_{ij} , merge i and j into a single particle
- 3. If it's a d_{iB} call i a jet and remove it from list
- 4. Update all distances, go to step 1

Define "distance" between every pair of particles: [Cacciari, GPS & Soyez '08]

$$d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}$$

Define a single-particle distance

$$d_{iB} = \frac{1}{p_{ti}^2}$$

- 1. Find the smallest of d_{ij} and d_{iB}
- 2. If it's a *d_{ij}*, merge *i* and *j* into a single particle
- 3. If it's a d_{iB} call i a jet and remove it from list
- 4. Update all distances, go to step 1

Define "distance" between every pair of particles: [Cacciari, GPS & Soyez '08]

$$d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}$$

Define a single-particle distance

$$d_{iB} = \frac{1}{p_{ti}^2}$$

- 1. Find the smallest of d_{ij} and d_{iB}
- 2. If it's a d_{ij} , merge i and j into a single particle
- 3. If it's a d_{iB} call i a jet and remove it from list
- 4. Update all distances, go to step 1

Define "distance" between every pair of particles: [Cacciari, GPS & Soyez '08]

$$d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}$$

Define a single-particle distance

$$d_{iB} = \frac{1}{p_{ti}^2}$$

- 1. Find the smallest of d_{ij} and d_{iB}
- 2. If it's a *d_{ij}*, merge *i* and *j* into a single particle
- 3. If it's a d_{iB} call i a jet and remove it from list
- 4. Update all distances, go to step 1

Define "distance" between every pair of particles: [Cacciari, GPS & Soyez '08]

$$d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}$$

Define a single-particle distance

$$d_{iB} = \frac{1}{p_{ti}^2}$$

- 1. Find the smallest of d_{ij} and d_{iB}
- 2. If it's a d_{ij} , merge i and j into a single particle
- 3. If it's a d_{iB} call i a jet and remove it from list
- 4. Update all distances, go to step 1

Define "distance" between every pair of particles: [Cacciari, GPS & Soyez '08]

$$d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}$$

Define a single-particle distance

$$d_{iB} = \frac{1}{p_{ti}^2}$$

- 1. Find the smallest of d_{ij} and d_{iB}
- 2. If it's a *d_{ij}*, merge *i* and *j* into a single particle
- 3. If it's a d_{iB} call i a jet and remove it from list
- 4. Update all distances, go to step 1

Define "distance" between every pair of particles: [Cacciari, GPS & Soyez '08]

$$d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}$$

Define a single-particle distance

$$d_{iB} = \frac{1}{p_{ti}^2}$$

- 1. Find the smallest of d_{ij} and d_{iB}
- 2. If it's a d_{ij} , merge i and j into a single particle
- 3. If it's a d_{iB} call i a jet and remove it from list
- 4. Update all distances, go to step 1

Define "distance" between every pair of particles: [Cacciari, GPS & Soyez '08]

$$d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}$$

Define a single-particle distance

$$d_{iB} = \frac{1}{p_{ti}^2}$$

- 1. Find the smallest of d_{ij} and d_{iB}
- 2. If it's a *d_{ij}*, merge *i* and *j* into a single particle
- 3. If it's a d_{iB} call i a jet and remove it from list
- 4. Update all distances, go to step 1

Define "distance" between every pair of particles: [Cacciari, GPS & Soyez '08]

$$d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}$$

Define a single-particle distance

$$d_{iB} = \frac{1}{p_{ti}^2}$$

- 1. Find the smallest of d_{ij} and d_{iB}
- 2. If it's a d_{ij} , merge i and j into a single particle
- 3. If it's a d_{iB} call i a jet and remove it from list
- 4. Update all distances, go to step 1

Define "distance" between every pair of particles: [Cacciari, GPS & Soyez '08]

$$d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}$$

Define a single-particle distance

$$d_{iB} = \frac{1}{p_{ti}^2}$$

- 1. Find the smallest of d_{ij} and d_{iB}
- 2. If it's a d_{ij} , merge i and j into a single particle
- 3. If it's a d_{iB} call i a jet and remove it from list
- 4. Update all distances, go to step 1

Define "distance" between every pair of particles: [Cacciari, GPS & Soyez '08]

$$d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2} \qquad [\Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j^2)]$$

The algorithm involves two parameters:

- 1. R, the angular reach for the jets
- 2. A p_t threshold for the final jets to be considered relevant

- 2. If it's a d_{ij} , merge i and j into a single particle
- 3. If it's a d_{iB} call i a jet and remove it from list
- 4. Update all distances, go to step 1

Define "distance" between every pair of particles: [Cacciari, GPS & Soyez '08]

$$d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2} \qquad [\Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j^2)]$$

The algorithm involves two parameters:

- 1. R, the angular reach for the jets
- 2. A p_t threshold for the final jets to be considered relevant

[It's the default algorithm for ATLAS & CMS]

- 2. If it's a d_{ij} , merge i and j into a single particle
- 3. If it's a d_{iB} call i a jet and remove it from list
- 4. Update all distances, go to step 1

What accuracy are our predictions?

