Basics of QCD

Lecture 2: higher orders, divergences

Neither lattice QCD nor perturbative QCD can offer
 a full solution to using QCD at colliders

What the community has settled on is

1) factorisation of initial state non-perturbative problem from
2) the "hard process," calculated perturbatively supplemented with
3) non-perturbative modelling of final-state hadronic-scale processes ("hadronisation").

Factorization

Cross section for some hard process in hadron-hadron collisions

$$
\sigma=\int d x_{1} f_{q / p}\left(x_{1}, \mu^{2}\right) \int d x_{2} f_{\bar{q} / p}\left(x_{2}, \mu^{2}\right) \hat{\sigma}\left(x_{1} p_{1}, x_{2} p_{2}, \mu^{2}\right), \quad \hat{s}=x_{1} x_{2} s
$$

Factorization

Cross section for some hard process in hadron-hadron collisions

$$
\sigma=\int d x_{1} f_{q / p}\left(x_{1}, \mu^{2}\right) \int d x_{2} f_{\bar{q} / p}\left(x_{2}, \mu^{2}\right) \hat{\sigma}\left(x_{1} p_{1}, x_{2} p_{2}, \mu^{2}\right), \quad \hat{s}=x_{1} x_{2} s
$$

- Total X-section is factorized into a 'hard part' $\hat{\sigma}\left(x_{1} p_{1}, x_{2} p_{2}, \mu^{2}\right)$ Calculated, e.g. with methods discussed in many of the other courses

[For now, don't worry about μ^{2} "factorisation scale" argument]

Factorization

Cross section for some hard process in hadron-hadron collisions

$$
\sigma=\int d x_{1} f_{q / p}\left(x_{1}, \mu^{2}\right) \int d x_{2} f_{\bar{q} / p}\left(x_{2}, \mu^{2}\right) \hat{\sigma}\left(x_{1} p_{1}, x_{2} p_{2}, \mu^{2}\right), \quad \hat{s}=x_{1} x_{2} s
$$

- Total X-section is factorized into a 'hard part' $\hat{\sigma}\left(x_{1} p_{1}, x_{2} p_{2}, \mu^{2}\right)$ Calculated, e.g. with methods discussed in many of the other courses
- and parton distribution functions (PDFs): $f_{q / p}\left(x, \mu^{2}\right)$ is the probability of finding a quark q inside a proton p, and carrying a fraction x of its momentum.

Determined experimentally, cf. later
[For now, don't worry about μ^{2} "factorisation scale" argument]

Factorisation is a term that has several related meanings in QCD.

Intimately connected with infrared divergences

We can start understanding those by studying a process that's simpler than hadron collisions: $e^{+} e^{-}$collisions with hadronic final states.

Start with $\gamma^{*} \rightarrow q \bar{q}:$

$$
\mathcal{M}_{q \bar{q}}=-\bar{u}\left(p_{1}\right) i e_{q} \gamma_{\mu} v\left(p_{2}\right)
$$

Soft gluon amplitude

Start with $\gamma^{*} \rightarrow q \bar{q}:$

$$
\mathcal{M}_{q \bar{q}}=-\bar{u}\left(p_{1}\right) i e_{q} \gamma_{\mu} v\left(p_{2}\right)
$$

Emit a gluon:

$$
\begin{aligned}
\mathcal{M}_{q \bar{q} g} & =\bar{u}\left(p_{1}\right) i g_{s} \notin t^{A} \frac{i}{\not p_{1}+\nless} i e_{q} \gamma_{\mu} v\left(p_{2}\right) \\
& -\bar{u}\left(p_{1}\right) i e_{q} \gamma_{\mu} \frac{i}{\not p_{2}+\nless} i g_{s} \notin t^{A} v\left(p_{2}\right)
\end{aligned}
$$

