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Using our understanding to help discover a
dijet resonance, qq̄ → X → qq̄.
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What R is best for an isolated jet?[DUMMY]

[Dijet resonances]

PT radiation:

q : 〈∆pt〉 ≃
αsCF

π
pt lnR

Hadronisation:

q : 〈∆pt〉 ≃ −CF

R
· 0.4 GeV

Underlying event:

q, g : 〈∆pt〉 ≃
R2

2
·2.5−15 GeV

Minimise fluctuations in ptptpt

Use crude approximation:

〈∆p2t 〉 ≃ 〈∆pt〉2

E.g. to reconstruct mX ∼ (ptq + ptq̄)

X
pp

q

q

q

q

in small-R limit (!)

NB: full calc, correct fluct: Soyez ’10
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What R is best for an isolated jet?[DUMMY]
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At low pt, small RRR limits relative impact of UE

At high pt, perturbative effects dominate over
non-perturbative → RbestRbestRbest ∼ 1.



Dijet mass: scan over R [Pythia 6.4][DUMMY]

[Dijet resonances]

R = 0.3
1/

N
 d

n/
db

in
 / 

2

dijet mass [GeV]

qq, M = 100 GeV

arX
iv:0810.1304
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Resonance X → dijets

X
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Dijet mass: scan over R [Pythia 6.4][DUMMY]

[Dijet resonances]
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Dijet mass: scan over R [Pythia 6.4][DUMMY]

[Dijet resonances]
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Dijet mass: scan over R [Pythia 6.4][DUMMY]

[Dijet resonances]
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Dijet mass: scan over R [Pythia 6.4][DUMMY]
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Dijet mass: scan over R [Pythia 6.4][DUMMY]
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Dijet mass: scan over R [Pythia 6.4][DUMMY]
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Dijet mass: scan over R [Pythia 6.4][DUMMY]
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Dijet mass: scan over R [Pythia 6.4][DUMMY]

[Dijet resonances]
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Dijet mass: scan over R [Pythia 6.4][DUMMY]
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Dijet mass: scan over R [Pythia 6.4][DUMMY]

[Dijet resonances]
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Dijet mass: scan over R [Pythia 6.4][DUMMY]

[Dijet resonances]
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After scanning, summarise “quality” v. RRR. Minimum ≡ BEST
picture not so different from crude analytical estimate
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Scan through qq̄ mass values[DUMMY]

[Dijet resonances]

mqq = 100 GeV
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Best R is at minimum of curve

◮ Best R depends strongly on
mass of system

◮ Increases with mass, just like
crude analytical prediction

NB: current analytics too crude

BUT: so far, LHC’s plans
involve running with fixed

smallish RRR values

ATLAS: R = 0.4 & 0.6

CMS: R = 0.5 & 0.7

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

Other related work: Krohn, Thaler & Wang ’09; Soyez ’10
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Scan through qq̄ mass values[DUMMY]

[Dijet resonances]

mqq = 150 GeV

 1

 1.5

 2

 2.5

 3

 0.5  1  1.5

ρ L
 fr

om
 Q

w f=
0.

24

R

qq, M = 150 GeV

arX
iv:0810.1304

SISCone, f=0.75

Best R is at minimum of curve

◮ Best R depends strongly on
mass of system

◮ Increases with mass, just like
crude analytical prediction

NB: current analytics too crude

BUT: so far, LHC’s plans
involve running with fixed

smallish RRR values

ATLAS: R = 0.4 & 0.6
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NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

Other related work: Krohn, Thaler & Wang ’09; Soyez ’10
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Scan through qq̄ mass values[DUMMY]

[Dijet resonances]

mqq = 200 GeV
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involve running with fixed
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ATLAS: R = 0.4 & 0.6

CMS: R = 0.5 & 0.7

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

Other related work: Krohn, Thaler & Wang ’09; Soyez ’10
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Scan through qq̄ mass values[DUMMY]

[Dijet resonances]
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NB: current analytics too crude

BUT: so far, LHC’s plans
involve running with fixed

smallish RRR values

ATLAS: R = 0.4 & 0.6

CMS: R = 0.5 & 0.7

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

Other related work: Krohn, Thaler & Wang ’09; Soyez ’10

Jets lecture 3 (Gavin Salam) CERN Academic Training March/April 2011 5 / 29

http://quality.fastjet.fr


Scan through qq̄ mass values[DUMMY]

[Dijet resonances]

mqq = 500 GeV
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◮ Best R depends strongly on
mass of system

◮ Increases with mass, just like
crude analytical prediction

NB: current analytics too crude

BUT: so far, LHC’s plans
involve running with fixed

smallish RRR values

ATLAS: R = 0.4 & 0.6

CMS: R = 0.5 & 0.7

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

Other related work: Krohn, Thaler & Wang ’09; Soyez ’10
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Scan through qq̄ mass values[DUMMY]

