Basics of QCD
Lecture 2: higher orders, divergences




Neither lattice QCD nor perturbative QCD can offer
a full solution to using QCD at colliders

What the community has settled on is
1) factorisation of initial state non-perturbative problem
from
2) the "hard process,” calculated perturbatively
supplemented with

3) non-perturbative modelling of final-state hadronic-scale processes
(“hadronisation”).
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Factorization

Cross section for some hard
process in hadron-hadron
collisions

P4 P2

U:/Xmfq/p(Xlaﬂz)/dX2fa/p(X27M2)&(X1P17X2P27,U«2)a §:X1X25
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Factorization

Cross section for some hard
process in hadron-hadron
collisions

U:/dxlfq/p(xl,uz)/dxzfa/p(XQ,,uz)&(lel,Xsz,,uz), S = x1X08

» Total X-section is factorized into a ‘hard part’ &(x1p1, xop2, 11?)
Calculated, e.g. with methods discussed in many of the other courses
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Factorization

Cross section for some hard
process in hadron-hadron
collisions

U:/dxlfq/p(xl,uz)/dxzfa/p(xz,,uz)&(lel,Xsz,,uz), S = x1X08

» Total X-section is factorized into a ‘hard part’ &(x1p1, xop2, 11?)
Calculated, e.g. with methods discussed in many of the other courses

> a.nd parton distribution functions (PDFs): f,,(x, %) is the probability of

finding a quark q inside a proton p, and carrying a fraction x of its
momentum. Determined experimentally, cf. later
[For now, don't worry about u? “factorisation scale” argument]
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Factorisation is a term that has several related meanings in QCD.
Intimately connected with infrared divergences

We can start understanding those by studying a process that's simpler than
hadron collisions: ete™ collisions with hadronic final states.
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ete™ — qg .
[L[Soft—colli:Zz]ar emission] SOft gl uon am pI |tUde
Start with v* — qg:
Pq
. —i
Mg = —u(p1)iegyuv(p2) E¥u
P2
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[ete™ — qq]

L [Soft-collinear emission] SOft gl uon am pI |tUde

Start with v* — qg:

Pq
— . —i
Maqg = —t(p1)iegvuv(p2) T u
p2
Emit a gluon:
M _( ) % A i . ( ) Py Py
qgg = U(P1)Igsft” ———1€qVuv(p2 ~iey el

P+ K v k v e
P2 P2

. a(pl)ieqwmigs%t”‘\/(pz)
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Soft gluon amplitude

mmmwﬁ%;k@mmwg——@mmvgﬁj;%mﬂwm)

Use AB =2A.B — BA:

= —igs(pr)[2e-(p1 + ) = (Fy + YA et v(p2)

(p1

Use t(p1)p#; = 0 and k < p1 (p1, k massless)

1
Tk)zeqw tAV(Pz)

. p1-€  _ A
= — _— t
1.k ”(Pl)etﬂ/u v(p2)

~ —igst(p1)[2¢.p1] (o

pure QED spinor structure




l[ete™ — qq

L [Soft-collinear emission] SOft gl uon am pI |tUde

Start with v* — qg:

P

— . — i
Mg = _”(Pl)’eq'VuV(PZ) NG

P2
Emit a gluon:

Mazg = (Pl)’gsf-/t ieqVuv(P2) —ley, P
‘j k k &

— (p1)ieqy igsft"v(p2)
q ﬂ‘j k

Make gluon soft = k < py2; ignore terms suppressed by powers of k:

Mazg = T(p1)ieg1ut"v(p2) & (Sl Z ﬁ) é}‘;(i)}(i_f i’ 2p.k
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[ete™ — qq]

L [Soft-collinear emission] Sq ua red am pI |tUde

2

‘Mgag‘ = Z

A,pol

2
2p1.p2
:_M2_C 2(pl_p2>:M2_C2
[Maql Cres pi.k  po.k [ Maal Cres (p1-k)(p2-k)

— . A P1-€ P2.€
u 1€ t"v _——
(Pl) am (P2) 8s <p1.k p2-k>
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[ete™ — qq]

L [Soft-collinear emission] Sq ua red am pI |tUde

2

‘Mgag‘ = Z

A,pol

2
2p1.p2
:_M2_C 2(pl_p2>:M2_C2
[Maql Cres pi.k  po.k [ Maal Cres (p1-k)(p2-k)

