Jets at Hadron Colliders (2)

Gavin Salam

CERN, Princeton and LPTHE/Paris (CNRS)

CERN Academic Training Lectures 30 March - 1 April 2011

A full set of IRC-safe jet algorithms

Generalise inclusive-type sequential recombination with

$$d_{ij} = \min(k_{ti}^{2\mathbf{p}}, k_{tj}^{2\mathbf{p}}) \Delta R_{ij}^2 / R^2$$
 $d_{iB} = k_{ti}^{2\mathbf{p}}$

	Alg. name	Comment	time
p = 1	k _t	Hierarchical in rel. k_t	
	CDOSTW '91-93; ES '93		NIn N exp.
p = 0	Cambridge/Aachen	Hierarchical in angle	
	Dok, Leder, Moretti, Webber '97	Scan multiple <i>R</i> at once	N In N
	Wengler, Wobisch '98	$\leftrightarrow QCD \text{ angular ordering}$	
p = -1	${\sf anti-}k_t$ Cacciari, GPS, Soyez '08	Hierarchy meaningless, jets	
	\sim reverse- k_t Delsart	like CMS cone (IC-PR)	$N^{3/2}$
SC-SM	SISCone	Replaces JetClu, ATLAS	
	GPS Soyez '07 + Tevatron run II '00 $$	MidPoint (xC-SM) cones	$N^2 \ln N \exp$.

All these algorithms [& much more] coded in (efficient) C++ at http://fastjet.fr/ (Cacciari, GPS & Soyez '05-'11)

Jets lecture 2 (Gavin Salam)

CERN Academic Training

Linearity: k_t v. anti- k_t

Linearity: k_t v. anti- k_t

Linearity: k_t v. anti- k_t

Linearity: k_t v. anti- k_t

Linearity: k_t v. anti- k_t

Linearity: k_t v. anti- k_t

Linearity: k_t v. anti- k_t

Linearity: k_t v. anti- k_t

Linearity: k_t v. anti- k_t

Linearity: k_t v. anti- k_t

Linearity: k_t v. anti- k_t

Linearity: k_t v. anti- k_t

The full cross section that you measure in experiment should correspond to an expression looking roughly as follows:

$$\sigma^{full} = \sigma_{LO} \left(1 + \alpha_{s}c_{1} + \alpha_{s}^{2}c_{2} + \alpha_{s}^{3}c_{3} + \ldots + \mathcal{O}\left(\frac{\Lambda_{QCD}}{P_{t}}\right) \right)$$

A perturbative series

plus a non-perturbative contribution, suppressed by a power of Λ_{QCD}/p_t

We don't have the technology to calculate the full series or the non-perturbative part. Typically, one might "just" calculate next-to-leading order

$$\sigma^{\mathsf{NLO}} = \sigma_{\mathsf{LO}} \left(1 + \alpha_{\mathsf{s}} \mathsf{c}_1 \right)$$

The point to perturbation theory is that the $c_2 \alpha_s^2$, etc. terms are small compared to the ones you have calculated — *hence* (e.g.) NLO should be a good approximation.

The full cross section that you measure in experiment should correspond to an expression looking roughly as follows:

$$\sigma^{full} = \sigma_{LO} \left(1 + \alpha_{s}c_{1} + \alpha_{s}^{2}c_{2} + \alpha_{s}^{3}c_{3} + \ldots + \mathcal{O}\left(\frac{\Lambda_{QCD}}{P_{t}}\right) \right)$$

A perturbative series

plus a non-perturbative contribution, suppressed by a power of Λ_{QCD}/p_t

We don't have the technology to calculate the full series or the non-perturbative part. Typically, one might "just" calculate next-to-leading order

$$\sigma^{\mathsf{NLO}} = \sigma_{\mathsf{LO}} \left(1 + \alpha_{\mathsf{s}} \mathsf{c}_1 \right)$$

The point to perturbation theory is that the $c_2\alpha_s^2$, etc. terms are small compared to the ones you have calculated — *hence (e.g.) NLO should be a good approximation*.

What happens with an infrared or collinear unsafe algorithm?