Start with $\gamma^{*} \rightarrow q \bar{q}:$

$$
\begin{gathered}
\bar{u}\left(p_{1}\right) i g_{s} \not \subset t^{A} \frac{i}{\not p_{1}+k} i e_{q} \gamma_{\mu} v\left(p_{2}\right)=-i g_{s} \bar{u}\left(p_{1}\right) \notin \frac{\not p_{1}+k}{\left(p_{1}+k\right)^{2}} e_{q} \gamma_{\mu} t^{A} v\left(p_{2}\right) \\
\text { Use } A \not B=2 A \cdot B-\not \subset A: \\
=-i g_{s} \bar{u}\left(p_{1}\right)\left[2 \epsilon \cdot\left(p_{1}+k\right)-\left(\not p_{1}+k\right) \notin\right] \frac{1}{\left(p_{1}+k\right)^{2}} e_{q} \gamma_{\mu} t^{A} v\left(p_{2}\right) \\
\text { Use } \bar{u}\left(p_{1}\right) \not p_{1}=0 \text { and } k \ll p_{1}\left(p_{1}, k \text { massless }\right) \\
\simeq-i g_{s} \bar{u}\left(p_{1}\right)\left[2 \epsilon \cdot p_{1}\right] \frac{1}{\left(p_{1}+k\right)^{2}} e_{q} \gamma_{\mu} t^{A} v\left(p_{2}\right) \\
=-i g_{s} \frac{p_{1} \cdot \epsilon}{p_{1} \cdot k} \underbrace{\bar{u}\left(p_{1}\right) e_{q} \gamma_{\mu} t^{A} v\left(p_{2}\right)}_{\text {pure QED spinor structure }}
\end{gathered}
$$

Start with $\gamma^{*} \rightarrow q \bar{q}:$

$$
\mathcal{M}_{q \bar{q}}=-\bar{u}\left(p_{1}\right) i e_{q} \gamma_{\mu} v\left(p_{2}\right)
$$

Emit a gluon:

$$
\begin{aligned}
\mathcal{M}_{q \bar{q} g} & =\bar{u}\left(p_{1}\right) i g_{s} \notin t^{A} \frac{i}{p_{1}+\nless k} i e_{q} \gamma_{\mu} v\left(p_{2}\right) \\
& -\bar{u}\left(p_{1}\right) i e_{q} \gamma_{\mu} \frac{i}{p_{2}+k} i g_{s} \notin t^{A} v\left(p_{2}\right)
\end{aligned}
$$

Make gluon soft $\equiv k \ll p_{1,2}$; ignore terms suppressed by powers of k :

$$
\mathcal{M}_{q \bar{q} g} \simeq \bar{u}\left(p_{1}\right) i e_{q} \gamma_{\mu} t^{A} v\left(p_{2}\right) g_{s}\left(\frac{p_{1} \cdot \epsilon}{p_{1} \cdot k}-\frac{p_{2} \cdot \epsilon}{p_{2} \cdot k}\right) \quad \begin{aligned}
& \not p v(p)=0, \\
& \not p k+k p p=2 p . k
\end{aligned}
$$

$$
\begin{aligned}
& \left|M_{q \bar{q} g}^{2}\right| \simeq \sum_{A, \mathrm{pol}}\left|\bar{u}\left(p_{1}\right) i e_{q} \gamma_{\mu} t^{A} v\left(p_{2}\right) g_{s}\left(\frac{p_{1} \cdot \epsilon}{p_{1} \cdot k}-\frac{p_{2} \cdot \epsilon}{p_{2} \cdot k}\right)\right|^{2} \\
& \quad=-\left|M_{q \bar{q}}^{2}\right| C_{F} g_{s}^{2}\left(\frac{p_{1}}{p_{1} \cdot k}-\frac{p_{2}}{p_{2} \cdot k}\right)^{2}=\left|M_{q \bar{q}}^{2}\right| C_{F} g_{s}^{2} \frac{2 p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \left|M_{q \bar{q} g}^{2}\right| \simeq \sum_{A, \mathrm{pol}}\left|\bar{u}\left(p_{1}\right) i e_{q} \gamma_{\mu} t^{A} v\left(p_{2}\right) g_{s}\left(\frac{p_{1} \cdot \epsilon}{p_{1} \cdot k}-\frac{p_{2} \cdot \epsilon}{p_{2} \cdot k}\right)\right|^{2} \\
& \quad=-\left|M_{q \bar{q}}^{2}\right| C_{F} g_{s}^{2}\left(\frac{p_{1}}{p_{1} \cdot k}-\frac{p_{2}}{p_{2} \cdot k}\right)^{2}=\left|M_{q \bar{q}}^{2}\right| C_{F} g_{s}^{2} \frac{2 p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \left|M_{q \bar{q} g}^{2}\right| \simeq \sum_{A, \mathrm{pol}}\left|\bar{u}\left(p_{1}\right) i e_{q} \gamma_{\mu} t^{A} v\left(p_{2}\right) g_{s}\left(\frac{p_{1} \cdot \epsilon}{p_{1} \cdot k}-\frac{p_{2} \cdot \epsilon}{p_{2} \cdot k}\right)\right|^{2} \\
& \quad=-\left|M_{q \bar{q}}^{2}\right| C_{F} g_{s}^{2}\left(\frac{p_{1}}{p_{1} \cdot k}-\frac{p_{2}}{p_{2} \cdot k}\right)^{2}=\left|M_{q \bar{q}}^{2}\right| C_{F} g_{s}^{2} \frac{2 p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)}
\end{aligned}
$$