— . A P1-€ P2.€
u 1€ t"v _——
(Pl) am (P2) 8s <p1.k p2-k>
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[ete™ — qq]

L [Soft-collinear emission] Sq ua red am pI |tUde

2
— . A P1-€ P2.€
t - =
u(p1)ieqyut"v(p2) gs (pl.k p2_k>'

‘Mgag‘ = Z

A,pol

2
2p1.p2
— _IM2IC 2<Pl_PZ> — M2 | Crg?
[Maql Cres pi.k  po.k Mgl ng(pl.k)(pz.k)
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[ete™ — qq]

L [Soft-collinear emission] Sq ua red am pI |tUde

2

‘Mgag‘ = Z

A,pol

2
2p1.p2
— _IM2.IC 2(p1_pz> — M2 | Crg? P12
(Mag|Cres pi-k  p2.k Mgz ng(Pl-k)(sz)

— . A P1-€ P2.€
u 1€ t"v —_— =
(Pl) am (P2) 8s <p1.k p2-k>

Include phase space:

d3k 2p1.p2
2 |~ ~IM2 2
d®gag| Mg | ~ (dDgqIM351) 2E(27)? "85 (pr.k)(pa-K)
ds
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[efe™ — qq

L [Soft-collinear emission] Sq ua red am pI |tUde

2

‘Mgég‘ = Z

A,pol

2
2p1.p2
— _IM2.IC 2(p1_pz> — M2 | Crg? P12
(Mag|Cres pi-k  p2.k IMas! ng(Pl-k)(sz)

— . A P1-€ P2.€
u 1€ t"v —_— =
(Pl) am (P2) 8s <p1.k p2-k>

Include phase space:

d3k 2p1-p2
2 |~ =| M2 ;
d¢qag|Mq(—7g! = (dq)qq‘qulD 2E(27T)3 Cres (p1-k)(p2-k)

ds

Note property of factorisation into hard qg piece and soft-gluon emission
piece, dS.
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[ete™ — qq]

L [Soft-collinear emission] Squared amphtUde
A pi.e  p2.€ 2
M2 | ~ Dplie'ytvng<'—’>
‘ qqg‘ Azp:OI ( ) qip ( ) S p]_k p2k
p1 2 2p1-p2
— M2, Crg? ( - ) 2. |Crg2 LR

Include phase space:

d3k 2p1-p2
2 |~ =| M2 ;
d¢qag|Mq(—7g! = (dq)qq‘MqéD 2E(27T)3 Cres (p1-k)(p2-k)

ds

Note property of factorisation into hard qg piece and soft-gluon emission
piece, dS.

d¢ 205 Cr 2p1.p2 0=0,,
d EdE dcos — P1
§= Vo m (2p1.k)(2p2.k) ¢ = azimuth
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[efe™ — qq

T s Soft & collinear gluon emission

Take squared matrix element and rewrite in terms of E, 0,

2p1.p2 _ 1
(2p1.k)(2p2.k)  E?(1 — cos?6)
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[ete™ — qq]

T s Soft & collinear gluon emission

Take squared matrix element and rewrite in terms of E, 6,

2p1.p2 _ 1
(2p1.k)(2p2.k)  E?(1 — cos?6)

So final expression for soft gluon emission is

 2a,Cr dE dO d¢

m  E sinf 27

ds
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[ete™ — qq]

T s Soft & collinear gluon emission

Take squared matrix element and rewrite in terms of E, 6,

2p1.p2 _ 1
(2p1.k)(2p2.k)  E?(1 — cos?6)

So final expression for soft gluon emission is

 2a,Cr dE dO d¢

m  E sinf 27

ds

NB:

» It diverges for E — 0 — infrared (or soft) divergence
» It diverges for § — 0 and 8 — m — collinear divergence
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l[ete™ — qq

T s Soft & collinear gluon emission

Take squared matrix element and rewrite in terms of E, 6,

2p1.p2 _ 1
(2p1.k)(2p2.k)  E?(1 — cos?6)

So final expression for soft gluon emission is

 2a,Cr dE dO d¢

m  E sinf 27

ds

NB:

» It diverges for E — 0 — infrared (or soft) divergence

» It diverges for § — 0 and 8 — m — collinear divergence

Soft, collinear divergences derived here in specific context of ete™ — qg
But they are a very general property of QCD
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If probability of gluon emission diverges, then how can you
calculate anything beyond leading order?