First 'jet algorithm' dates back to Sterman and Weinberg (1977) — the original infrared-safe cross section:

To study jets, we consider the partial cross section $\sigma(E, \theta, \Omega, \varepsilon, \delta)$ for e⁺e⁻ hadron production events, in which all but a fraction $\varepsilon \ll 1$ of the total e⁺e⁻ energy E is emitted within some pair of oppositely directed cones of half-angle $\delta \ll 1$, lying within two fixed cones of solid angle Ω (with $\pi \delta^2 \ll \Omega \ll 1$) at an angle θ to the e⁺e⁻ beam line. We expect this to be measur-

$$\sigma(\mathbf{E},\theta,\Omega,\varepsilon,\delta) = (d\sigma/d\Omega)_{0}\Omega\left[1 - (g_{\mathrm{E}}^{2}/3\pi^{2})\left\{3\ln\delta + 4\ln\delta\ln2\varepsilon + \frac{\pi^{3}}{3} - \frac{5}{2}\right\}\right]$$

Groundbreaking; good for 2 jets in $e^+e^$ but generalisations to hadron colliders often had problems

One of the simplest of the cone algs e.g. CMS iterative cone

- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable
- Convert contents into a "jet" and remove from event

Notes

One of the simplest of the cone algs e.g. CMS iterative cone

- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable
- Convert contents into a "jet" and remove from event

Notes

One of the simplest of the cone algs e.g. CMS iterative cone

- Take hardest particle as seed for cone axis
- Draw cone around seed

Sum the momenta use as new seed direction, iterate until stable

 Convert contents into a "jet" and remove from event

Notes

One of the simplest of the cone algs e.g. CMS iterative cone

- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable
- Convert contents into a "jet" and remove from event

Notes

One of the simplest of the cone algs e.g. CMS iterative cone

- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable
- Convert contents into a "jet" and remove from event

Notes

 "Hardest particle" is collinear unsafe more right away...

One of the simplest of the cone algs e.g. CMS iterative cone

- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable
- Convert contents into a "jet" and remove from event

Notes

 "Hardest particle" is collinear unsafe more right away...

One of the simplest of the cone algs e.g. CMS iterative cone

- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable
- Convert contents into a "jet" and remove from event

Notes

 "Hardest particle" is collinear unsafe more right away...

One of the simplest of the cone algs e.g. CMS iterative cone

- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable
- Convert contents into a "jet" and remove from event

Notes

 "Hardest particle" is collinear unsafe more right away...

One of the simplest of the cone algs e.g. CMS iterative cone

- Take hardest particle as seed for cone axis
- Draw cone around seed
- Sum the momenta use as new seed direction, iterate until stable
- Convert contents into a "jet" and remove from event

Notes

 "Hardest particle" is collinear unsafe more right away...

Jets lecture 2 (Gavin Salam)

Jets lecture 2 (Gavin Salam)

Jets lecture 2 (Gavin Salam)

Jets lecture 2 (Gavin Salam)

Jets lecture 2 (Gavin Salam)

Jets lecture 2 (Gavin Salam)

Jets lecture 2 (Gavin Salam)

Consequences of collinear unsafety

Invalidates perturbation theory
Consequences of collinear unsafety

Invalidates perturbation theory

Real life does not have infinities, but pert. infinity leaves a real-life trace

 $\alpha_{\rm s}^2 + \alpha_{\rm s}^3 + \alpha_{\rm s}^4 \times \infty \rightarrow \alpha_{\rm s}^2 + \alpha_{\rm s}^3 + \alpha_{\rm s}^4 \times \ln p_t / \Lambda \rightarrow \alpha_{\rm s}^2 + \alpha_{\rm s}^3 + \alpha_{\rm s}^3$ BOTH WASTED

Among consequences of IR unsafety:

	1			
	Last i			
	JetClu, ATLAS	MidPoint	CMS it. cone	Known at
	LO	NLO	NLO	NLO (\rightarrow NNLO)
W/Z+1 jet	LO	NLO	NLO	NLO
		LO	LO	NLO [nlojet++]
W/Z + 2 jets		LO	LO	NLO [MCFM]
				NLO [Blackhat/Rocket/]

NB: 50,000,000\$/ \pounds /CHF/ \in investment in NLO

Multi-jet contexts much more sensitive: **ubiquitous at LHC** And LHC will rely on QCD for background double-checks extraction of cross sections, extraction of parameters

Jets lecture 2 (Gavin Salam)

CERN Academic Training

March/April 2011

10 / 28

Real life does not have infinities, but pert. infinity leaves a real-life trace

$$\alpha_{\rm s}^2 + \alpha_{\rm s}^3 + \alpha_{\rm s}^4 \times \infty \to \alpha_{\rm s}^2 + \alpha_{\rm s}^3 + \alpha_{\rm s}^4 \times \ln p_t / \Lambda \to \alpha_{\rm s}^2 + \underbrace{\alpha_{\rm s}^3 + \alpha_{\rm s}^3}_{\text{BOTH WASTED}}$$