[Dijet resonances]

mqq = 700 GeV
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crude analytical prediction

NB: current analytics too crude

BUT: so far, LHC’s plans
involve running with fixed

smallish RRR values

ATLAS: R = 0.4 & 0.6

CMS: R = 0.5 & 0.7

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

Other related work: Krohn, Thaler & Wang ’09; Soyez ’10
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Scan through qq̄ mass values[DUMMY]

[Dijet resonances]

mqq = 1000 GeV
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Best R is at minimum of curve

◮ Best R depends strongly on
mass of system

◮ Increases with mass, just like
crude analytical prediction

NB: current analytics too crude

BUT: so far, LHC’s plans
involve running with fixed

smallish RRR values

ATLAS: R = 0.4 & 0.6

CMS: R = 0.5 & 0.7

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

Other related work: Krohn, Thaler & Wang ’09; Soyez ’10

Jets lecture 3 (Gavin Salam) CERN Academic Training March/April 2011 5 / 29

http://quality.fastjet.fr


Scan through qq̄ mass values[DUMMY]

[Dijet resonances]

mqq = 2000 GeV

 1

 1.5

 2

 2.5

 3

 0.5  1  1.5

ρ L
 fr

om
 Q

w f=
0.

24

R

qq, M = 2000 GeV

arX
iv:0810.1304

SISCone, f=0.75

Best R is at minimum of curve

◮ Best R depends strongly on
mass of system

◮ Increases with mass, just like
crude analytical prediction

NB: current analytics too crude

BUT: so far, LHC’s plans
involve running with fixed

smallish RRR values

ATLAS: R = 0.4 & 0.6

CMS: R = 0.5 & 0.7

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

Other related work: Krohn, Thaler & Wang ’09; Soyez ’10
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Scan through qq̄ mass values[DUMMY]

[Dijet resonances]

mqq = 4000 GeV
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◮ Best R depends strongly on
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◮ Increases with mass, just like
crude analytical prediction

NB: current analytics too crude

BUT: so far, LHC’s plans
involve running with fixed

smallish RRR values

ATLAS: R = 0.4 & 0.6

CMS: R = 0.5 & 0.7

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

Other related work: Krohn, Thaler & Wang ’09; Soyez ’10
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Scan through qq̄ mass values[DUMMY]

[Dijet resonances]

mqq = 4000 GeV
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NB: current analytics too crude

BUT: so far, LHC’s plans
involve running with fixed

smallish RRR values

ATLAS: R = 0.4 & 0.6

CMS: R = 0.5 & 0.7

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

Other related work: Krohn, Thaler & Wang ’09; Soyez ’10
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Scan through qq̄ mass values[DUMMY]

[Dijet resonances]

mqq = 4000 GeV
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Best R is at minimum of curve

◮ Best R depends strongly on
mass of system

◮ Increases with mass, just like
crude analytical prediction

NB: current analytics too crude

BUT: so far, LHC’s plans
involve running with fixed

smallish RRR values

ATLAS: R = 0.4 & 0.6

CMS: R = 0.5 & 0.7

NB: 100,000 plots for various jet algorithms, narrow qq and gg resonances
from http://quality.fastjet.fr Cacciari, Rojo, GPS & Soyez ’08

Other related work: Krohn, Thaler & Wang ’09; Soyez ’10

Jets lecture 3 (Gavin Salam) CERN Academic Training March/April 2011 5 / 29

http://quality.fastjet.fr


quality: 5 algorithms, 3 processes[DUMMY]

[Dijet resonances]
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quality: 5 algorithms, 3 processes[DUMMY]
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http://quality.fastjet.fr/
[DUMMY]

[Dijet resonances]
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Fat jets
boosted massive hadronically decaying objects

E.g. when a known particle, W ,Z or a top → a single jet

or a new particle, Higgs, gluino, neutralino → a single jet

This will be common for electroweak-scale objects at LHC:
mW ,mt ≪ 14 TeV
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E.g. X → tt̄ resonances of varying difficulty[1 jet & 2 partons]

RS KK resonances → tt̄, from Frederix & Maltoni, 0712.2355

NB: QCD dijet spectrum is ∼ 103 times tt̄
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Boosted massive particles, e.g.: EW bosons[1 jet & 2 partons]

Hadronically decaying EW boson at high pt 6= two jets

single
jet

z

(1−z)

boosted X
R &

m

pt

1
√

z(1− z)

Rules of thumb: m = 100 GeV, pt = 500 GeV

◮ R <
2m

pt
: always resolve two jets R < 0.4

◮ R &
3m

pt
: resolve one jet in ∼75% of cases (18 < z < 7

8) R & 0.6
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Boosted ID strategies[1 jet & 2 partons]

q q
Select on the jet mass with one large (cone)
jet Can be subject to large bkgds