Kinoshita-Lee-Nauenberg theorem tells as that if you sum
over allowed states, then result must be finite.
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[Total cross sections]

L [Realuirount cancalation] Real-virtual cancellations: total X-sctn

Total cross section: sum of all real and virtual diagrams

2
P1q

—iey,, ke —iey,, iey,

P2

Total cross section must be finite. If real part has divergent integration, so
must virtual part. (Unitarity, conservation of probability)
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[Total cross sections]

L [Realuirount cancalation] Real-virtual cancellations: total X-sctn

Total cross section: sum of all real and virtual diagrams

2
P1q

—iey,, ke —iey,, iey,

P2

Total cross section must be finite. If real part has divergent integration, so
must virtual part. (Unitarity, conservation of probability)

25C dE

R(E/Q,0) parametrises real matrix element for hard emissions, E ~ Q.
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[Total cross sections]

L [Realuirount cancalation] Real-virtual cancellations: total X-sctn

Total cross section: sum of all real and virtual diagrams

2
P1q

—iey,, ke —iey,, iey,

P2

Total cross section must be finite. If real part has divergent integration, so
must virtual part. (Unitarity, conservation of probability)

Crot = 0o ( 2a5C;: / dE/ R(E/Q.0)
2asC,: dE
/ /sm9 (E/Q, 9)>

» R(E/Q,0) parametrises real matrix element for hard emissions, E ~ Q.

» V(E/Q,0) parametrises virtual corrections for all momenta (a “physical
fudge” — exact way is to do calc. in dim. reg.)
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[Total cross sections]

L [Real-virtual cancellation] TOta I X_SeCtIOn (Cont . )

o = oag (1+ 222 [ [ 2 (r(/0.0) - viE/Q.0))

» From calculation: limg_,o R(E/Q,0) = 1.
» For every divergence R(E/Q,0) and V(E/Q,0) should cancel:

lim(R—V) =0, lim (R=V)=0
E—0

6—0,7
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[Total cross sections]

L [Real-virtual cancellation] TOta I X_SeCtIOn (Cont . )

o = oag (1+ 222 [ [ 2 (r(/0.0) - viE/Q.0))

» From calculation: limg_,o R(E/Q,0) = 1.
» For every divergence R(E/Q,0) and V(E/Q,0) should cancel:

lim(R—V) =0, lim (R=V)=0
E—0

6—0,7

Result:

» corrections to ot come from hard (E ~ Q), large-angle gluons
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[Total cross sections]

L [Real-virtual cancellation] TOta I X_SeCtIOn (Cont . )

o = oag (1+ 222 [ [ 2 (r(/0.0) - viE/Q.0))

» From calculation: limg_,o R(E/Q,0) = 1.
» For every divergence R(E/Q,0) and V(E/Q,0) should cancel:

lim(R— V) =0, lim (R— V) =0

E—0 6—0,7

Result:

> corrections to o4 come from hard (E ~ Q), large-angle gluons

» Soft gluons don't matter:
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[Total cross sections]

L [Real-virtual cancellation] TOta I X_SeCtIOn (Cont . )

o = oag (1+ 222 [ [ 2 (r(/0.0) - viE/Q.0))

» From calculation: limg_,o R(E/Q,0) = 1.
» For every divergence R(E/Q,0) and V(E/Q,0) should cancel:
lim (R— V) =0, lim (R— V) =0

E—0 6—0,7
Result:
> corrections to o4 come from hard (E ~ Q), large-angle gluons

» Soft gluons don't matter:

» Physics reason: soft gluons emitted on long timescale ~ 1/(Ef#?) relative to
collision (1/Q) — cannot influence cross section.
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[Total cross sections]

L [Real-virtual cancellation] TOta I X_SeCtIOn (Cont . )

o = oag (1+ 222 [ [ 2 (r(/0.0) - viE/Q.0))

» From calculation: limg_,o R(E/Q,0) = 1.

» For every divergence R(E/Q,0) and V(E/Q,0) should cancel:
lim(R—V)= li R—-V)=
EIE;]O( ) =0, 9—I>rcr)],7r( )=0

Result:

» corrections to oot come from hard (E ~ Q), large-angle gluons

» Soft gluons don't matter:

» Physics reason: soft gluons emitted on long timescale ~ 1/(E6?) relative to
collision (1/Q) — cannot influence cross section.

» Transition to hadrons also occurs on long time scale (~ 1/A) — and can also
be ignored.
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[Total cross sections]

L [Real-virtual cancellation] TOta I X_SeCtIOn (Cont )

o = oag (1+ 222 [ [ 2 (r(/0.0) - viE/Q.0))

» From calculation: limg_,o R(E/Q,0) = 1.