Include phase space:

$$
\begin{aligned}
& \left|M_{q \bar{q} g}^{2}\right| \simeq \sum_{A, \mathrm{pol}}\left|\bar{u}\left(p_{1}\right) i e_{q} \gamma_{\mu} t^{A} v\left(p_{2}\right) g_{s}\left(\frac{p_{1} \cdot \epsilon}{p_{1} \cdot k}-\frac{p_{2} \cdot \epsilon}{p_{2} \cdot k}\right)\right|^{2} \\
& \quad=-\left|M_{q \bar{q}}^{2}\right| C_{F} g_{s}^{2}\left(\frac{p_{1}}{p_{1} \cdot k}-\frac{p_{2}}{p_{2} \cdot k}\right)^{2}=\left|M_{q \bar{q}}^{2}\right| C_{F} g_{s}^{2} \frac{2 p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)}
\end{aligned}
$$

Include phase space:

$$
d \Phi_{q \bar{q} g}\left|M_{q \bar{q} g}^{2}\right| \simeq\left(d \Phi_{q \bar{q}}\left|M_{q \bar{q}}^{2}\right|\right) \underbrace{\frac{d^{3} \vec{k}}{2 E(2 \pi)^{3}} C_{F} g_{s}^{2} \frac{2 p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)}}_{d \mathcal{S}}
$$

$$
\begin{aligned}
& \left|M_{q \bar{q} g}^{2}\right| \simeq \sum_{A, \mathrm{pol}}\left|\bar{u}\left(p_{1}\right) i e_{q} \gamma_{\mu} t^{A} v\left(p_{2}\right) g_{s}\left(\frac{p_{1} \cdot \epsilon}{p_{1} \cdot k}-\frac{p_{2} \cdot \epsilon}{p_{2} \cdot k}\right)\right|^{2} \\
& \quad=-\left|M_{q \bar{q}}^{2}\right| C_{F} g_{s}^{2}\left(\frac{p_{1}}{p_{1} \cdot k}-\frac{p_{2}}{p_{2} \cdot k}\right)^{2}=\left|M_{q \bar{q}}^{2}\right| C_{F} g_{s}^{2} \frac{2 p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)}
\end{aligned}
$$

Include phase space:

$$
d \Phi_{q \bar{q} g}\left|M_{q \bar{q} g}^{2}\right| \simeq\left(d \Phi_{q \bar{q}}\left|M_{q \bar{q}}^{2}\right|\right) \underbrace{\frac{d^{3} \vec{k}}{2 E(2 \pi)^{3}} C_{F} g_{s}^{2} \frac{2 p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)}}_{d \mathcal{S}}
$$

Note property of factorisation into hard $q \bar{q}$ piece and soft-gluon emission piece, $d S$.