[high-pt jets have significant masses]

q q

Choose a small jet size (R) so as to resolve
two jets Easier to reject background

if you actually see substructure

[NB: must manually put in “right” radius]

q q Take a large jet and split it in two
Let jet algorithm establish correct division
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Jet masses[1 jet & 2 partons]
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qq → qq events

pt,jets > 700 GeV

anti-kt, R = 0.7

Look at jet mass distribu-
tion for two leading jets in

◮ qq → qq events

◮ pp → W + jet events

◮ a mixture of the two
In roughly sensible

proportions

Jet mass gives clear sign of massive particles inside
the jet;
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Jet masses[1 jet & 2 partons]
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pt,jets > 700 GeV

anti-kt, R = 0.7

Look at jet mass distribu-
tion for two leading jets in

◮ qq → qq events

◮ pp → W + jet events

◮ a mixture of the two
In roughly sensible

proportions

Jet mass gives clear sign of massive particles inside
the jet;
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Jet masses[1 jet & 2 partons]

 0
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 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0  50  100  150  200

1/
N

 d
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/d
m

je
t [
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]

mjet [GeV]

qq → qq + Wj mixture

pt,jets > 700 GeV

anti-kt, R = 0.7

Look at jet mass distribu-
tion for two leading jets in

◮ qq → qq events

◮ pp → W + jet events

◮ a mixture of the two
In roughly sensible

proportions

Jet mass gives clear sign of massive particles inside
the jet; but QCD jets are massive too — must learn

to reject them
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QCD principle: soft divergence[1 jet & 2 partons]

Signal Background

z

(1−z)

boosted X
z

quark

(1−z)

Splitting probability for Higgs:

P(z) ∝ 1

Splitting probability for quark:

P(z) ∝ 1 + z2

1− z

1/(1− z) divergence enhances background

Remove divergence in bkdg with cut on z
Can choose cut analytically so as to maximise S/

√
B

Originally: cut on (related) kt-distance

Butterworth, Cox & Forshaw ’02
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Inside the jet mass[1 jet & 2 partons]
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QCD Jet Mass distribution
Pythia 6.4, qq→qq, no UE

anti-kt, R=0.7

LHC, 7 TeV

pt,jets > 700 GeV

QCD jet mass distribution has the
approximate

dN

d lnm
∼ αs ln

ptR

m
× Sudakov

Work from ’80s and ’90s

+ Almeida et al ’08

The logarithm comes from integral
over soft divergence of QCD:

∫ 1
2

m2

p2t R
2

dz

z

A hard cut on z reduces QCD back-
ground & simplifies its shape
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Inside the jet mass[1 jet & 2 partons]
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Inside the jet mass[1 jet & 2 partons]
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QCD jet mass distribution has the
approximate
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× Sudakov

Work from ’80s and ’90s
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The logarithm comes from integral
over soft divergence of QCD:

∫ 1
2

m2
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A hard cut on z reduces QCD back-
ground & simplifies its shape
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Inside the jet mass[1 jet & 2 partons]
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Inside the jet mass[1 jet & 2 partons]
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Identifying jet substructure: try out anti-kt
[1 jet & 2 partons]

anti-kt algorithm

p t/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt
[1 jet & 2 partons]

anti-kt algorithm

p t/GeV

50
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20

0
0 1 2 3 4 y

30

10

dmin is dij = 3.57137e−05

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt
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Identifying jet substructure: try out anti-kt
[1 jet & 2 partons]

anti-kt algorithm

p t/GeV
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dmin is dij = 0.000496598

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt
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Identifying jet substructure: try out anti-kt
[1 jet & 2 partons]

anti-kt algorithm
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50

40

20

0
0 1 2 3 4 y

30

10

dmin is dij = 0.000688842

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out anti-kt
[1 jet & 2 partons]

anti-kt algorithm
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Identifying jet substructure: try out anti-kt
[1 jet & 2 partons]

anti-kt algorithm

p t/GeV

50
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0
0 1 2 3 4 y

30

10

dmin is dij = 0.000805103

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way
through the secondary blob → no
clear identification of substructure
associated with 2nd parton.
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Identifying jet substructure: try out anti-kt
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anti-kt algorithm
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Identifying jet substructure: try out anti-kt
[1 jet & 2 partons]

anti-kt algorithm
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dmin is dij = 0.000773759

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way
through the secondary blob → no
clear identification of substructure
associated with 2nd parton.
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Identifying jet substructure: try out anti-kt
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Identifying jet substructure: try out anti-kt
[1 jet & 2 partons]

anti-kt algorithm
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dmin is dij = 0.0014577

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way
through the secondary blob → no
clear identification of substructure
associated with 2nd parton.
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Identifying jet substructure: try out anti-kt
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Identifying jet substructure: try out anti-kt
[1 jet & 2 partons]

anti-kt algorithm
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dmin is diB = 0.00147749