Among consequences of IR unsafety:

	Last i				
	JetClu, ATLAS	MidPoint CMS it. cone		Known at	
	CONE [IC-SM]	[IC _{mp} -SM]	[IC-PR]		
Inclusive jets	LO	NLO	NLO	NLO (\rightarrow NNLO)	
W/Z + 1 jet	LO	NLO	NLO	NLO	
3 jets	none	LO	LO	NLO [nlojet++]	
W/Z + 2 jets	none	LO	LO	NLO [MCFM]	
$m_{\rm jet}$ in $2j + X$	none	none	none	NLO [Blackhat/Rocket/]	

NB: 50,000,000 $/ \pounds/CHF \in investment in NLO$

Multi-jet contexts much more sensitive: **ubiquitous at LHC** And LHC will rely on QCD for background double-checks extraction of cross sections, extraction of parameters

Jets lecture 2 (Gavin Salam)

CERN Academic Training

March/April 2011

10 / 28

Real life does not have infinities, but pert. infinity leaves a real-life trace

 $\alpha_{\rm s}^2 + \alpha_{\rm s}^3 + \alpha_{\rm s}^4 \times \infty \to \alpha_{\rm s}^2 + \alpha_{\rm s}^3 + \alpha_{\rm s}^4 \times \ln p_t / \Lambda \to \alpha_{\rm s}^2 + \alpha_{\rm s}^3 + \alpha_{\rm s}^3$

 $\underbrace{\alpha_s^3 + \alpha_s^3}_{\text{BOTH WASTED}}$

Among consequences of IR unsafety:

	Last meaningful order				
	JetClu, ATLAS	MidPoint CMS it. cone		Known at	
	CONE [IC-SM]	[IC _{mp} -SM]	[IC-PR]		
Inclusive jets	LO	NLO	NLO	$NLO\ (\to NNLO)$	
W/Z + 1 jet	LO	NLO	NLO	NLO	
3 jets	none	LO	LO	NLO [nlojet++]	
W/Z + 2 jets	none	LO	LO	NLO [MCFM]	
$m_{\rm jet}$ in $2j + X$	none	none	none	NLO [Blackhat/Rocket/]	

NB: 50,000,000 $/ \pounds/CHF \in investment in NLO$

Multi-jet contexts much more sensitive: **ubiquitous at LHC** And LHC will rely on QCD for background double-checks extraction of cross sections, extraction of parameters

Jets lecture 2 (Gavin Salam)

CERN Academic Training

March/April 2011 10 / 28

Cones v. anti- k_t

[Theory v. experiment] [Cone algorithms]

ICPR type cone can straightforwardly be replaced by anti- k_t .

Another class of cones — those with split-merge steps (Tevatron, old AT-LAS cone), can be replaced with the *Seedless Infrared Safe Cone* (*SISCone*).

Towards an understanding of jets

How a jet is and isn't like a parton — quantitatively

And how this relationship is affected by the jet radius

Small jet radius Large jet radius

single parton @ LO: jet radius irrelevant

Small jet radius

Large jet radius

Small jet radius

perturbative fragmentation: large jet radius better (it captures more)

Small jet radius

Large jet radius

non-perturbative fragmentation: large jet radius better (it captures more)

underlying ev. & pileup "noise": **small jet radius better** (it captures less)

Small jet radius

Large jet radius

multi-hard-parton events: **small jet radius better** (it resolves partons more effectively)

[Understanding jets] └ [Reach]

[Understanding jets] └[Reach]

[Understanding jets] └[Reach]

Parton pt v. jet pt

3 physical effects:

Gluon radiation from the parton
 Hadronisation
 Underlying Event

One important consideration:

Whether the parton is a quark or a gluon [quarks radiate with colour factor $C_F = 4/3$ gluons radiate with colour factor $C_A = 3$]

The question's dangerous: a "parton" is an ambiguous concept

Three limits can help you:

Threshold limit

[Understanding jets]

 \lfloor [Parton p_t v. jet p_t]

- Parton from color-neutral object decay (Z')
- Small-R (radius) limit for jet

One simple result (small-*R* limit)

$$\frac{\langle p_{t,jet} - p_{t,parton} \rangle}{p_t} = \frac{\alpha_s}{\pi} \ln R \times \begin{cases} 1.01 C_F & quarks \\ 0.94 C_A + 0.07 n_f & gluons \end{cases} + \mathcal{O}(\alpha_s)$$

only $\mathcal{O}(\alpha_s)$ depends on algorithm & process cf. Dasgupta, Magnea & GPS '07

e.g. de Florian & Vogelsang '07

Jet p_t v. parton p_t : hadronisation?