It matters if we're say a signal is just an excess over expected backgrounds...

total X-section $e^+e^- \rightarrow Z \rightarrow \text{hadrons}$

Start simply and look back at cross section for $e^+e^- \to Z \to \text{hadrons}$ (at $\sqrt{s} \equiv Q = M_Z$).

In lecture 1 we wrote:

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(\underbrace{1}_{\text{LO}} + \underbrace{1.045 \frac{\alpha_{s}(Q)}{\pi}}_{\text{NLO}} + \underbrace{0.94 \left(\frac{\alpha_{s}(Q)}{\pi} \right)^{2}}_{\text{NNLO}} + \cdots \right)$$

Who told us we should we should write the series in terms of $\alpha_s(Q)$?

 $Q=M_Z$ is the only physical scale in the problem, so not unreasonable. But hardest possible gluon emission is E=Q/2. Should we have used Q/2?

And virtual gluons can have E>Q. Should we have used 2Q?

Start with the first order that "contains QCD" (NLO).

Introduce arbitrary renormalisation scale for the coupling, μ_R

$$\sigma^{ ext{NLO}} = \sigma_{m{q}ar{m{q}}} \left(1 \, + \, m{c_1} lpha_{m{\mathsf{s}}}(\mu_{m{\mathsf{R}}}) \, \right)$$

Result depends on the choice of μ_R .

Convention: the uncertainty on the result is the range of answers obtained for $Q/2 < \mu_R < 2Q$.

Start with the first order that "contains QCD" (NLO).

Introduce arbitrary renormalisation scale for the coupling, μ_R

$$\sigma^{ ext{NLO}} = \sigma_{m{q}ar{m{q}}} \left(1 \, + \, m{c_1} lpha_{m{\mathsf{s}}}(\mu_{m{\mathsf{R}}}) \, \right)$$

Result depends on the choice of μ_R .

Convention: the uncertainty on the result is the range of answers obtained for $Q/2 < \mu_R < 2Q$.

Let's express results for arbitrary μ_R in terms of $\alpha_s(Q)$:

$$\begin{split} \sigma^{\text{NLO}}(\mu_R) &= \sigma_{q\bar{q}} \left(1 \, + \, c_1 \, \alpha_{\text{s}}(\mu_R) \right) \\ &= \sigma_{q\bar{q}} \, \left(1 \, + \, c_1 \, \alpha_{\text{s}}(Q) - 2 c_1 b_0 \ln \frac{\mu_R}{Q} \, \alpha_{\text{s}}^2(Q) + \mathcal{O} \left(\alpha_{\text{s}}^3 \right) \, \right) \end{split}$$

As we vary the renormalisation scale μ_R , we introduce $\mathcal{O}\left(\alpha_{\rm s}^2\right)$ pieces into the X-section. I.e. generate some set of NNLO terms \sim uncertainty on X-section from missing NNLO calculation.

If we now calculate the full NNLO correction, then it will be structured so as to cancel the $\mathcal{O}\left(\alpha_s^2\right)$ scale variation

$$au^{
m NNLO}(\mu_R) = \sigma_{qar{q}} \, \left[1 \, + \, c_1 \, lpha_{
m s}(\mu_R) + c_2(\mu_R) lpha_{
m s}^2(\mu_R)
ight.$$
 $c_2(\mu_R) = c_2(Q) + 2c_1 b_0 \ln rac{\mu_R}{Q}$

Remaining uncertainty is now $\mathcal{O}\left(lpha_{
m s}^3
ight)$.

Scale dependence (cont.)