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way
through the secondary blob → no
clear identification of substructure
associated with 2nd parton.
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Identifying jet substructure: try out anti-kt
[1 jet & 2 partons]

anti-kt algorithm
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Identifying jet substructure: try out anti-kt
[1 jet & 2 partons]

anti-kt algorithm
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dmin is diB = 1.96

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Anti-kt gradually makes its way
through the secondary blob → no
clear identification of substructure
associated with 2nd parton.
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Identifying jet substructure: try out anti-kt
[1 jet & 2 partons]

anti-kt algorithm
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This is crucial for identifying the
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Anti-kt gradually makes its way
through the secondary blob → no
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Identifying jet substructure: try out kt
[1 jet & 2 partons]

kt algorithm
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How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out kt
[1 jet & 2 partons]

kt algorithm

p t/GeV
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dmin is dij = 0.318802

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out kt
[1 jet & 2 partons]

kt algorithm
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How well can an algorithm identify
the “blobs” of energy inside a jet that
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This is crucial for identifying the
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Identifying jet substructure: try out kt
[1 jet & 2 partons]

kt algorithm

p t/GeV
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dmin is dij = 0.977453

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).
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Identifying jet substructure: try out kt
[1 jet & 2 partons]

kt algorithm
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This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

Jets lecture 3 (Gavin Salam) CERN Academic Training March/April 2011 17 / 29



Identifying jet substructure: try out kt
[1 jet & 2 partons]

kt algorithm

p t/GeV
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dmin is dij = 1.48276

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt
[1 jet & 2 partons]

kt algorithm
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Identifying jet substructure: try out kt
[1 jet & 2 partons]

kt algorithm

p t/GeV
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dmin is dij = 2.34277

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt
[1 jet & 2 partons]

kt algorithm
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Identifying jet substructure: try out kt
[1 jet & 2 partons]

kt algorithm
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dmin is dij = 13.5981

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt
[1 jet & 2 partons]

kt algorithm
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Identifying jet substructure: try out kt
[1 jet & 2 partons]

kt algorithm

p t/GeV
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dmin is dij = 30.8068

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering
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Identifying jet substructure: try out kt
[1 jet & 2 partons]

kt algorithm
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This is crucial for identifying the
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Identifying jet substructure: try out kt
[1 jet & 2 partons]

kt algorithm

p t/GeV
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dmin is dij = 717.825

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering

Its last step is to merge two hard
pieces. Easily undone to identify un-
derlying kinematics
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Identifying jet substructure: try out kt
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Identifying jet substructure: try out kt
[1 jet & 2 partons]

kt algorithm
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dmin is diB = 11432

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering

Its last step is to merge two hard
pieces. Easily undone to identify un-
derlying kinematics
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Identifying jet substructure: try out kt
[1 jet & 2 partons]

kt algorithm

p t/GeV

50

40
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0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

This is crucial for identifying the
kinematic variables of the partons in
the jet (e.g. z).

kt clusters soft “junk” early on in the
clustering

Its last step is to merge two hard
pieces. Easily undone to identify un-
derlying kinematics

This meant it was the first algorithm
to be used for jet substructure.

Seymour ’93

Butterworth, Cox & Forshaw ’02
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Identifying jet substructure: Cam/Aachen[1 jet & 2 partons]

Cambridge/Aachen algorithm

p t/GeV

50
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20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?
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Identifying jet substructure: Cam/Aachen[1 jet & 2 partons]

Cambridge/Aachen algorithm

p t/GeV

50
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0
0 1 2 3 4 y

30
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DeltaR_{ij} = 0.142857

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?
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Identifying jet substructure: Cam/Aachen[1 jet & 2 partons]

Cambridge/Aachen algorithm
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Identifying jet substructure: Cam/Aachen[1 jet & 2 partons]

Cambridge/Aachen algorithm

p t/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 0.214286

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?
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Identifying jet substructure: Cam/Aachen[1 jet & 2 partons]

Cambridge/Aachen algorithm
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How well can an algorithm identify
the “blobs” of energy inside a jet that
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Identifying jet substructure: Cam/Aachen[1 jet & 2 partons]

Cambridge/Aachen algorithm

p t/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 0.415037

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?
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Identifying jet substructure: Cam/Aachen[1 jet & 2 partons]

Cambridge/Aachen algorithm
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Identifying jet substructure: Cam/Aachen[1 jet & 2 partons]

Cambridge/Aachen algorithm

p t/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 0.686928

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

Jets lecture 3 (Gavin Salam) CERN Academic Training March/April 2011 18 / 29



Identifying jet substructure: Cam/Aachen[1 jet & 2 partons]