Hadronisation: the "parton-shower" \rightarrow hadrons transition

Method:

[Understanding jets]

 \lfloor [Parton p_t v. jet p_t]

- "infrared finite α_s"
- **prediction** based on e^+e^- event shape data
- could have been deduced from old work

à la Dokshitzer & Webber '95

Korchemsky & Sterman '95 Seymour '97

Main result

$$\langle p_{t,jet} - p_{t,parton-shower} \rangle \simeq -rac{0.4 \text{ GeV}}{R} imes \left\{ egin{array}{c} C_F & quarks \ C_A & gluons \end{array}
ight.$$

cf. Dasgupta, Magnea & GPS '07

coefficient holds for anti- k_t ; see Dasgupta & Delenda '09 for k_t alg.

Jets lecture 2 (Gavin Salam)

CERN Academic Training

March/April 2011 17 / 28

"Naive" prediction (UE \simeq colour dipole between *pp*): $\Delta p_t \simeq 0.4 \text{ GeV} \times \frac{R^2}{2} \times \begin{cases} C_F & q\bar{q} \text{ dipole} \\ C_A & \text{gluon dipole} \end{cases}$

Nodern Monte Carlo tunes tell you (
$$\sqrt{s}=$$
 7 TeV) $\Delta m{
ho}_t \simeq m{8} \,\, {
m GeV} imes rac{R^2}{2} \simeq 1.2 \,\, {
m GeV} imes (\pi R^2)$

This big coefficient motivates special effort to understand interplay between jet algorithm and UE: "jet areas" How does coefficient depend on algorithm? How does it depend on jet p_t ? How does it fluctuate? cf. Cacciari, GPS & Soyez '08 "Naive" prediction (UE \simeq colour dipole between *pp*): $\Delta p_t \simeq 0.4 \text{ GeV} \times \frac{R^2}{2} \times \begin{cases} C_F & q\bar{q} \text{ dipole} \\ C_A & \text{gluon dipole} \end{cases}$

Aodern Monte Carlo tunes tell you (
$$\sqrt{s}=$$
 7 TeV): $\Delta
ho_t \simeq {f 8}~{f GeV} imes {R^2\over 2} \simeq 1.2~{f GeV} imes (\pi R^2)$

This big coefficient motivates special effort to understand interplay between jet algorithm and UE: "jet areas" How does coefficient depend on algorithm? How does it depend on jet p_t ? How does it fluctuate? cf. Cacciari, GPS & Soyez '08

Ν

Jet contours - visualised

E.g. SISCone jet area

1. One hard particle, many soft

Jet area =

Measure of jet's susceptibility to uniform soft radiation

[Understanding jets] └[Parton p_t v. jet p_t]

E.g. SISCone jet area

Jet area =

Measure of jet's susceptibility to uniform soft radiation

E.g. SISCone jet area

3. Overlapping "soft" stable cones

Jet area =

Measure of jet's susceptibility to uniform soft radiation

E.g. SISCone jet area

Jet area =

Measure of jet's susceptibility to uniform soft radiation

E.g. SISCone jet area

5. Final hard jet (reduced area)

Jet area =

Measure of jet's susceptibility to uniform soft radiation

Depends on details of an algorithm's clustering dynamics.

SISCone's area (1 hard particle)
=
$$\frac{1}{4} \pi R^2$$

 $\label{eq:Small} \mbox{Small area} \equiv $$ low sensitivity to UE \& pileup $$$

Jet algorithm properties: summary

[Understanding jets] [Jet-properties summary]

	k _t	Cam/Aachen	anti- <i>k</i> t	SISCone
reach	R	R	R	$(1+\frac{p_{t2}}{p_{t1}})R$
$\Delta p_{t,PT} \simeq rac{lpha_{ extsf{s}} C_i}{\pi} imes$	In R	In R	In R	ln 1.35 <i>R</i>
$\Delta p_{t,hadr} \simeq -rac{0.4~{ m GeV}C_i}{R} imes$	0.7	?	1	?
area $=\pi R^2 imes$	0.81 ± 0.28	0.81 ± 0.26	1	0.25
$+\pi R^2 rac{C_i}{\pi b_0} \ln rac{lpha_{ m s}(Q_0)}{lpha_{ m s}(Rp_t)} imes$	$\textbf{0.52}\pm\textbf{0.41}$	0.08 ± 0.19	0	0.12 ± 0.07