Let's express results for arbitrary μ_R in terms of $\alpha_s(Q)$:

$$\sigma^{
m NLO}(\mu_R) = \sigma_{qar{q}} \left(1 \right)$$

$$= \sigma_{qar{q}} \left(\alpha_{
m s}(\mu_R) = rac{lpha_{
m s}(Q)}{1 + 2b_0 \, lpha_{
m s}(Q) \, \ln \mu_R/Q}
ight)$$
we vary the renorma
 $= lpha_{
m s}(Q) - 2b_0 \, lpha_{
m s}^2(Q) \, \ln \mu_R/Q + \mathcal{O}\left(lpha_{
m s}^3
ight)$

the X-section. I.e. generate some set of NNLO terms \sim uncertainty on X-section from missing NNLO calculation.

If we now calculate the full NNLO correction, then it will be structured so as to cancel the $\mathcal{O}\left(\alpha_s^2\right)$ scale variation

$$\sigma^{\text{NNLO}}(\mu_R) = \sigma_{q\bar{q}} \left[1 + c_1 \alpha_s(\mu_R) + c_2(\mu_R) \alpha_s^2(\mu_R) \right]$$
$$c_2(\mu_R) = c_2(Q) + 2c_1 b_0 \ln \frac{\mu_R}{Q}$$

Remaining uncertainty is now $\mathcal{O}\left(lpha_{\mathsf{s}}^{\mathsf{3}}
ight)$.

Let's express results for arbitrary μ_R in terms of $\alpha_s(Q)$:

$$\begin{split} \sigma^{\scriptscriptstyle \mathrm{NLO}}(\mu_R) &= \sigma_{q\bar{q}} \left(1 \, + \, c_1 \, \alpha_{\mathsf{s}}(\mu_R) \, \right) \\ &= \sigma_{q\bar{q}} \, \left(1 \, + \, c_1 \, \alpha_{\mathsf{s}}(Q) - 2 c_1 b_0 \ln \frac{\mu_R}{Q} \, \alpha_{\mathsf{s}}^2(Q) + \mathcal{O} \left(\alpha_{\mathsf{s}}^3 \right) \, \right) \end{split}$$

As we vary the renormalisation scale μ_R , we introduce $\mathcal{O}\left(\alpha_{\rm s}^2\right)$ pieces into the X-section. I.e. generate some set of NNLO terms \sim uncertainty on X-section from missing NNLO calculation.

If we now calculate the full NNLO correction, then it will be structured so as to cancel the $\mathcal{O}\left(\alpha_s^2\right)$ scale variation

$$\sigma^{ ext{NNLO}}(\mu_R) = \sigma_{qar{q}} \, \left[1 \, + \, c_1 \, lpha_{ extsf{s}}(\mu_R) + c_2 (\mu_R) lpha_{ extsf{s}}^2 (\mu_R)
ight.$$
 $c_2(\mu_R) = c_2(Q) + 2c_1 b_0 \ln rac{\mu_R}{Q}$

Remaining uncertainty is now $\mathcal{O}\left(lpha_{\mathsf{s}}^{\mathsf{3}}
ight)$.

Scale dependence (cont.)

Let's express results for arbitrary μ_R in terms of $\alpha_s(Q)$:

$$\sigma^{\text{NLO}}(\mu_R) = \sigma_{q\bar{q}} \left(1 + c_1 \alpha_{\mathsf{s}}(\mu_R) \right)$$

$$= \sigma_{q\bar{q}} \left(1 + c_1 \alpha_{\mathsf{s}}(Q) - 2c_1 b_0 \ln \frac{\mu_R}{Q} \alpha_{\mathsf{s}}^2(Q) + \mathcal{O}\left(\alpha_{\mathsf{s}}^3\right) \right)$$

As we vary the renormalisation scale μ_R , we introduce $\mathcal{O}\left(\alpha_s^2\right)$ pieces into the X-section. I.e. generate some set of NNLO terms \sim uncertainty on X-section from missing NNLO calculation.

If we now calculate the full NNLO correction, then it will be structured so as to cancel the $\mathcal{O}\left(\alpha_{\rm s}^2\right)$ scale variation

$$\sigma^{ ext{NNLO}}(\mu_R) = \sigma_{qar{q}} \left[1 + c_1 \alpha_{\mathsf{s}}(\mu_R) + c_2(\mu_R) \alpha_{\mathsf{s}}^2(\mu_R) \right]$$

$$c_2(\mu_R) = c_2(Q) + 2c_1 b_0 \ln \frac{\mu_R}{Q}$$

Remaining uncertainty is now $\mathcal{O}\left(\alpha_s^3\right)$.

Scale dependence: NNLO

See how at NNLO, scale dependence is much flatter, final uncertainty much smaller.

