Basics of QCD Lecture 2: higher orders, divergences

Neither lattice QCD nor perturbative QCD can offer a full solution to using QCD at colliders

What the community has settled on is

1) factorisation of initial state non-perturbative problem

from

2) the "hard process," calculated perturbatively

supplemented with

 non-perturbative modelling of final-state hadronic-scale processes ("hadronisation").

Factorization

► and parton distribution functions (PDFs): f_{q/p}(x, µ²) is the probability of finding a quark q inside a proton p, and carrying a fraction x of its momentum.
Determined experimentally, cf. later

[For now, don't worry about μ^2 "factorisation scale" argument]

Factorization

- ► Total X-section is *factorized* into a 'hard part' ô(x₁p₁, x₂p₂, µ²) Calculated, e.g. with methods discussed in many of the other courses
- and parton distribution functions (PDFs): f_{q/p}(x, μ²) is the probability of finding a quark q inside a proton p, and carrying a fraction x of its momentum.
 Determined experimentally, cf. later

[For now, don't worry about μ^2 "factorisation scale" argument]

Factorization

- ► Total X-section is *factorized* into a 'hard part' ô(x₁p₁, x₂p₂, µ²) Calculated, e.g. with methods discussed in many of the other courses
- ► and parton distribution functions (PDFs): f_{q/p}(x, µ²) is the probability of finding a quark q inside a proton p, and carrying a fraction x of its momentum.
 Determined experimentally, cf. later

[For now, don't worry about μ^2 "factorisation scale" argument]

Factorisation is a term that has several related meanings in QCD.

Intimately connected with infrared divergences

We can start understanding those by studying a process that's simpler than hadron collisions: e^+e^- collisions with hadronic final states.

Start with
$$\gamma^* \rightarrow q\bar{q}$$
:

$$\mathcal{M}_{q\bar{q}} = -\bar{u}(p_1)ie_q\gamma_\mu v(p_2)$$

Emit a gluon:

$$\mathcal{M}_{q\bar{q}g} = \bar{u}(p_1)ig_s \not\in t^A \frac{i}{\not p_1' + \not k}ie_q \gamma_\mu v(p_2)$$
$$- \bar{u}(p_1)ie_q \gamma_\mu \frac{i}{\not p_2' + \not k}ig_s \not\in t^A v(p_2)$$

Make gluon $soft \equiv k \ll p_{1,2}$; ignore terms suppressed by powers of k:

$$\mathcal{M}_{q ar{q} g} \simeq ar{u}(p_1) i e_q \gamma_\mu t^A v(p_2) \, g_s \left(rac{p_1 . \epsilon}{p_1 . k} - rac{p_2 . \epsilon}{p_2 . k}
ight)$$

Start with
$$\gamma^* \rightarrow q\bar{q}$$
:

$$\mathcal{M}_{q\bar{q}} = -\bar{u}(p_1)ie_q\gamma_\mu v(p_2)$$

Emit a gluon:

$$\mathcal{M}_{q\bar{q}g} = \bar{u}(p_1)ig_s \not\in t^A \frac{i}{\not p_1' + \not k}ie_q \gamma_\mu v(p_2) \qquad \stackrel{-ie\gamma_\mu}{\longrightarrow} \stackrel{p_1}{\swarrow} \stackrel{-ie\gamma_\mu}{\longrightarrow} \stackrel{p_2}{\longleftarrow} \stackrel{ie\gamma_\mu}{\swarrow} \stackrel{p_1}{\swarrow} \stackrel{-ie\gamma_\mu}{\swarrow} \stackrel{p_2}{\longleftarrow} \stackrel{ie\gamma_\mu}{\swarrow} \stackrel{p_2}{\longleftarrow} \stackrel{ie\gamma_\mu}{\swarrow} \stackrel{p_2}{\longleftarrow} \stackrel{p_2}{\longleftarrow} \stackrel{ie\gamma_\mu}{\longleftarrow} \stackrel{p_2}{\longleftarrow} \stackrel{p_2}{\longleftarrow} \stackrel{p_2}{\longleftarrow} \stackrel{p_2}{\longleftarrow} \stackrel{p_2}{\longleftarrow} \stackrel{p_3}{\longleftarrow} \stackrel{p_4}{\longleftarrow} \stackrel{p_4}{\longleftarrow} \stackrel{p_4}{\longleftarrow} \stackrel{p_5}{\longleftarrow} \stackrel{p_6}{\longleftarrow} \stackrel{p_$$