In words:

- k_t : area fluctuates a lot, depends on p_t (bad for UE)
- Cam/Aachen: area fluctuates somewhat, depends less on p_t
- ► anti-*k*_t: area is constant (circular jets)
- SISCone: reaches far for hard radiation (good for resolution, bad for multijets), area is smaller (good for UE)

Where does radiation go? Look at jet "shapes"

Jet Shape:

$$\Psi(r) = \int_0^r \frac{p_t(r')}{p_t(jet)} dr'$$

Fraction of energy inside a subcone of size r

50% of energy concentrated in cone of \sim 0.1

Jet shape results from Tevatron

A qualitative example: top reconstruction

Robustness: M_{top} varies with R?

 $\frac{\text{Game: measure top mass to 1 GeV}}{\text{example for Tevatron}}$ $m_t = 175 \text{ GeV}$

 Small R: lose 6 GeV to PT radiation and hadronisation, UE and pileup irrelevant

 Large R: hadronisation and PT radiation leave mass at ~ 175 GeV, UE adds 2 – 4 GeV.

Is the final top mass (after W jet-energy-scale and Monte Carlo unfolding) independent of R used to measure jets? Flexibility in jet finding gives powerful cross-check of systematic effects

Robustness: M_{top} varies with R?

 $\frac{\text{Game: measure top mass to 1 GeV}}{\text{example for Tevatron}}$ $m_t = 175 \text{ GeV}$

- Small R: lose 6 GeV to PT radiation and hadronisation, UE and pileup irrelevant
- Large R: hadronisation and PT radiation leave mass at ~ 175 GeV, UE adds 2 - 4 GeV.

Is the final top mass (after W jet-energy-scale and Monte Carlo unfolding) independent of R used to measure jets? Flexibility in jet finding gives powerful cross-check of systematic effects

Robustness: M_{top} varies with R?

Game: measure top mass to 1 GeV example for Tevatron $m_t = 175 \text{ GeV}$

- Small R: lose 6 GeV to PT radiation and hadronisation, UE and pileup irrelevant
- Large R: hadronisation and PT radiation leave mass at ~ 175 GeV, UE adds 2 - 4 GeV.

Is the final top mass (after W jet-energy-scale and Monte Carlo unfolding) independent of R used to measure jets? Flexibility in jet finding gives powerful cross-check of systematic effects
Robustness: M_{top} varies with R?

 $\frac{\text{Game: measure top mass to 1 GeV}}{\text{example for Tevatron}}$ $m_t = 175 \text{ GeV}$

- Small R: lose 6 GeV to PT radiation and hadronisation, UE and pileup irrelevant
- Large R: hadronisation and PT radiation leave mass at ~ 175 GeV, UE adds 2 - 4 GeV.

Is the final top mass (after W jet-energy-scale and Monte Carlo unfolding) independent of R used to measure jets? Flexibility in jet finding gives powerful cross-check of systematic effects of Seymour & Teylin '06

Robustness: M_{top} varies with R?

Game: measure top mass to 1 GeV example for Tevatron $m_t = 175 \text{ GeV}$

- Small R: lose 6 GeV to PT radiation and hadronisation, UE and pileup irrelevant
- Large R: hadronisation and PT radiation leave mass at ~ 175 GeV, UE adds 2 - 4 GeV.

Is the final top mass (after W jet-energy-scale and Monte Carlo unfolding) independent of R used to measure jets? Flexibility in jet finding gives powerful cross-check of systematic effects of Seymour & Teylin '06

Robustness: M_{top} varies with R?

Game: measure top mass to 1 GeV example for Tevatron $m_t = 175 \text{ GeV}$

- Small R: lose 6 GeV to PT radiation and hadronisation, UE and pileup irrelevant
- Large R: hadronisation and PT radiation leave mass at ~ 175 GeV, UE adds 2 - 4 GeV.

Is the final top mass (after W jet-energy-scale and Monte Carlo unfolding) independent of R used to measure jets? Flexibility in jet finding gives powerful cross-check of systematic effects cf. Seymour & Tevlin '06

6 partons v. 6 jets?

Experiment-theory correspondence relies on infrared and collinear safety

Relation between a parton and a jet is ambiguous (because "partons" are ambiguous)

But many rule-of-thumb relations can be derived, e.g. for *R*-dependence from different physics contributions [perturbative radiation, hadronisation, underlying event]