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Neither lattice QCD nor perturbative QCD can offer
a full solution to using QCD at colliders

What the community has settled on is

1) factorisation of initial state non-perturbative problem

from

2) the “hard process,” calculated perturbatively

supplemented with

3) non-perturbative modelling of final-state hadronic-scale processes
(“hadronisation”).
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Factorization

Cross section for some hard
process in hadron-hadron
collisions

x
2 p

2

p1 p2

x 1
p 1

σ

Z H

σ =

∫
dx1fq/p(x1, µ

2)

∫
dx2fq̄/p(x2, µ

2) σ̂(x1p1, x2p2, µ
2) , ŝ = x1x2s

I Total X-section is factorized into a ‘hard part’ σ̂(x1p1, x2p2, µ
2)

Calculated, e.g. with methods discussed in many of the other courses

I and parton distribution functions (PDFs): fq/p(x , µ2) is the probability of
finding a quark q inside a proton p, and carrying a fraction x of its
momentum. Determined experimentally, cf. later

[For now, don’t worry about µ2 “factorisation scale” argument]
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Factorisation is a term that has several related meanings in QCD.

Intimately connected with infrared divergences

We can start understanding those by studying a process that’s simpler than
hadron collisions: e+e− collisions with hadronic final states.
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Soft gluon amplitude[e+e− → qq̄]

[Soft-collinear emission]

Start with γ∗ → qq̄:

Mqq̄ = −ū(p1)ieqγµv(p2)
−ie γ

µ

p1

p2

Emit a gluon:

Mqq̄g = ū(p1)igs ε/tA
i

p/1 + /k
ieqγµv(p2)

− ū(p1)ieqγµ
i

p/2 + /k
igs ε/tAv(p2)

k ,ε
−ie γ

µ

p1

p2

k ,ε

−ie γ
µ

p1

p2

Make gluon soft ≡ k � p1,2; ignore terms suppressed by powers of k :

Mqq̄g ' ū(p1)ieqγµtAv(p2) gs

(
p1.ε

p1.k
− p2.ε

p2.k

)
p/v(p) = 0,
p//k + /kp/ = 2p.k
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ū(p1)igs ε/tA
i

p/1 + /k
ieqγµv(p2) = −igs ū(p1)ε/

p/1 + /k

(p1 + k)2
eqγµtAv(p2)

Use /A /B = 2A.B − /B /A:

= −igs ū(p1)[2ε.(p1 + k)− (p/1 + /k)ε/]
1

(p1 + k)2
eqγµtAv(p2)

Use ū(p1)p/1 = 0 and k � p1 (p1, k massless)

' −igs ū(p1)[2ε.p1]
1

(p1 + k)2
eqγµtAv(p2)

= −igs
p1.ε

p1.k
ū(p1)eqγµtAv(p2)︸ ︷︷ ︸

pure QED spinor structure
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Squared amplitude[e+e− → qq̄]

[Soft-collinear emission]

|M2
qq̄g | '

∑
A,pol

∣∣∣∣ū(p1)ieqγµtAv(p2) gs

(
p1.ε

p1.k
− p2.ε

p2.k

)∣∣∣∣2
= −|M2

qq̄|CFg 2
s

(
p1

p1.k
− p2

p2.k

)2

= |M2
qq̄|CFg 2

s

2p1.p2

(p1.k)(p2.k)

Include phase space:

dΦqq̄g |M2
qq̄g | ' (dΦqq̄|M2

qq̄|)
d3~k

2E (2π)3
CFg 2

s

2p1.p2

(p1.k)(p2.k)︸ ︷︷ ︸
dS

Note property of factorisation into hard qq̄ piece and soft-gluon emission
piece, dS.

dS = EdE dcos θ
dφ

2π
· 2αsCF

π

2p1.p2

(2p1.k)(2p2.k)

θ ≡ θp1k

φ = azimuth
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Soft & collinear gluon emission[e+e− → qq̄]

[Soft-collinear emission]

Take squared matrix element and rewrite in terms of E , θ,

2p1.p2

(2p1.k)(2p2.k)
=

1

E 2(1− cos2 θ)

So final expression for soft gluon emission is

dS =
2αsCF

π

dE

E

dθ

sin θ

dφ

2π

NB:

I It diverges for E → 0 — infrared (or soft) divergence

I It diverges for θ → 0 and θ → π — collinear divergence

Soft, collinear divergences derived here in specific context of e+e− → qq̄
But they are a very general property of QCD
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If probability of gluon emission diverges, then how can you
calculate anything beyond leading order?