$$
\begin{aligned}
& \left|M_{q \bar{q} g}^{2}\right| \simeq \sum_{A, \mathrm{pol}}\left|\bar{u}\left(p_{1}\right) i e_{q} \gamma_{\mu} t^{A} v\left(p_{2}\right) g_{s}\left(\frac{p_{1} \cdot \epsilon}{p_{1} \cdot k}-\frac{p_{2} \cdot \epsilon}{p_{2} \cdot k}\right)\right|^{2} \\
& \quad=-\left|M_{q \bar{q}}^{2}\right| C_{F} g_{s}^{2}\left(\frac{p_{1}}{p_{1} \cdot k}-\frac{p_{2}}{p_{2} \cdot k}\right)^{2}=\left|M_{q \bar{q}}^{2}\right| C_{F} g_{s}^{2} \frac{2 p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)}
\end{aligned}
$$

Include phase space:

$$
d \Phi_{q \bar{q} g}\left|M_{q \bar{q} g}^{2}\right| \simeq\left(d \Phi_{q \bar{q}}\left|M_{q \bar{q}}^{2}\right|\right) \underbrace{\frac{d^{3} \vec{k}}{2 E(2 \pi)^{3}} C_{F} g_{s}^{2} \frac{2 p_{1} \cdot p_{2}}{\left(p_{1} \cdot k\right)\left(p_{2} \cdot k\right)}}_{d \mathcal{S}}
$$

Note property of factorisation into hard $q \bar{q}$ piece and soft-gluon emission piece, $d \mathcal{S}$.

$$
d \mathcal{S}=E d E d \cos \theta \frac{d \phi}{2 \pi} \cdot \frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \frac{2 p_{1} \cdot p_{2}}{\left(2 p_{1} \cdot k\right)\left(2 p_{2} \cdot k\right)}
$$

$$
\begin{aligned}
& \theta \equiv \theta_{p_{1} k} \\
& \phi=\text { azimuth }
\end{aligned}
$$

Take squared matrix element and rewrite in terms of E, θ,

$$
\frac{2 p_{1} \cdot p_{2}}{\left(2 p_{1} \cdot k\right)\left(2 p_{2} \cdot k\right)}=\frac{1}{E^{2}\left(1-\cos ^{2} \theta\right)}
$$

Take squared matrix element and rewrite in terms of E, θ,

$$
\frac{2 p_{1} \cdot p_{2}}{\left(2 p_{1} \cdot k\right)\left(2 p_{2} \cdot k\right)}=\frac{1}{E^{2}\left(1-\cos ^{2} \theta\right)}
$$

So final expression for soft gluon emission is

$$
d \mathcal{S}=\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \frac{d E}{E} \frac{d \theta}{\sin \theta} \frac{d \phi}{2 \pi}
$$

Take squared matrix element and rewrite in terms of E, θ,

$$
\frac{2 p_{1} \cdot p_{2}}{\left(2 p_{1} \cdot k\right)\left(2 p_{2} \cdot k\right)}=\frac{1}{E^{2}\left(1-\cos ^{2} \theta\right)}
$$

So final expression for soft gluon emission is

$$
d \mathcal{S}=\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \frac{d E}{E} \frac{d \theta}{\sin \theta} \frac{d \phi}{2 \pi}
$$

NB:

- It diverges for $E \rightarrow 0$ - infrared (or soft) divergence
- It diverges for $\theta \rightarrow 0$ and $\theta \rightarrow \pi$ - collinear divergence

Take squared matrix element and rewrite in terms of E, θ,

$$
\frac{2 p_{1} \cdot p_{2}}{\left(2 p_{1} \cdot k\right)\left(2 p_{2} \cdot k\right)}=\frac{1}{E^{2}\left(1-\cos ^{2} \theta\right)}
$$

So final expression for soft gluon emission is

$$
d \mathcal{S}=\frac{2 \alpha_{s} C_{F}}{\pi} \frac{d E}{E} \frac{d \theta}{\sin \theta} \frac{d \phi}{2 \pi}
$$

NB:

- It diverges for $E \rightarrow 0$ - infrared (or soft) divergence
- It diverges for $\theta \rightarrow 0$ and $\theta \rightarrow \pi$ - collinear divergence

Soft, collinear divergences derived here in specific context of $e^{+} e^{-} \rightarrow q \bar{q}$ But they are a very general property of QCD

If probability of gluon emission diverges, then how can you calculate anything beyond leading order?