Cambridge/Aachen algorithm

p t/GeV
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0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination
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Identifying jet substructure: Cam/Aachen[1 jet & 2 partons]

Cambridge/Aachen algorithm

p t/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 1.20645

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them
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Identifying jet substructure: Cam/Aachen[1 jet & 2 partons]

Cambridge/Aachen algorithm
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How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
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Identifying jet substructure: Cam/Aachen[1 jet & 2 partons]

Cambridge/Aachen algorithm

p t/GeV

50

40

20

0
0 1 2 3 4 y

30

10

DeltaR_{ij} = 1.93202

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining
soft junk

Jets lecture 3 (Gavin Salam) CERN Academic Training March/April 2011 18 / 29
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Identifying jet substructure: Cam/Aachen[1 jet & 2 partons]

Cambridge/Aachen algorithm

p t/GeV
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DeltaR_{ij} > 2

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining
soft junk
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Identifying jet substructure: Cam/Aachen[1 jet & 2 partons]

Cambridge/Aachen algorithm

p t/GeV
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DeltaR_{ij} > 2

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining
soft junk
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Identifying jet substructure: Cam/Aachen[1 jet & 2 partons]

Cambridge/Aachen algorithm

p t/GeV

50

40

20

0
0 1 2 3 4 y

30

10

How well can an algorithm identify
the “blobs” of energy inside a jet that
come from different partons?

C/A identifies two hard blobs with
limited soft contamination, joins
them, and then adds in remaining
soft junk

The interesting substructure is buried
inside the clustering sequence — it’s
less contamined by soft junk, but
needs to be pulled out with special
techniques

Butterworth, Davison, Rubin & GPS ’08

Kaplan, Schwartz, Reherman & Tweedie ’08

Butterworth, Ellis, Rubin & GPS ’09

Ellis, Vermilion & Walsh ’09

Jets lecture 3 (Gavin Salam) CERN Academic Training March/April 2011 18 / 29



anti-kt algorithm
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H → bb̄ (main light-Higgs decay) v. hard to see[1 jet & 2 partons]

[An example]

Best hope is pp → W±H, W± → ℓ±ν, H → bb̄.

Difficulties, e.g.

◮ gg → tt̄ has ℓνbb̄ with same intrinsic
mass scale, but much higher partonic
luminosity

◮ Wjj background has cut-induced peak

◮ Need exquisite control of bkgd shape

Conclusion (ATLAS TDR):

“The extraction of a signal from H → bb̄
decays in the WH channel will be very
difficult at the LHC, even under the most
optimistic assumptions [...]”

e,µ

b

ν
b

H

W
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H → bb̄ (main light-Higgs decay) v. hard to see[1 jet & 2 partons]

[An example]

Best hope is pp → W±H, W± → ℓ±ν, H → bb̄.

pp → WH → ℓνbb̄ + bkgds

ATLAS TDR

Difficulties, e.g.

◮ gg → tt̄ has ℓνbb̄ with same intrinsic
mass scale, but much higher partonic
luminosity

◮ Wjj background has cut-induced peak

◮ Need exquisite control of bkgd shape

Conclusion (ATLAS TDR):

“The extraction of a signal from H → bb̄
decays in the WH channel will be very
difficult at the LHC, even under the most
optimistic assumptions [...]”

e,µ

b

ν
b

H

W
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H → bb̄ (main light-Higgs decay) v. hard to see[1 jet & 2 partons]

[An example]

Best hope is pp → W±H, W± → ℓ±ν, H → bb̄.

pp → WH → ℓνbb̄ + bkgds

ATLAS TDR

Difficulties, e.g.

◮ gg → tt̄ has ℓνbb̄ with same intrinsic
mass scale, but much higher partonic
luminosity

◮ Wjj background has cut-induced peak

◮ Need exquisite control of bkgd shape

Conclusion (ATLAS TDR):

“The extraction of a signal from H → bb̄
decays in the WH channel will be very
difficult at the LHC, even under the most
optimistic assumptions [...]”

e,µ

b

ν
b

H

W
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Study subset of WH/ZH with high pt
[1 jet & 2 partons]

[An example]

Take advantage of the fact that
√
s ≫ MH,mt, . . .

W

H

b
b

e,µ ν

Go to high pt :

✓ Higgs and W/Z more likely to be central

✓ high-pt Z → νν̄ becomes visible

✓ Fairly collimated decays: high-pt ℓ±, ν, b
Good detector acceptance

✓ Backgrounds lose cut-induced scale

✓ tt̄ kinematics cannot simulate bkgd
Gain clarity and S/B

✗ Cross section will drop dramatically
By a factor of 20 for ptH > 200 GeV

Will the benefits outweigh this?