Because now we neglect only $lpha_{
m s}^{
m 3}$ instead of $lpha_{
m s}^{
m 2}$

Moral: not knowing exactly how so set scale \rightarrow blessing in disguise, since it gives us handle on uncertainty.

Scale variation ≡ standard procedure
Often a good guide
Except when it isn't!

NB: if we had a large number of orders of perturbation theory, scale dependence would just disappear.

Scale dependence: NNLO

See how at NNLO, scale dependence is much flatter, final uncertainty much smaller.

Because now we neglect only α_s^3 instead of α_s^2

Moral: not knowing exactly how to set scale → blessing in disguise, since it gives us handle on uncertainty.

Scale variation \equiv standard procedure Often a good guide Except when it isn't!

NB: if we had a large number of orders of perturbation theory, scale dependence would just disappear.

Scale dependence: NNLO

See how at NNLO, scale dependence is much flatter, final uncertainty much smaller.

Because now we neglect only α_s^3 instead of α_s^2

Moral: not knowing exactly how to set scale → blessing in disguise, since it gives us handle on uncertainty.

Scale variation \equiv standard procedure Often a good guide Except when it isn't!

NB: if we had a large number of orders of perturbation theory, scale dependence would just disappear.

Now switch to looking at the Z cross section in pp

$$\sigma_{pp\to Z}^{\text{LO}} = \sum_{i} \int dx_1 dx_2 \, f_{q_i}(x_1, \mu_F^2) \, f_{\bar{q}_i}(x_2, \mu_F^2) \, \hat{\sigma}_{0, q_i \bar{q}_i \to Z}(x_1 p_1, x_2 p_2) \,,$$

- $m{\sigma}_{0,q_iar{q}_i o Z}\propto lpha_{EW}$, knows nothing about QCD like $\sigma_{e^+e^- o Z}$
- ▶ But $\sigma_{0,q_i\bar{q}_i\to Z}$ depends on PDFs.
- We have to choose a factorisation scale, μ_F .
- Natural choice: $\mu_F = M_Z$, but one should vary it (just like the renorm. scale, μ_R , for α_s).

Plot shows $\sigma_{pp \to Z}^{\text{LO}}$ differentially as a function of rapidity (y) of Z. Band is uncertainty due to variation of μ_F .

$$\sigma_{pp\to Z}^{\text{LO}} = \sum_{i} \int dx_1 dx_2 \, f_{q_i}(x_1, \mu_F^2) \, f_{\bar{q}_i}(x_2, \mu_F^2) \, \hat{\sigma}_{0, q_i \bar{q}_i \to Z}(x_1 p_1, x_2 p_2) \,,$$

- $\begin{array}{ll} \bullet & \sigma_{0,q_i\bar{q}_i\to Z} \propto \alpha_{EW} \text{, knows nothing} \\ \text{about QCD} & \text{like } \sigma_{e^+e^-\to Z} \end{array}$
- ▶ But $\sigma_{0,q_i\bar{q}_i\to Z}$ depends on PDFs.
- We have to choose a factorisation scale, μ_F .
- Natural choice: $\mu_F = M_Z$, but one should vary it (just like the renorm. scale, μ_R , for α_s).

Plot shows $\sigma^{\text{LO}}_{pp \to Z}$ differentially as a function of rapidity (y) of Z. Band is uncertainty due to variation of μ_F .

QCD lecture 4 (p. 16)

$$L$$
 Accuracy of QCD
 $L_{pp} \rightarrow Z + X$

$pp \rightarrow Z + X$ at (N)NLO

$$\sigma_{pp\to Z}^{\text{NLO}} = \sum_{i,j} \int dx_1 dx_2 \, f_i(x_1, \mu_F^2) \, f_j(x_2, \mu_F^2) \left[\hat{\sigma}_{0,ij\to Z}(x_1, x_2) + \alpha_s(\mu_R) \hat{\sigma}_{1,ij\to Z}(x_1, x_2, \mu_F) \right]$$

- ▶ New channels open up (gq o Zq)
- Now X-sct depends on renorm scale μ_R and fact. scale μ_F often vary $\mu_R = \mu_F$ together not necessarily "right"
- ▶ But $\hat{\sigma}_1$ piece cancels large LO dependence on μ_F
- At NNLO dependence on μ_R and μ_F is further cancelled