Kinoshita-Lee-Nauenberg theorem tells as that if you sum over allowed states, then result must be finite.

Total cross section: sum of all real and virtual diagrams

Total cross section must be finite. If real part has divergent integration, so must virtual part.
(Unitarity, conservation of probability)

Total cross section: sum of all real and virtual diagrams

Total cross section must be finite. If real part has divergent integration, so must virtual part.
(Unitarity, conservation of probability)

$$
\sigma_{t o t}=\sigma_{q \bar{q}}\left(1+\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \int \frac{d E}{E} \int \frac{d \theta}{\sin \theta} R(E / Q, \theta)\right.
$$

- $R(E / Q, \theta)$ parametrises real matrix element for hard emissions, $E \sim Q$.

Total cross section: sum of all real and virtual diagrams

Total cross section must be finite. If real part has divergent integration, so must virtual part.
(Unitarity, conservation of probability)

$$
\begin{aligned}
\sigma_{\text {tot }}=\sigma_{q \bar{q}}\left(1+\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \int \frac{d E}{E} \int\right. & \frac{d \theta}{\sin \theta} R(E / Q, \theta) \\
& \left.-\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \int \frac{d E}{E} \int \frac{d \theta}{\sin \theta} V(E / Q, \theta)\right)
\end{aligned}
$$

- $R(E / Q, \theta)$ parametrises real matrix element for hard emissions, $E \sim Q$.
- $V(E / Q, \theta)$ parametrises virtual corrections for all momenta (a "physical fudge" - exact way is to do calc. in dim. reg.)

$$
\sigma_{\text {tot }}=\sigma_{q \bar{q}}\left(1+\frac{2 \alpha_{s} C_{F}}{\pi} \int \frac{d E}{E} \int \frac{d \theta}{\sin \theta}(R(E / Q, \theta)-V(E / Q, \theta))\right)
$$

- From calculation: $\lim _{E \rightarrow 0} R(E / Q, \theta)=1$.
- For every divergence $R(E / Q, \theta)$ and $V(E / Q, \theta)$ should cancel:

$$
\lim _{E \rightarrow 0}(R-V)=0, \quad \lim _{\theta \rightarrow 0, \pi}(R-V)=0
$$

Result:

$$
\sigma_{\text {tot }}=\sigma_{q \bar{q}}\left(1+\frac{2 \alpha_{s} C_{F}}{\pi} \int \frac{d E}{E} \int \frac{d \theta}{\sin \theta}(R(E / Q, \theta)-V(E / Q, \theta))\right)
$$

- From calculation: $\lim _{E \rightarrow 0} R(E / Q, \theta)=1$.
- For every divergence $R(E / Q, \theta)$ and $V(E / Q, \theta)$ should cancel:

$$
\lim _{E \rightarrow 0}(R-V)=0, \quad \lim _{\theta \rightarrow 0, \pi}(R-V)=0
$$

Result:

- corrections to $\sigma_{\text {tot }}$ come from hard $(E \sim Q)$, large-angle gluons - Soft gluons don't matter:

$$
\sigma_{\text {tot }}=\sigma_{q \bar{q}}\left(1+\frac{2 \alpha_{s} C_{F}}{\pi} \int \frac{d E}{E} \int \frac{d \theta}{\sin \theta}(R(E / Q, \theta)-V(E / Q, \theta))\right)
$$

- From calculation: $\lim _{E \rightarrow 0} R(E / Q, \theta)=1$.
- For every divergence $R(E / Q, \theta)$ and $V(E / Q, \theta)$ should cancel:

$$
\lim _{E \rightarrow 0}(R-V)=0, \quad \lim _{\theta \rightarrow 0, \pi}(R-V)=0
$$

Result:

- corrections to $\sigma_{\text {tot }}$ come from hard $(E \sim Q)$, large-angle gluons
- Soft gluons don't matter:

$$
\sigma_{\text {tot }}=\sigma_{q \bar{q}}\left(1+\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \int \frac{d E}{E} \int \frac{d \theta}{\sin \theta}(R(E / Q, \theta)-V(E / Q, \theta))\right)
$$