Kinoshita-Lee-Nauenberg theorem tells as that if you sum
over allowed states, then result must be finite.
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Real-virtual cancellations: total X-sctn[Total cross sections]

[Real-virtual cancellation]

Total cross section: sum of all real and virtual diagrams

p1

p2

−ie γ
µ

−ie γ
µ

ie γ
µk ,ε

2

+ x

Total cross section must be finite. If real part has divergent integration, so
must virtual part. (Unitarity, conservation of probability)

σtot = σqq̄

(
1 +

2αsCF

π

∫
dE

E

∫
dθ

sin θ
R(E/Q, θ)

−2αsCF

π

∫
dE

E

∫
dθ

sin θ
V (E/Q, θ)

)

I R(E/Q, θ) parametrises real matrix element for hard emissions, E ∼ Q.
I V (E/Q, θ) parametrises virtual corrections for all momenta (a “physical

fudge” — exact way is to do calc. in dim. reg.)
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Total X-section (cont.)[Total cross sections]

[Real-virtual cancellation]

σtot = σqq̄

(
1 +

2αsCF

π

∫
dE

E

∫
dθ

sin θ
(R(E/Q, θ)− V (E/Q, θ))

)
I From calculation: limE→0 R(E/Q, θ) = 1.

I For every divergence R(E/Q, θ) and V (E/Q, θ) should cancel:

lim
E→0

(R − V ) = 0 , lim
θ→0,π

(R − V ) = 0

Result:

I corrections to σtot come from hard (E ∼ Q), large-angle gluons

I Soft gluons don’t matter:
I Physics reason: soft gluons emitted on long timescale ∼ 1/(Eθ2) relative to

collision (1/Q) — cannot influence cross section.
I Transition to hadrons also occurs on long time scale (∼ 1/Λ) — and can also

be ignored.

I Correct renorm. scale for αs: µ ∼ Q — perturbation theory valid.
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I Physics reason: soft gluons emitted on long timescale ∼ 1/(Eθ2) relative to

collision (1/Q) — cannot influence cross section.
I Transition to hadrons also occurs on long time scale (∼ 1/Λ) — and can also

be ignored.

I Correct renorm. scale for αs: µ ∼ Q — perturbation theory valid.
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[Real-virtual cancellation]

σtot = σqq̄

(
1 +

2αsCF

π

∫
dE

E

∫
dθ

sin θ
(R(E/Q, θ)− V (E/Q, θ))

)
I From calculation: limE→0 R(E/Q, θ) = 1.

I For every divergence R(E/Q, θ) and V (E/Q, θ) should cancel:

lim
E→0

(R − V ) = 0 , lim
θ→0,π

(R − V ) = 0

Result:

I corrections to σtot come from hard (E ∼ Q), large-angle gluons

I Soft gluons don’t matter:
I Physics reason: soft gluons emitted on long timescale ∼ 1/(Eθ2) relative to

collision (1/Q) — cannot influence cross section.
I Transition to hadrons also occurs on long time scale (∼ 1/Λ) — and can also

be ignored.

I Correct renorm. scale for αs: µ ∼ Q — perturbation theory valid.

Gavin Salam (CERN) QCD basics 2 10 / 17



Total cross section at NLO[Total cross sections]

[Real-virtual cancellation]

Our treatment so far was a bit rough: designed to emphasize physical
nature of divergences.

In practice calculations will be done in 4 + ε dimensions and infrared
divergences translate to powers of 1/ε.

Full final answer for σtot at next-to-leading order (NLO) is, for massless
quarks,

σtot = σqq̄

(
1 +

3

4

αsCF

π
+O

(
α2

s

))
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Beyond NLO: e.g. NNLO[Total cross sections]

[Beyond NLO]
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x x x x x x 0 loops (tree−level)

2 loops

1 loop

0 1

 Z + n partons

3 4 5 6

o o o

ø

To get NpLO you need the Born (LO) diagram supplemented with all
combination of n loops and p − n extra emissions, with 0 ≤ n ≤ p.
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total X-section (cont.)[Total cross sections]

[Beyond NLO]

Dependence of total cross section on only hard gluons is reflected in ‘good
behaviour’ of perturbation series:

σtot = σqq̄

(
1 + 1.045

αs(Q)

π
+ 0.94

(
αs(Q)

π

)2

− 15

(
αs(Q)

π

)3

+

+O
(
α4

s

)
+O

(
Λ4

Q4

))
(Coefficients given for Q = MZ )

Exercise: substitute αs(MZ ) = 0.118 to get a feel for the quality of the
expansion.

Question: did we have to write the result as a function of αs(Q)?
Actually, it is standard to write results as a function of αs(µR), where µR is
the renormalisation scale, to be taken µR ∼ Q.

Gavin Salam (CERN) QCD basics 2 13 / 17



total X-section (cont.)[Total cross sections]

[Beyond NLO]

Dependence of total cross section on only hard gluons is reflected in ‘good
behaviour’ of perturbation series:

σtot = σqq̄

(
1 + 1.045

αs(Q)

π
+ 0.94

(
αs(Q)

π

)2

− 15

(
αs(Q)

π

)3

+

+O
(
α4

s

)
+O

(
Λ4

Q4

))
(Coefficients given for Q = MZ )

Exercise: substitute αs(MZ ) = 0.118 to get a feel for the quality of the
expansion.

Question: did we have to write the result as a function of αs(Q)?
Actually, it is standard to write results as a function of αs(µR), where µR is
the renormalisation scale, to be taken µR ∼ Q.