And how do we ID high-pt hadronic Higgs decays?
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Noise removal[1 jet & 2 partons]

[An example]

UE adds Λ ≃ 10− 15 GeV of noise per unit rapidity. For a jet of size R ,
effect on jet mass goes as

〈δm2〉 ≃ Λpt
R4

4
∼ 4Λ

m4

p3t

Dasgupta, Magnea

& GPS ’07

Filtering, Pruning & Trimming are all intended to reduce this noise.
Viewing the jet on some smaller scale Rsub, throw out softest subjets:

◮ Filtering: break jet into subjets on angular scale Rfilt , take nfilt hardest
subjets Butterworth, Davison, Rubin & GPS ’08

◮ Trimming: break jet into subjets on angular scale Rtrim, take all subjets
with pt,sub > ǫtrimpt,jet Krohn, Thaler & Wang ’09

◮ Pruning: as you build up the jet, if the two subjets about to be
recombined have ∆R > Rprune and min(pt1, pt2) < ǫprune (pt1 + pt2),
discard the softer one. Ellis, Vermilion & Walsh ’09
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Noise removal[1 jet & 2 partons]

[An example]

UE adds Λ ≃ 10− 15 GeV of noise per unit rapidity. For a jet of size R ,
effect on jet mass goes as

〈δm2〉 ≃ Λpt
R4

4
∼ 4Λ

m4

p3t

Dasgupta, Magnea

& GPS ’07

Filtering, Pruning & Trimming are all intended to reduce this noise.
Viewing the jet on some smaller scale Rsub, throw out softest subjets:

◮ Filtering: break jet into subjets on angular scale Rfilt , take nfilt hardest
subjets Butterworth, Davison, Rubin & GPS ’08

◮ Trimming: break jet into subjets on angular scale Rtrim, take all subjets
with pt,sub > ǫtrimpt,jet Krohn, Thaler & Wang ’09

◮ Pruning: as you build up the jet, if the two subjets about to be
recombined have ∆R > Rprune and min(pt1, pt2) < ǫprune (pt1 + pt2),
discard the softer one. Ellis, Vermilion & Walsh ’09
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These techniques matter most for moderate pt objects

(And also for high-mass resonances → jets)



pp → ZH → νν̄bb̄, @14TeV, mH=115GeV[1 jet & 2 partons]

[An example]

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Cluster event, C/A, R=1.2

Butterworth, Davison, Rubin & GPS ’08

SIGNAL

Zbb BACKGROUND

arbitrary norm.
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pp → ZH → νν̄bb̄, @14TeV, mH=115GeV[1 jet & 2 partons]

[An example]

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Fill it in, → show jets more clearly

Butterworth, Davison, Rubin & GPS ’08

SIGNAL

Zbb BACKGROUND

arbitrary norm.
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pp → ZH → νν̄bb̄, @14TeV, mH=115GeV[1 jet & 2 partons]

[An example]

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Consider hardest jet, m = 150 GeV

Butterworth, Davison, Rubin & GPS ’08

SIGNAL

 0

 0.05

 0.1

 0.15

 80  100  120  140  160
mH [GeV]

200 < ptZ < 250 GeV

Zbb BACKGROUND

 0

 0.002

 0.004

 0.006

 0.008

 80  100  120  140  160
mH [GeV]

200 < ptZ < 250 GeV

arbitrary norm.
Jets lecture 3 (Gavin Salam) CERN Academic Training March/April 2011 23 / 29



pp → ZH → νν̄bb̄, @14TeV, mH=115GeV[1 jet & 2 partons]

[An example]

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

split: m = 150 GeV, max(m1,m2)
m

= 0.92 → repeat

Butterworth, Davison, Rubin & GPS ’08

SIGNAL

 0

 0.05

 0.1

 0.15

 80  100  120  140  160
mH [GeV]

200 < ptZ < 250 GeV

Zbb BACKGROUND

 0

 0.002

 0.004

 0.006

 0.008

 80  100  120  140  160
mH [GeV]

200 < ptZ < 250 GeV

arbitrary norm.
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pp → ZH → νν̄bb̄, @14TeV, mH=115GeV[1 jet & 2 partons]

[An example]

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

split: m = 139 GeV, max(m1,m2)
m

= 0.37 → mass drop

Butterworth, Davison, Rubin & GPS ’08

SIGNAL

 0

 0.05

 0.1

 0.15

 80  100  120  140  160
mH [GeV]

200 < ptZ < 250 GeV

Zbb BACKGROUND

 0

 0.002

 0.004

 0.006

 0.008

 80  100  120  140  160
mH [GeV]

200 < ptZ < 250 GeV

arbitrary norm.
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pp → ZH → νν̄bb̄, @14TeV, mH=115GeV[1 jet & 2 partons]

[An example]

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

check: y12 ≃ pt2
pt1

≃ 0.7 → OK + 2 b-tags (anti-QCD)

Butterworth, Davison, Rubin & GPS ’08

SIGNAL

 0

 0.05

 0.1

 0.15

 80  100  120  140  160
mH [GeV]