- From calculation: $\lim _{E \rightarrow 0} R(E / Q, \theta)=1$.
- For every divergence $R(E / Q, \theta)$ and $V(E / Q, \theta)$ should cancel:

$$
\lim _{E \rightarrow 0}(R-V)=0, \quad \lim _{\theta \rightarrow 0, \pi}(R-V)=0
$$

Result:

- corrections to $\sigma_{\text {tot }}$ come from hard $(E \sim Q)$, large-angle gluons
- Soft gluons don't matter:
- Physics reason: soft gluons emitted on long timescale $\sim 1 /\left(E \theta^{2}\right)$ relative to collision ($1 / Q$) - cannot influence cross section. be ignored.

$$
\sigma_{\text {tot }}=\sigma_{q \bar{q}}\left(1+\frac{2 \alpha_{s} C_{F}}{\pi} \int \frac{d E}{E} \int \frac{d \theta}{\sin \theta}(R(E / Q, \theta)-V(E / Q, \theta))\right)
$$

- From calculation: $\lim _{E \rightarrow 0} R(E / Q, \theta)=1$.
- For every divergence $R(E / Q, \theta)$ and $V(E / Q, \theta)$ should cancel:

$$
\lim _{E \rightarrow 0}(R-V)=0, \quad \quad \lim _{\theta \rightarrow 0, \pi}(R-V)=0
$$

Result:

- corrections to $\sigma_{\text {tot }}$ come from hard $(E \sim Q)$, large-angle gluons
- Soft gluons don't matter:
- Physics reason: soft gluons emitted on long timescale $\sim 1 /\left(E \theta^{2}\right)$ relative to collision ($1 / Q$) - cannot influence cross section.
- Transition to hadrons also occurs on long time scale ($\sim 1 / \Lambda$) — and can also be ignored.

$$
\sigma_{\text {tot }}=\sigma_{q \bar{q}}\left(1+\frac{2 \alpha_{\mathrm{s}} C_{F}}{\pi} \int \frac{d E}{E} \int \frac{d \theta}{\sin \theta}(R(E / Q, \theta)-V(E / Q, \theta))\right)
$$

- From calculation: $\lim _{E \rightarrow 0} R(E / Q, \theta)=1$.
- For every divergence $R(E / Q, \theta)$ and $V(E / Q, \theta)$ should cancel:

$$
\lim _{E \rightarrow 0}(R-V)=0, \quad \quad \lim _{\theta \rightarrow 0, \pi}(R-V)=0
$$

Result:

- corrections to $\sigma_{\text {tot }}$ come from hard $(E \sim Q)$, large-angle gluons
- Soft gluons don't matter:
- Physics reason: soft gluons emitted on long timescale $\sim 1 /\left(E \theta^{2}\right)$ relative to collision ($1 / Q$) - cannot influence cross section.
- Transition to hadrons also occurs on long time scale ($\sim 1 / \Lambda$) — and can also be ignored.
- Correct renorm. scale for $\alpha_{\mathrm{s}}: \mu \sim Q$ — perturbation theory valid.

Our treatment so far was a bit rough: designed to emphasize physical nature of divergences.

In practice calculations will be done in $4+\epsilon$ dimensions and infrared divergences translate to powers of $1 / \epsilon$.

Full final answer for $\sigma_{\text {tot }}$ at next-to-leading order (NLO) is, for massless quarks,

$$
\sigma_{\mathrm{tot}}=\sigma_{q \bar{q}}\left(1+\frac{3}{4} \frac{\alpha_{\mathrm{s}} C_{F}}{\pi}+\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)\right)
$$

ij $\rightarrow \mathbf{Z}+\mathbf{n}$ partons

Z @ NLO

ij $\rightarrow \mathbf{Z}+\mathbf{n}$ partons

To get $N^{p} \mathrm{LO}$ you need the Born (LO) diagram supplemented with all
combination of n loops and $p-n$ extra emissions, with $0 \leq n \leq p$.

Z @ NNLO

To get $\mathrm{N}^{p} \mathrm{LO}$ you need the Born (LO) diagram supplemented with all combination of n loops and $p-n$ extra emissions, with $0 \leq n \leq p$.