Make gluon $soft \equiv k \ll p_{1,2}$; ignore terms suppressed by powers of k:

$$\mathcal{M}_{q\bar{q}g} \simeq ar{u}(p_1) i e_q \gamma_\mu t^A v(p_2) g_s \left(rac{p_1.\epsilon}{p_1.k} - rac{p_2.\epsilon}{p_2.k}
ight)$$

Start with $\gamma^* \rightarrow q\bar{q}$:

Start with
$$\gamma^* \rightarrow q\bar{q}$$
:

$$\mathcal{M}_{q\bar{q}} = -\bar{u}(p_1)ie_q\gamma_\mu v(p_2)$$

Emit a gluon:

$$\mathcal{M}_{q\bar{q}g} = \bar{u}(p_1)ig_s \not\in t^A \frac{i}{\not p_1' + \not k}ie_q \gamma_\mu v(p_2) \qquad \underbrace{-ie_{\gamma_\mu}}_{p_1' \notin p_1' \notin p_2'} p_1 \underbrace{-ie_{\gamma_\mu}}_{p_2' \notin k,\varepsilon} p_2 \underbrace{-ie_{\gamma_\mu}}_{p_2' \notin k,\varepsilon} p_2$$

Make gluon soft $\equiv k \ll p_{1,2}$; ignore terms suppressed by powers of k:

$$\mathcal{M}_{q\bar{q}g} \simeq \bar{u}(p_1)ie_q\gamma_{\mu}t^Av(p_2)g_s\left(rac{p_1.\epsilon}{p_1.k}-rac{p_2.\epsilon}{p_2.k}
ight)$$

Squared amplitude

0

$$|M_{q\bar{q}g}^{2}| \simeq \sum_{A,\text{pol}} \left| \bar{u}(p_{1})ie_{q}\gamma_{\mu}t^{A}v(p_{2}) g_{s}\left(\frac{p_{1}.\epsilon}{p_{1}.k} - \frac{p_{2}.\epsilon}{p_{2}.k}\right) \right|^{2}$$
$$= -|M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\left(\frac{p_{1}}{p_{1}.k} - \frac{p_{2}}{p_{2}.k}\right)^{2} = |M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\frac{2p_{1}.p_{2}}{(p_{1}.k)(p_{2}.k)}$$

Include phase space:

$$d\Phi_{q\bar{q}g}|M_{q\bar{q}g}^{2}| \simeq (d\Phi_{q\bar{q}}|M_{q\bar{q}}^{2}|) \underbrace{\frac{d^{3}\vec{k}}{2E(2\pi)^{3}}C_{F}g_{s}^{2}\frac{2p_{1}\cdot p_{2}}{(p_{1}\cdot k)(p_{2}\cdot k)}}_{dS}$$

Note property of **factorisation** into hard $q\bar{q}$ piece and soft-gluon emission piece, dS.

$$dS = EdE \ d\cos\theta \ \frac{d\phi}{2\pi} \cdot \frac{2\alpha_{s}C_{F}}{\pi} \frac{2p_{1}p_{2}}{(2p_{1}.k)(2p_{2}.k)}$$

 $\theta \equiv \theta_{p_1 k}$ $\phi = \operatorname{azimuth}$

Squared amplitude

0

$$|M_{q\bar{q}g}^{2}| \simeq \sum_{A,\text{pol}} \left| \bar{u}(p_{1})ie_{q}\gamma_{\mu}t^{A}v(p_{2}) g_{s}\left(\frac{p_{1}.\epsilon}{p_{1}.k} - \frac{p_{2}.\epsilon}{p_{2}.k}\right) \right|^{2}$$
$$= -|M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\left(\frac{p_{1}}{p_{1}.k} - \frac{p_{2}}{p_{2}.k}\right)^{2} = |M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\frac{2p_{1}.p_{2}}{(p_{1}.k)(p_{2}.k)}$$

Include phase space:

$$d\Phi_{q\bar{q}g}|M_{q\bar{q}g}^{2}| \simeq (d\Phi_{q\bar{q}}|M_{q\bar{q}}^{2}|) \underbrace{\frac{d^{3}\vec{k}}{2E(2\pi)^{3}}C_{F}g_{s}^{2}\frac{2p_{1}\cdot p_{2}}{(p_{1}\cdot k)(p_{2}\cdot k)}}_{dS}$$

Note property of **factorisation** into hard $q\bar{q}$ piece and soft-gluon emission piece, dS.

$$dS = EdE \ d\cos\theta \ \frac{d\phi}{2\pi} \cdot \frac{2\alpha_{\rm s}C_{\rm F}}{\pi} \frac{2p_1.p_2}{(2p_1.k)(2p_2.k)}$$