» For every divergence R(E/Q,0) and V(E/Q,0) should cancel:
lim(R—V)= li R—-V)=
EIE;]O( ) =0, 9—I>rcr)],7r( )=0

Result:

» corrections to oot come from hard (E ~ Q), large-angle gluons

» Soft gluons don't matter:

» Physics reason: soft gluons emitted on long timescale ~ 1/(E6?) relative to
collision (1/Q) — cannot influence cross section.

» Transition to hadrons also occurs on long time scale (~ 1/A) — and can also
be ignored.

» Correct renorm. scale for ag: pu ~ Q — perturbation theory valid.
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[Total cross sections]

L [Real-virtual cancellation] TOtal Cross SeCtIOn at NLO

Our treatment so far was a bit rough: designed to emphasize physical
nature of divergences.

In practice calculations will be done in 4 + € dimensions and infrared
divergences translate to powers of 1/e.

Full final answer for oyt at next-to-leading order (NLO) is, for massless
quarks,

3a CF

Otot — Oqg <]. + Z >

™

+0 (a§)>
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(oevona NHO] Beyond NLO: e.g. NNLO

X X X X X X X 0 loops (tree-level)
o o o o 1 loop
] ] 2 loops

0 1 2 3 4 5 6

ij > Z+ npartons
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[Total cross sections] Beyond NLO: e.g. NNLO

L [Beyond NLO]

0 loops (tree-level)
1 loop

2 loops

ij > Z+ npartons
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[Total cross sections] Beyond NLO: e.g. NNLO

L [Beyond NLO]

0 loops (tree-level)
1 loop

2 loops

ij > Z+ npartons
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[Total cross sections] Beyond NLO: e.g. NNLO

L [Beyond NLO]

0 loops (tree-level)
1 loop

2 loops

ij > Z+ npartons
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[Total cross sections] Beyond NLO: e.g. NNLO

L [Beyond NLO]

0 loops (tree-level)
1 loop

2 loops

ij > Z+ npartons
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[Total cross sections] Beyond NLO: e.g. NNLO

L [Beyond NLO]

X 0 loops (tree-level)
1 loop

2 loops

ij > Z+ npartons
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[Total cross sections] Beyond NLO: e.g. NNLO

L [Beyond NLO]

Z@LO

0 loops (tree-level)
1 loop

2 loops

ij > Z+ npartons
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[Total cross sections] Beyond NLO: e.g. NNLO

L [Beyond NLO]

Z @ NLO

0 loops (tree-level)
1 loop

2 loops

ij > Z+ npartons
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[Total cross sections] Beyond NI_O eg NNI_O

L [Beyond NLO]

Z @ NNLO

0 loops (tree-level)
1 loop

2 loops

ij > Z+ npartons

To get NPLO you need the Born (LO) diagram supplemented with all
combination of n loops and p — n extra emissions, with 0 < n < p.
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[Total cross sections]

 [Beyond NLO] total X-section (cont.)

Dependence of total cross section on only hard gluons is reflected in ‘good
behaviour' of perturbation series:

Ttot = Oqg (1 +1.04524Q) L .04 <O‘S(Q)>2 _ 15 <aS(Q)>3+

™

(Coefficients given for Q = Myz)
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[Total cross sections]

 [Beyond NLO] total X-section (cont.)

Dependence of total cross section on only hard gluons is reflected in ‘good
behaviour' of perturbation series:

Ttot = Oqg (1 +1.04524Q) L .04 <O‘S(Q)>2 _ 15 <aS(Q)>3+

™

(Coefficients given for Q = Myz)

Exercise: substitute as(Mz) = 0.118 to get a feel for the quality of the
expansion.
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[Total cross sections] total X—Sectlon (Cont)

L [Beyond NLO]

Dependence of total cross section on only hard gluons is reflected in ‘good
behaviour' of perturbation series:

Ttot = Oqg (1 +1.04524Q) L .04 <O‘S(Q))2 _ 15 <aS(Q)>3+

™

(Coefficients given for Q = Myz)

Exercise: substitute as(Mz) = 0.118 to get a feel for the quality of the
expansion.