Dependence of total cross section on only hard gluons is reflected in 'good behaviour' of perturbation series:

$$
\begin{aligned}
\sigma_{t o t}=\sigma_{q \bar{q}}\left(1+1.045 \frac{\alpha_{\mathrm{s}}(Q)}{\pi}+0.94\left(\frac{\alpha_{\mathrm{s}}(Q)}{\pi}\right)^{2}\right. & -15\left(\frac{\alpha_{\mathrm{s}}(Q)}{\pi}\right)^{3}+ \\
& \left.+\mathcal{O}\left(\alpha_{\mathrm{s}}^{4}\right)+\mathcal{O}\left(\frac{\Lambda^{4}}{Q^{4}}\right)\right)
\end{aligned}
$$

(Coefficients given for $Q=M_{Z}$)

Dependence of total cross section on only hard gluons is reflected in 'good behaviour' of perturbation series:

$$
\begin{aligned}
\sigma_{t o t}=\sigma_{q \bar{q}}\left(1+1.045 \frac{\alpha_{\mathrm{s}}(Q)}{\pi}+0.94\left(\frac{\alpha_{\mathrm{s}}(Q)}{\pi}\right)^{2}\right. & -15\left(\frac{\alpha_{\mathrm{s}}(Q)}{\pi}\right)^{3}+ \\
& \left.+\mathcal{O}\left(\alpha_{\mathrm{s}}^{4}\right)+\mathcal{O}\left(\frac{\Lambda^{4}}{Q^{4}}\right)\right)
\end{aligned}
$$

(Coefficients given for $Q=M_{Z}$)
Exercise: substitute $\alpha_{\mathbf{s}}\left(M_{Z}\right)=0.118$ to get a feel for the quality of the expansion.

Dependence of total cross section on only hard gluons is reflected in 'good behaviour' of perturbation series:

$$
\begin{aligned}
\sigma_{\text {tot }}=\sigma_{q \bar{q}}\left(1+1.045 \frac{\alpha_{\mathrm{s}}(Q)}{\pi}+0.94\left(\frac{\alpha_{\mathrm{s}}(Q)}{\pi}\right)^{2}\right. & -15\left(\frac{\alpha_{\mathrm{s}}(Q)}{\pi}\right)^{3}+ \\
& \left.+\mathcal{O}\left(\alpha_{\mathrm{s}}^{4}\right)+\mathcal{O}\left(\frac{\Lambda^{4}}{Q^{4}}\right)\right)
\end{aligned}
$$

(Coefficients given for $Q=M_{Z}$)
Exercise: substitute $\alpha_{\mathbf{s}}\left(M_{Z}\right)=0.118$ to get a feel for the quality of the expansion.

Question: did we have to write the result as a function of $\alpha_{s}(Q)$? Actually, it is standard to write results as a function of $\alpha_{\mathrm{s}}\left(\mu_{R}\right)$, where μ_{R} is the renormalisation scale, to be taken $\mu_{R} \sim Q$.

Let's express NLO results for arbitrary μ_{R} in terms of $\alpha_{\mathrm{s}}(Q)$:

$$
\sigma^{\mathrm{NLO}}\left(\mu_{R}\right)=\sigma_{q \bar{q}}\left(1+c_{1} \alpha_{\mathrm{s}}\left(\mu_{R}\right)\right)
$$

Let's express NLO results for arbitrary μ_{R} in terms of $\alpha_{S}(Q)$:

$$
\sigma^{\mathrm{NLO}\left(\mu_{R}\right)=\sigma_{q \bar{q}}\left(1+c_{1} \alpha_{\mathrm{s}}\left(\mu_{R}\right)\right)} \begin{aligned}
\alpha_{\mathrm{s}}\left(\mu_{R}\right) & =\frac{\alpha_{\mathrm{s}}(Q)}{1+2 b_{0} \alpha_{\mathrm{s}}(Q) \ln \mu_{R} / Q} \\
& =\alpha_{\mathrm{s}}(Q)-2 b_{0} \alpha_{\mathrm{s}}^{2}(Q) \ln \mu_{R} / Q+\mathcal{O}\left(\alpha_{\mathrm{s}}^{3}\right)
\end{aligned}
$$