 $\theta \equiv \theta_{P_1 k}$ $\phi = \operatorname{azimuth}$

Squared amplitude

0

$$|M_{q\bar{q}g}^{2}| \simeq \sum_{A,\text{pol}} \left| \bar{u}(p_{1})ie_{q}\gamma_{\mu}t^{A}v(p_{2}) g_{s}\left(\frac{p_{1}.\epsilon}{p_{1}.k} - \frac{p_{2}.\epsilon}{p_{2}.k}\right) \right|^{2}$$
$$= -|M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\left(\frac{p_{1}}{p_{1}.k} - \frac{p_{2}}{p_{2}.k}\right)^{2} = |M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\frac{2p_{1}.p_{2}}{(p_{1}.k)(p_{2}.k)}$$

Include phase space:

$$d\Phi_{q\bar{q}g}|M_{q\bar{q}g}^{2}| \simeq (d\Phi_{q\bar{q}}|M_{q\bar{q}}^{2}|) \underbrace{\frac{d^{3}\vec{k}}{2E(2\pi)^{3}}C_{F}g_{s}^{2}\frac{2p_{1}\cdot p_{2}}{(p_{1}\cdot k)(p_{2}\cdot k)}}_{dS}$$

Note property of **factorisation** into hard $q\bar{q}$ piece and soft-gluon emission piece, dS.

$$dS = EdE \, d\cos\theta \, \frac{d\phi}{2\pi} \cdot \frac{2\alpha_{\rm s}C_{\rm F}}{\pi} \frac{2p_{\rm 1}.p_{\rm 2}}{(2p_{\rm 1}.k)(2p_{\rm 2}.k)}$$

Squared amplitude

0

$$|M_{q\bar{q}g}^{2}| \simeq \sum_{A,\text{pol}} \left| \bar{u}(p_{1})ie_{q}\gamma_{\mu}t^{A}v(p_{2}) g_{s}\left(\frac{p_{1}.\epsilon}{p_{1}.k} - \frac{p_{2}.\epsilon}{p_{2}.k}\right) \right|^{2}$$
$$= -|M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\left(\frac{p_{1}}{p_{1}.k} - \frac{p_{2}}{p_{2}.k}\right)^{2} = |M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\frac{2p_{1}.p_{2}}{(p_{1}.k)(p_{2}.k)}$$

Include phase space:

$$d\Phi_{q\bar{q}g}|M_{q\bar{q}g}^{2}| \simeq (d\Phi_{q\bar{q}}|M_{q\bar{q}}^{2}|) \underbrace{\frac{d^{3}\vec{k}}{2E(2\pi)^{3}}C_{F}g_{s}^{2}\frac{2p_{1}\cdot p_{2}}{(p_{1}\cdot k)(p_{2}\cdot k)}}_{dS}$$

Note property of **factorisation** into hard $q\bar{q}$ piece and soft-gluon emission piece, dS.

$$dS = EdE \ d\cos\theta \ \frac{d\phi}{2\pi} \cdot \frac{2\alpha_{s}C_{F}}{\pi} \frac{2p_{1} \cdot p_{2}}{(2p_{1} \cdot k)(2p_{2} \cdot k)}$$

Gavin Salam (CERN)

Squared amplitude

0

$$|M_{q\bar{q}g}^{2}| \simeq \sum_{A,\text{pol}} \left| \bar{u}(p_{1})ie_{q}\gamma_{\mu}t^{A}v(p_{2}) g_{s}\left(\frac{p_{1}.\epsilon}{p_{1}.k} - \frac{p_{2}.\epsilon}{p_{2}.k}\right) \right|^{2}$$
$$= -|M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\left(\frac{p_{1}}{p_{1}.k} - \frac{p_{2}}{p_{2}.k}\right)^{2} = |M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\frac{2p_{1}.p_{2}}{(p_{1}.k)(p_{2}.k)}$$

Include phase space:

$$d\Phi_{q\bar{q}g}|M_{q\bar{q}g}^{2}| \simeq (d\Phi_{q\bar{q}}|M_{q\bar{q}}^{2}|) \underbrace{\frac{d^{3}\vec{k}}{2E(2\pi)^{3}}C_{F}g_{s}^{2}\frac{2p_{1}\cdot p_{2}}{(p_{1}\cdot k)(p_{2}\cdot k)}}_{dS}$$

Note property of factorisation into hard $q\bar{q}$ piece and soft-gluon emission piece, dS.

$$dS = EdE \ d\cos\theta \ \frac{d\phi}{2\pi} \cdot \frac{2\alpha_{\rm s}C_F}{\pi} \frac{2p_1.p_2}{(2p_1.k)(2p_2.k)} \qquad \begin{array}{l} \theta \equiv \theta_{p_1k} \\ \phi = {\rm azimuth} \end{array}$$