Question: did we have to write the result as a function of as(Q)?
Actually, it is standard to write results as a function of as(uug), where ug is
the renormalisation scale, to be taken urp ~ Q.
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[Total cross sections]

L [Scale dependence] SCa Ie dependence

Let's express NLO results for arbitrary pg in terms of as(Q):

o™ (1R) = 04z (1 + c1as(pr))
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[Total cross sections]

[Scale dependence] Sca Ie dependence

as(pr) = ¢
Os\HR 14 2bgas(Q) Inpr/Q

= as(Q) — 2bg a2(Q) In ur/Q + O (af)




[Total cross sections]

L [Scale dependence] Scale dependence

Let's express NLO results for arbitrary pg in terms of as(Q):

o™ (1R) = 04z (1 + c1as(pr))

= 045 <1 + c1as(Q) — 2c1bg In %? a2(Q) + O (a?) >

As we vary the renormalisation scale pg, we introduce O (a2) pieces into
the X-section. l.e. generate some set of NNLO terms ~ uncertainty on
X-section from missing NNLO calculation.

Gavin Salam (CERN QCD basics 2 14 / 17



[Total cross sections]

[Scale dependence] Sca Ie dependence

Let's express NLO results for arbitrary pg in terms of as(Q):

o™ (1R) = 04z (1 + c1as(pr))

= 045 <1 + c1as(Q) — 2c1bg In %? a2(Q) + O (a?) >

As we vary the renormalisation scale pg, we introduce O (a2) pieces into
the X-section. l.e. generate some set of NNLO terms ~ uncertainty on
X-section from missing NNLO calculation.

If we now calculate the full NNLO correction, then it will be structured so
as to cancel the O (a2) scale variation

O_NNLO(

1R) = 0qg [1 + cros(ur) + ca(pr)oZ(kr) ]
o (pr) = 2(Q) + 2c1by In %R

Remaining uncertainty is now O (ag).
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[Total cross sections]| Scale dependence NNLO

L [Scale dependence]

scale-dep. of o(e*e” — hadrons) See how at NNLO, scale depen-

1.1 dence is much flatter, final uncer-
Q=M LO tainty much smaller
1.08 NLO —--- 1 y '
g
1T 1.06 N b
3 Tt =a
L K S i TS .
s 102} ! ! ]
e} ' '
g ' '
1 1 ‘ ‘
3 conventional range
o 098 | — .
105<x,<2]
0.96 ' ' b
0.1 1 10
HR/Q
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[Total cross sections]
L [Scale dependence]

Scale dependence: NNLO

Oge — hadrons / Oge - qq

scale-dep. of o(e*e” — hadrons)

1.1
Q=M; LO —
1.08 NLO — ==~ 1
1.06 ~ o NNLO ====
1,04 poorcanmmirmme sy e e e ]
1.02 | 1
1 ‘ ‘
conventional range
0.98 — 4
105<x,<2]
0.96 : ‘ 1
0.1 1 10
HR/Q

Gavin Salam (CERN

See how at NNLO, scale depen-

dence is much flatter, final uncer-
tainty much smaller.

Because now we neglect

only a2 instead of a2
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[Total cross sections]
L [Scale dependence]

Scale dependence: NNLO

Ogee — hadrons / Oge - qq

scale-dep. of o(e*e” — hadrons)

10

1.1
Q=M; LO —
1.08 | NLO —--- 1
1.06 ~ o NNLO ==
1.04 FLw s -:-:;"-‘-E;'_*'L- ------ E
1.02 E
1 ‘ ‘
conventional range
0.98 - — 4
105<x,<2]
0.96 : ‘
0.1 1
HR/Q

See how at NNLO, scale depen-

dence is much flatter, final uncer-
tainty much smaller.

Because now we neglect

only a2 instead of a2

Moral: not knowing exactly how

to set scale — blessing in disguise,

since it gives us handle on uncer-
tainty.

Scale variation = standard procedure

Beyond LO, often a good guide

But not foolproof!

NB: if we had a large number of orders of perturbation theory, scale
dependence would just disappear.

Gavin Salam (CERN
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[Total cross sections]

L [Scale dependence] Exercise: scale dependence

Suppose you have a geometric perturbative series,

[e.e]
o =o0p E c'a
i=0

Working in a limit where as < 1, ¢ > 1 and cas < 1, evaluate the scale
dependence on the estimate for o obtained when the series is truncated at
order n.

Is that scale dependence a good indication of the size of missing higher
order terms?
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Where to now?
There are two directions we can explore

1. what happens with a more complicated initial state
2. what happens when we look in more detail at the final
state
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