QCD lecture 4 (p. 16)

$$L$$
 Accuracy of QCD
 $L_{pp} \rightarrow Z + X$

$pp \rightarrow Z + X$ at (N)NLO

$$\sigma_{pp\to Z}^{\text{NLO}} = \sum_{i,j} \int dx_1 dx_2 \, f_i(x_1, \mu_F^2) \, f_j(x_2, \mu_F^2) \left[\hat{\sigma}_{0,ij\to Z}(x_1, x_2) + \alpha_s(\mu_R) \hat{\sigma}_{1,ij\to Z}(x_1, x_2, \mu_F) \right]$$

 $^{12}\sigma/\mathrm{dM}/\mathrm{dY}$ [pb/GeV]

- ▶ New channels open up (gq o Zq)
- Now X-sct depends on renorm scale μ_R and fact. scale μ_F often vary $\mu_R = \mu_F$ together not necessarily "right"
- ▶ But $\hat{\sigma}_1$ piece cancels large LO dependence on μ_F
- At NNLO dependence on μ_R and μ_F is further cancelled

Anastasiou et al '03; $\mu_R = \mu_F$

QCD lecture 4 (p. 16)

$$L$$
 Accuracy of QCD
 $L_{pp} \rightarrow Z + X$

$pp \rightarrow Z + X$ at (N)NLO

$$\sigma_{pp\to Z}^{\text{NLO}} = \sum_{i,j} \int dx_1 dx_2 \, f_i(x_1, \mu_F^2) \, f_j(x_2, \mu_F^2) \left[\hat{\sigma}_{0,ij\to Z}(x_1, x_2) + \alpha_s(\mu_R) \hat{\sigma}_{1,ij\to Z}(x_1, x_2, \mu_F) \right]$$

- ▶ New channels open up (gq o Zq)
- Now X-sct depends on renorm scale μ_R and fact. scale μ_F often vary $\mu_R = \mu_F$ together not necessarily "right"
- ▶ But $\hat{\sigma}_1$ piece cancels large LO dependence on μ_F
- ▶ At NNLO dependence on μ_R and μ_F is further cancelled

Anastasiou et al '03; $\mu_R = \mu_F$

In hadron-collider QCD calculations:

- ► Choose a sensible central scale for your process
- ▶ Vary μ_F , μ_R by a factor of two around that central value
- ▶ LO: good only to within factor of two

Despite $\alpha_{\rm s} \simeq 0.1$

- ▶ NLO: good to within 10 20%
- ▶ NNLO: good to a few percent

The above rules fail if NLO/NNLO involve characteristically new production channels and/or large ratios of scales.

The limits of what we know

- ▶ Tree-level / LO: $2 \rightarrow 6 8$
 - ALPGEN, CompHep, Helac/Helas, Madgraph, Sherpa, Whizard
- ► 1-loop / NLO: **2** → **3**

MCFM, NLOJet++, PHOX-family + various single-process codes Several 2 \rightarrow 4 (and first 2 \rightarrow 5) have appeared in past 18 months: Denner et al (ttbb), HELAC-NLO(ttjj, $ttb\bar{b}$) Blackhat (W/Z+3j, W+4j), Rocket(W+3j)

► 2-loop / NNLO: 2 → 1 (W,Z,H) FEWZ, FeHiP, HNNLO

Example of complexity of the calculations, for gg \rightarrow N gluons:

 Njets
 2
 3
 4
 5
 6
 7
 8

 # diags
 4
 25
 220
 2485
 34300
 5×10⁵
 10⁷

Programs like Alpgen, Helac/Helas, Sherpa avoid Feynman diagrams and use methods that recursively build up amplitudes

The limits of what we know

FEWZ, FeHiP, HNNLO

▶ Tree-level / LO: $2 \rightarrow 6 - 8$

▶ 2-loop / NNLO: $2 \rightarrow 1$ (W,Z,H)

- ${\sf ALPGEN,\ CompHep,\ Helac/Helas,\ Madgraph,\ Sherpa,\ Whizard}$
- ► 1-loop / NLO: **2** → **3**

MCFM, NLOJet++, PHOX-family + various single-process codes Several 2 \rightarrow 4 (and first 2 \rightarrow 5) have appeared in past 18 months:

Denner et al (ttbb), HELAC-NLO(ttjj, $ttb\bar{b}$)
Blackhat (W/Z + 3i, W + 4i), Rocket(W + 3i)

Example of complexity of the calculations, for $gg \to N$ gluons:

Njets	2	3	4	5	6	7	8
# diags	4	25	220	2485	34300	5×10 ⁵	10 ⁷

Programs like Alpgen, Helac/Helas, Sherpa avoid Feynman diagrams and use methods that recursively build up amplitudes

Fixed-order programs give controlled accuracy, but (partonic) final states and (at NLO, NNLO) divergent weights.