200 < ptZ < 250 GeV

Zbb BACKGROUND

 0

 0.002

 0.004

 0.006

 0.008

 80  100  120  140  160
mH [GeV]

200 < ptZ < 250 GeV

arbitrary norm.
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pp → ZH → νν̄bb̄, @14TeV, mH=115GeV[1 jet & 2 partons]

[An example]

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Rfilt = 0.3

Butterworth, Davison, Rubin & GPS ’08

SIGNAL

 0

 0.05

 0.1

 0.15

 80  100  120  140  160
mH [GeV]

200 < ptZ < 250 GeV

Zbb BACKGROUND

 0

 0.002

 0.004

 0.006

 0.008

 80  100  120  140  160
mH [GeV]

200 < ptZ < 250 GeV

arbitrary norm.
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pp → ZH → νν̄bb̄, @14TeV, mH=115GeV[1 jet & 2 partons]

[An example]

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Rfilt = 0.3: take 3 hardest, m = 117 GeV

Butterworth, Davison, Rubin & GPS ’08

SIGNAL

 0

 0.05

 0.1

 0.15

 80  100  120  140  160
mH [GeV]

200 < ptZ < 250 GeV

Zbb BACKGROUND

 0

 0.002

 0.004

 0.006

 0.008

 80  100  120  140  160
mH [GeV]

200 < ptZ < 250 GeV

arbitrary norm.
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combine HZ and HW, pt > 200 GeV[1 jet & 2 partons]

[An example]

◮ Take Z → ℓ+ℓ−, Z → νν̄,
W → ℓν ℓ = e, µ

◮ ptV , ptH > 200 GeV

◮ |ηV |, |ηH | < 2.5

◮ Assume real/fake b-tag rates of
0.6/0.02.

◮ Some extra cuts in HW
channels to reject tt̄.

◮ Assume mH = 115 GeV.

At ∼ 5σ for 30 fb−1 this looks like a competitive channel for light
Higgs discovery. A powerful method!

Currently under study in the LHC experiments

Jets lecture 3 (Gavin Salam) CERN Academic Training March/April 2011 24 / 29



ATLAS combined results[1 jet & 2 partons]

[An example]

Likelihood-based analysis of all three channels together gives signal
significance of

3.7σ for 30 fb−1 (14 TeV)

To be compared with 4.2σ in hadron-level analysis for mH = 120 GeV

K-factors not included: don’t affect significance (∼ 1.5 for VH, 2− 2.5 for Vbb)

With 5% (20%) background uncertainty, ATLAS result becomes 3.5σ (2.8σ)

Comparison to other channels at ATLAS (mH = 120, 30 fb−1):

gg → H → γγ WW → H → ττ gg → H → ZZ ∗

4.2σ 4.9σ 2.6σ

Extracted from 0901.0512
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Tagging boosted top-quarks[1 jet & 2 partons]

[An example]

Many papers on top tagging in ’08-’11: jet mass + something extra.

Questions

◮ What efficiency for tagging top?
◮ What rate of fake tags for normal jets?

Rough results for top quark with pt ∼ 1 TeV
“Extra” eff. fake

[from T&W] just jet mass 50% 10%
Brooijmans ’08 3,4 kt subjets, dcut 45% 5%
Thaler & Wang ’08 2,3 kt subjets, zcut + various 40% 5%
Kaplan et al. ’08 3,4 C/A subjets, zcut + θh 40% 1%
Ellis et al. ’09 C/A pruning 10% 0.05%
ATLAS ’09 3,4 kt subjets, dcut MC likelihood 90% 15%
Chekanov & P. ’10 Jet shapes 60% 10%
Almeida et al. ’08–’10 Template + shapes 13% 0.02%
Thaler & v Tilburg ’10 Subjettiness 40% 2%
Plehn et al. ’09–’10 C/A MD, θh/Dalitz [busy evs, pt ∼ 300] 35% 2%
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Comparison of top taggers[1 jet & 2 partons]

[An example]

efficiency

0.1 0.2 0.3 0.4 0.5 0.6 0.7

m
is

ta
g 

ra
te

-210

-110

Hopkins
CMS
Pruning
ATLAS
Thaler/Wang

Boost 2010 conference proceedings
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Closing
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Conclusions[1 jet & 2 partons]

[An example]

LHC events will cover 2 orders of magnitude in jet pt

Flexibility in the choice of jet definitions has potential to
bring significant gains

[anti-kt with R = 0.5 or 0.6 will sometimes be far from optimal]

EW-scale particles are “light” relative to the TeV scale

Using the full power of jet algorithms & their substructure

helps pull out signals that might otherwise be missed
[currently a very active research field]
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EXTRAS
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Other work → improving the methods[1 jet & 2 partons]