Gavin Salam (CERN) QCD basics 2 13 / 17



total X-section (cont.)[Total cross sections]

[Beyond NLO]

Dependence of total cross section on only hard gluons is reflected in ‘good
behaviour’ of perturbation series:

σtot = σqq̄

(
1 + 1.045

αs(Q)

π
+ 0.94

(
αs(Q)

π

)2

− 15

(
αs(Q)

π

)3

+

+O
(
α4

s

)
+O

(
Λ4

Q4

))
(Coefficients given for Q = MZ )

Exercise: substitute αs(MZ ) = 0.118 to get a feel for the quality of the
expansion.

Question: did we have to write the result as a function of αs(Q)?
Actually, it is standard to write results as a function of αs(µR), where µR is
the renormalisation scale, to be taken µR ∼ Q.

Gavin Salam (CERN) QCD basics 2 13 / 17



Scale dependence[Total cross sections]

[Scale dependence]

Let’s express NLO results for arbitrary µR in terms of αs(Q):

σnlo(µR) = σqq̄ (1 + c1 αs(µR) )

= σqq̄

(
1 + c1 αs(Q)− 2c1b0 ln

µR
Q
α2

s (Q) +O
(
α3

s

))
As we vary the renormalisation scale µR , we introduce O

(
α2

s

)
pieces into

the X-section. I.e. generate some set of NNLO terms ∼ uncertainty on
X-section from missing NNLO calculation.

If we now calculate the full NNLO correction, then it will be structured so
as to cancel the O

(
α2

s

)
scale variation

σnnlo(µR) = σqq̄
[
1 + c1 αs(µR) + c2(µR)α2

s (µR)
]

c2(µR) = c2(Q) + 2c1b0 ln
µR
Q

Remaining uncertainty is now O
(
α3

s

)
.
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Scale dependence: NNLO[Total cross sections]

[Scale dependence]

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 0.1  1  10

σ
e

e
 →

 h
a

d
ro

n
s
 /

 σ
e

e
 →

 q
q

µR / Q

scale-dep. of σ(e
+
e

-
 → hadrons)

Q = MZ

0.5 < x
µ
 < 2

conventional range

LO

NLO

See how at NNLO, scale depen-
dence is much flatter, final uncer-
tainty much smaller.

Because now we neglect

only α3
s instead of α2

s

Moral: not knowing exactly how
to set scale → blessing in disguise,
since it gives us handle on uncer-
tainty.

Scale variation ≡ standard procedure

Beyond LO, often a good guide

But not foolproof!

NB: if we had a large number of orders of perturbation theory, scale
dependence would just disappear.

Gavin Salam (CERN) QCD basics 2 15 / 17



Scale dependence: NNLO[Total cross sections]

[Scale dependence]

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 0.1  1  10

σ
e

e
 →

 h
a

d
ro

n
s
 /

 σ
e

e
 →

 q
q

µR / Q

scale-dep. of σ(e
+
e

-
 → hadrons)

Q = MZ

0.5 < x
µ
 < 2

conventional range

LO

NLO

NNLO

See how at NNLO, scale depen-
dence is much flatter, final uncer-
tainty much smaller.

Because now we neglect

only α3
s instead of α2

s

Moral: not knowing exactly how
to set scale → blessing in disguise,
since it gives us handle on uncer-
tainty.

Scale variation ≡ standard procedure

Beyond LO, often a good guide

But not foolproof!

NB: if we had a large number of orders of perturbation theory, scale
dependence would just disappear.

Gavin Salam (CERN) QCD basics 2 15 / 17



Scale dependence: NNLO[Total cross sections]

[Scale dependence]

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 0.1  1  10

σ
e

e
 →

 h
a

d
ro

n
s
 /

 σ
e

e
 →

 q
q

µR / Q

scale-dep. of σ(e
+
e

-
 → hadrons)

Q = MZ

0.5 < x
µ
 < 2

conventional range

LO

NLO

NNLO

See how at NNLO, scale depen-
dence is much flatter, final uncer-
tainty much smaller.

Because now we neglect

only α3
s instead of α2

s

Moral: not knowing exactly how
to set scale → blessing in disguise,
since it gives us handle on uncer-
tainty.

Scale variation ≡ standard procedure

Beyond LO, often a good guide

But not foolproof!

NB: if we had a large number of orders of perturbation theory, scale
dependence would just disappear.

Gavin Salam (CERN) QCD basics 2 15 / 17



Exercise: scale dependence[Total cross sections]

[Scale dependence]

Suppose you have a geometric perturbative series,

σ = σ0

∞∑
i=0

c iαi
s

Working in a limit where αs � 1, c � 1 and cαs < 1, evaluate the scale
dependence on the estimate for σ obtained when the series is truncated at
order n.

Is that scale dependence a good indication of the size of missing higher
order terms?
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Where to now?
There are two directions we can explore

1. what happens with a more complicated initial state
2. what happens when we look in more detail at the final

state
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