Monte Carlo Parton Shower programs give a "sensible" (hadronic) final state, with unit event weights, but ill-controlled accuracy.

How well do parton showers reproduce the LO/NLO results?

Generate hard dijet events, shower and hadronise them with Herwig.

Select events in which hardest jet has $p_t > 500$ GeV. Look at p_t distribution of 3rd hardest jet

- Herwig doesn't do too bad a job of reproducing high-pt 3rd-jet rate
 But no uncertainty band
 Hard to know how trustworthy unless you also have NLO
- NLO does poor job at low p_t —large ratios of scales, $p_{t3}/p_{t1}\ll 1$, are dangerous in fixed-order calculations. higher-orders $\sim \alpha_{\rm s} \ln \frac{p_{t1}}{\sim 1}$

Herwig: select Z + 1 jet hard process.

Look at p_t distribution of jets with highest p_t , 2nd highest p_t , etc.

Compare to treelevel calculation Mangano '08

Parton shower (Herwig) does very badly even just for 2nd jet. Why is this so much worse than in the pure jet case?

- ► Tree-level (LO) gives decent description of multi-jet structure
- NLO gives good normalisation
- ▶ Parton-shower gives good behaviour in soft-collinear regions and fully exclusive final state.

Can we combine the advantages of all three? [Here we'll look at just Tree + Parton shower]

Add Z+1jet, Z+2jet + shower

Double counting + associated issues with virtual corrections are the main problems when merging PS + ME

"MLM" matching in a nutshell

- lacktriangle Hard jets above scale Q_{merge} have distributions given by tree-level ME
- ▶ Rejection procedure eliminates "double-counted" jets from parton shower
- Rejection generates Sudakov form factors between individual jet scales How well? Depends on details of PS. One of the weaker points of MLM

"MLM" matching in a nutshell

- lacktriangle Hard jets above scale Q_{merge} have distributions given by tree-level ME
- Rejection procedure eliminates "double-counted" jets from parton shower
- Rejection generates Sudakov form factors between individual jet scales
 How well? Depends on details of PS. One of the weaker points of MLM

"MLM" matching in a nutshell

- lacktriangle Hard jets above scale Q_{merge} have distributions given by tree-level ME
- Rejection procedure eliminates "double-counted" jets from parton shower
- Rejection generates Sudakov form factors between individual jet scales How well? Depends on details of PS. One of the weaker points of MLM

- ► ME + PS merging helps get correct *p*^t dependence
- ► It works much better than plain parton showers
- Normalisation is still quite uncertain

Conclusions

Over the course of these lectures we've seen some of the basic elements of QCD for hadron colliders.

We've slowly been approaching the frontiers of the subject:

Can you do accurate matrix-element (loop) calculations for the multi-jet discovery signatures at LHC?

Blackhat/Rocket/HELAC-NLO teams are making big advances on NLO NNLO is still very tough, basically only for $pp \to H/W/Z$

► How do you put together the soft/collinear approximation (parton showers) and exact exact matrix-element calculations?

We've looked at tree-level + parton showers (need for cutoff is ugly) Also NLO + parton shower [MC@NLO, POWHEG, MENLOPS]

How do you organise the information in an event to make signals emrge most clearly? Novel ways of using jets

EXTRAS

Parton showers generate starting from hard process you asked for. Z/W + multijet production involves **two classes of hard process A.** Z + recoil jet; **B.** dijets + emission of Z (missing from MC)

enhanced at high p_t : $\alpha_s^2 \alpha_{EW} \ln^2 \frac{p_t}{M_Z}$

Parton showers generate starting from hard process you asked for. Z/W + multijet production involves **two classes of hard process A.** Z + recoil jet; **B.** dijets + emission of Z (missing from MC)

enhanced at high p_t : $\alpha_s^2 \alpha_{EW} \ln^2 \frac{p_t}{M_Z}$

Parton showers generate starting from hard process you asked for. Z/W + multijet production involves **two classes of hard process A.** Z + recoil jet; **B.** dijets + emission of Z (missing from MC)

Parton showers generate starting from hard process you asked for. Z/W + multijet production involves **two classes of hard process A.** Z + recoil jet; **B.** dijets + emission of Z (missing from MC)