Squared amplitude

0

$$|M_{q\bar{q}g}^{2}| \simeq \sum_{A,\text{pol}} \left| \bar{u}(p_{1})ie_{q}\gamma_{\mu}t^{A}v(p_{2}) g_{s}\left(\frac{p_{1}.\epsilon}{p_{1}.k} - \frac{p_{2}.\epsilon}{p_{2}.k}\right) \right|^{2}$$
$$= -|M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\left(\frac{p_{1}}{p_{1}.k} - \frac{p_{2}}{p_{2}.k}\right)^{2} = |M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\frac{2p_{1}.p_{2}}{(p_{1}.k)(p_{2}.k)}$$

Include phase space:

$$d\Phi_{q\bar{q}g}|M_{q\bar{q}g}^{2}| \simeq (d\Phi_{q\bar{q}}|M_{q\bar{q}}^{2}|) \underbrace{\frac{d^{3}\vec{k}}{2E(2\pi)^{3}}C_{F}g_{s}^{2}\frac{2p_{1}.p_{2}}{(p_{1}.k)(p_{2}.k)}}_{dS}$$

Note property of factorisation into hard $q\bar{q}$ piece and soft-gluon emission piece, dS.

$$dS = EdE \ d\cos\theta \ \frac{d\phi}{2\pi} \cdot \frac{2\alpha_{s}C_{F}}{\pi} \frac{2p_{1}.p_{2}}{(2p_{1}.k)(2p_{2}.k)} \qquad \begin{array}{l} \theta \equiv \theta_{p_{1}k} \\ \phi = \text{azimuth} \end{array}$$

$$\frac{2p_1.p_2}{(2p_1.k)(2p_2.k)} = \frac{1}{E^2(1-\cos^2\theta)}$$

So final expression for soft gluon emission is

$$dS = \frac{2\alpha_{\rm s}C_F}{\pi} \frac{dE}{E} \frac{d\theta}{\sin\theta} \frac{d\phi}{2\pi}$$

NB:

- It diverges for $E \rightarrow 0$ infrared (or soft) divergence
- It diverges for heta
 ightarrow 0 and $heta
 ightarrow \pi$ collinear divergence

$$\frac{2p_1.p_2}{(2p_1.k)(2p_2.k)} = \frac{1}{E^2(1-\cos^2\theta)}$$

So final expression for soft gluon emission is

$$d\mathcal{S} = \frac{2\alpha_{\rm s}C_F}{\pi} \frac{dE}{E} \frac{d\theta}{\sin\theta} \frac{d\phi}{2\pi}$$

NB:

- It diverges for $E \rightarrow 0$ infrared (or soft) divergence
- It diverges for $\theta \to 0$ and $\theta \to \pi$ collinear divergence

$$\frac{2p_1.p_2}{(2p_1.k)(2p_2.k)} = \frac{1}{E^2(1-\cos^2\theta)}$$

So final expression for soft gluon emission is

$$d\mathcal{S} = \frac{2\alpha_{\rm s}C_F}{\pi} \frac{dE}{E} \frac{d\theta}{\sin\theta} \frac{d\phi}{2\pi}$$

<u>NB:</u>

- It diverges for $E \rightarrow 0$ infrared (or soft) divergence
- It diverges for $\theta \to 0$ and $\theta \to \pi$ collinear divergence

$$\frac{2p_1.p_2}{(2p_1.k)(2p_2.k)} = \frac{1}{E^2(1-\cos^2\theta)}$$

So final expression for soft gluon emission is

$$d\mathcal{S} = \frac{2\alpha_{\rm s}C_F}{\pi} \frac{dE}{E} \frac{d\theta}{\sin\theta} \frac{d\phi}{2\pi}$$

<u>NB:</u>

- It diverges for $E \rightarrow 0$ infrared (or soft) divergence
- It diverges for $\theta \to 0$ and $\theta \to \pi$ collinear divergence

If probability of gluon emission diverges, then how can you calculate anything beyond leading order?

Kinoshita-Lee-Nauenberg theorem tells as that if you sum over allowed states, then result must be finite.

Total cross section: sum of all real and virtual diagrams

Total cross section must be *finite*. If real part has divergent integration, so must virtual part. (Unitarity, conservation of probability)

R(E/Q, θ) parametrises real matrix element for hard emissions, E ~ Q.
 V(E/Q, θ) parametrises virtual corrections for all momenta (a "physical fudge" — exact way is to do calc. in dim. reg.)