Scale dependence

Let's express NLO results for arbitrary μ_{R} in terms of $\alpha_{\mathrm{s}}(Q)$:

$$
\begin{aligned}
\sigma^{\mathrm{NLO}}\left(\mu_{R}\right) & =\sigma_{q \bar{q}}\left(1+c_{1} \alpha_{\mathrm{s}}\left(\mu_{R}\right)\right) \\
& =\sigma_{q \bar{q}}\left(1+c_{1} \alpha_{\mathrm{s}}(Q)-2 c_{1} b_{0} \ln \frac{\mu_{R}}{Q} \alpha_{\mathrm{s}}^{2}(Q)+\mathcal{O}\left(\alpha_{\mathrm{s}}^{3}\right)\right)
\end{aligned}
$$

As we vary the renormalisation scale μ_{R}, we introduce $\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)$ pieces into the X -section. I.e. generate some set of NNLO terms \sim uncertainty on X-section from missing NNLO calculation.

If we now calculate the full NNLO correction, then it will be structured so as to cancel the $\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)$ scale variation

Let's express NLO results for arbitrary μ_{R} in terms of $\alpha_{\mathrm{s}}(Q)$:

$$
\begin{aligned}
\sigma^{\mathrm{NLO}}\left(\mu_{R}\right) & =\sigma_{q \bar{q}}\left(1+c_{1} \alpha_{\mathrm{s}}\left(\mu_{R}\right)\right) \\
& =\sigma_{q \bar{q}}\left(1+c_{1} \alpha_{\mathrm{s}}(Q)-2 c_{1} b_{0} \ln \frac{\mu_{R}}{Q} \alpha_{\mathrm{s}}^{2}(Q)+\mathcal{O}\left(\alpha_{\mathrm{s}}^{3}\right)\right)
\end{aligned}
$$

As we vary the renormalisation scale μ_{R}, we introduce $\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)$ pieces into the X -section. I.e. generate some set of NNLO terms \sim uncertainty on X-section from missing NNLO calculation.

If we now calculate the full NNLO correction, then it will be structured so as to cancel the $\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)$ scale variation

$$
\begin{gathered}
\sigma^{\mathrm{NNLO}}\left(\mu_{R}\right)=\sigma_{q \bar{q}}\left[1+c_{1} \alpha_{\mathrm{s}}\left(\mu_{R}\right)+c_{2}\left(\mu_{R}\right) \alpha_{\mathrm{s}}^{2}\left(\mu_{R}\right)\right] \\
c_{2}\left(\mu_{R}\right)=c_{2}(Q)+2 c_{1} b_{0} \ln \frac{\mu_{R}}{Q}
\end{gathered}
$$

Remaining uncertainty is now $\mathcal{O}\left(\alpha_{\mathrm{s}}^{3}\right)$.

Scale dependence: NNLO

Scale dependence: NNLO

NB: if we had a large number of orders of perturbation theory, scale dependence would just disappear.

Scale dependence: NNLO

See how at NNLO, scale dependence is much flatter, final uncertainty much smaller.

Because now we neglect only α_{s}^{3} instead of α_{s}^{2}

Moral: not knowing exactly how to set scale \rightarrow blessing in disguise, since it gives us handle on uncertainty.

> Scale variation \equiv standard procedure Beyond LO, often a good guide But not foolproof!

NB: if we had a large number of orders of perturbation theory, scale dependence would just disappear.

Suppose you have a geometric perturbative series,

$$
\sigma=\sigma_{0} \sum_{i=0}^{\infty} c^{i} \alpha_{\mathrm{s}}^{i}
$$

Working in a limit where $\alpha_{\mathrm{s}} \ll 1, c \gg 1$ and $c \alpha_{\mathrm{s}}<1$, evaluate the scale dependence on the estimate for σ obtained when the series is truncated at order n.

Is that scale dependence a good indication of the size of missing higher order terms?

Where to now?

There are two directions we can explore

1. what happens with a more complicated initial state 2. what happens when we look in more detail at the final state