[Boosted objects]

◮ Using matrix-element methods for
the substructure Done analytically

Soper & Spannowsky ’11

Most “physically interesting”

◮ Using jet shapes. E.g. subjettiness:
break a jet into subjets 1, 2, . . .N

SN =
1

pt

∑

i

pti min(δRi1, . . . δRiN)

J-H Kim ’10; Thaler & Van Tilburg ’10

◮ Using boosted decision trees
Cui, Han & Schwartz ’10; seems powerful

Cui et al BDT v. BRDS

S
ε

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
ε

/ 
S

ε

0

1

2

3

4

5

Filtering +  Jet  Subst ructure

R= 1.2  Filtering +  m ass drop

R= 1.2 m ass

R= 0.4 m ass

Filtering +  m ass drop

(wide m ass window)

R=1.2 

R=1.2 

Biggest improvements are to be had at moderate signal efficiencies

Conclusion from Boost 2010 comparison study of top taggers

The method to be adopted depends on the signal efficiency you want



Pileup
high pt → requires high lumi → high pileup

& 10 events per bunch crossing
O (10 GeV) of extra pt per jet, with large fluctuations
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Subtracting noise from jets[1 jet & 2 partons]

[Pileup]

psubtractedt,jet = pt,jet − ρ× Ajet

Cacciari, GPS & Soyez ’08

Ajet = jet area

ρ = pt per unit area from pileup

(or “background”)

This procedure is intended to be common to pp (ρ ∼ 1−2 GeV), pp with
pileup (ρ ∼ 2− 15 GeV) and Heavy-Ion collisions (ρ ∼ 100− 300 GeV)

As proposed so far: jet-by-jet area determination,
event-by-event ρ determination
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Event-by-event ρ (background) estimation[1 jet & 2 partons]

[Pileup]

IN A SINGLE EVENT

 0

 20

 40

 60

 80

 0  1  2  3  4  5

P
t,j

et

jet area

dijet event
+ 10 minbias

(Kt-alg, R=1)

median (pt/area)

Most jets in event are “back-
ground”

Their pt is correlated with their
area.

Estimate ρρρ:

ρ ≃ median
{jets}

[

pt,jet

Ajet

]

Median limits bias

from hard jets

Cacciari & GPS ’07
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Comparing pileup estimation methods[1 jet & 2 partons]

[Pileup]

Compare FastJet median ρ to
Monte Carlo truth (ρDirect)

 0

 2

 4

 6

 8

 10

 12

 0  2  4  6  8  10  12

ρ F
J 

[G
eV

]

ρDirect [GeV]

minbias: PY6 + <5>*PY8
Rρ = 0.5
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Comparing pileup estimation methods[1 jet & 2 partons]

[Pileup]

Compare FastJet median ρ to
Monte Carlo truth (ρDirect)
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 0  2  4  6  8  10  12

ρ F
J 

[G
eV

]

ρDirect [GeV]

minbias: PY6 + <5>*PY8
Rρ = 0.5

Works much better than
counting primary vertices

 0

 2
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 0  2  4  6  8  10  12

ρ F
J 

[G
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]

n vertex seen (2 central tracks pt>0.1GeV)

minbias: PY6 + <5>*PY8
Rρ = 0.5
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A non-trivial issue: rapidity dependence[1 jet & 2 partons]

[Pileup]

The original method assumed
rapidity dependence was small

◮ In some sense it is, . 1.5 GeV

◮ Measure ρ globally, and include
a rapidity-dependent rescaling

psubt = pt − f (y)ρA

determine f (y) from min-bias

◮ Measure ρ “locally” in strips of
|∆y | < 1.5  0
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Conclusion: global ρ determination with fixed rapidity-dependent
rescaling is probably the most effective choice
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Hints from charged tracks[1 jet & 2 partons]

[Pileup]

Dispersion of offset gives another
measure of the subtraction “quality”

◮ several GeV without subtraction

◮ only partially reduced with FJ
subtraction

◮ alternative: use PF to remove
PU charged tracks in each jet

if PU is in-time

◮ scaling PU charged track in the
jet to correct also for neutrals

◮ or supplementing with FJ
subtraction for the neutrals

better still
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Direct knowledge of PU from tracks
can be beneficial

Detector impact harder to judge
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Jet masses etc.?[1 jet & 2 partons]

[Pileup]

Fat-jet studies need more than just
the jet pt . E.g. jet mass

There are methods to limit PU sen-
sitivity of jet masses.

Filtering: Butterworth et al ’08

Pruning: Ellis et al ’09

Trimming: Thaler et al ’09

4-vector subtraction can also help

p(sub)
µ

= pµ − f (y)ρAµ

“Automatically” corrects mass
as long as hadron masses set to zero

Many more things can be corrected for PU beyond jet pt
Tests are still in v. early stages / drawing board
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