Total cross section: sum of all real and virtual diagrams

Total cross section must be *finite*. If real part has divergent integration, so must virtual part. (Unitarity, conservation of probability)

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} R(E/Q,\theta) \right)$$

R(E/Q, θ) parametrises real matrix element for hard emissions, E ~ Q.
 V(E/Q, θ) parametrises virtual corrections for all momenta (a "physical fudge" — exact way is to do calc. in dim. reg.)

Total cross section: sum of all real and virtual diagrams

Total cross section must be *finite*. If real part has divergent integration, so must virtual part. (Unitarity, conservation of probability)

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} R(E/Q,\theta) - \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} V(E/Q,\theta) \right)$$

R(*E*/*Q*, θ) parametrises real matrix element for hard emissions, *E* ~ *Q*.
 V(*E*/*Q*, θ) parametrises virtual corrections for all momenta (a "physical fudge" — exact way is to do calc. in dim. reg.)

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} \left(R(E/Q,\theta) - V(E/Q,\theta) \right) \right)$$

- From calculation: $\lim_{E\to 0} R(E/Q, \theta) = 1$.
- ► For every divergence $R(E/Q, \theta)$ and $V(E/Q, \theta)$ should cancel:

$$\lim_{E\to 0}(R-V)=0\,,\qquad \qquad \lim_{\theta\to 0,\pi}(R-V)=0$$

- corrections to σ_{tot} come from hard ($E \sim Q$), large-angle gluons
- Soft gluons don't matter:

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} \left(R(E/Q,\theta) - V(E/Q,\theta) \right) \right)$$

- From calculation: $\lim_{E\to 0} R(E/Q, \theta) = 1$.
- ► For every divergence $R(E/Q, \theta)$ and $V(E/Q, \theta)$ should cancel:

$$\lim_{E\to 0}(R-V)=0\,,\qquad \qquad \lim_{\theta\to 0,\pi}(R-V)=0$$

- corrections to σ_{tot} come from hard ($E \sim Q$), large-angle gluons
- Soft gluons don't matter:
 - Physics reason: soft gluons emitted on long timescale ~ 1/(Εθ²) relative to collision (1/Q) cannot influence cross section.
 - Transition to hadrons also occurs on long time scale (~ 1/Λ) and can also be ignored.
- Correct renorm. scale for $lpha_{\mathsf{s}}:\ \mu\sim Q$ perturbation theory valid.

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} \left(R(E/Q,\theta) - V(E/Q,\theta) \right) \right)$$

- From calculation: $\lim_{E\to 0} R(E/Q, \theta) = 1$.
- ► For every divergence $R(E/Q, \theta)$ and $V(E/Q, \theta)$ should cancel:

$$\lim_{E\to 0}(R-V)=0\,,\qquad \qquad \lim_{\theta\to 0,\pi}(R-V)=0$$

- ▶ corrections to σ_{tot} come from hard ($E \sim Q$), large-angle gluons
- Soft gluons don't matter:
 - Physics reason: soft gluons emitted on long timescale ~ 1/(Eθ²) relative to collision (1/Q) cannot influence cross section.
 - ► Transition to hadrons also occurs on long time scale (~ 1/Λ) and can also be ignored.
- Correct renorm. scale for α_s : $\mu \sim Q$ perturbation theory valid.

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} \left(R(E/Q,\theta) - V(E/Q,\theta) \right) \right)$$

- From calculation: $\lim_{E\to 0} R(E/Q, \theta) = 1$.
- ► For every divergence $R(E/Q, \theta)$ and $V(E/Q, \theta)$ should cancel:

$$\lim_{E\to 0}(R-V)=0\,,\qquad \qquad \lim_{\theta\to 0,\pi}(R-V)=0$$

- ▶ corrections to σ_{tot} come from hard ($E \sim Q$), large-angle gluons
- Soft gluons don't matter:
 - Physics reason: soft gluons emitted on long timescale ~ 1/(Eθ²) relative to collision (1/Q) cannot influence cross section.
 - ► Transition to hadrons also occurs on long time scale (~ 1/Λ) and can also be ignored.
- Correct renorm. scale for α_{s} : $\mu \sim Q$ perturbation theory valid.

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} \left(R(E/Q,\theta) - V(E/Q,\theta) \right) \right)$$

- From calculation: $\lim_{E\to 0} R(E/Q, \theta) = 1$.
- ► For every divergence $R(E/Q, \theta)$ and $V(E/Q, \theta)$ should cancel:

$$\lim_{E\to 0}(R-V)=0\,,\qquad \qquad \lim_{\theta\to 0,\pi}(R-V)=0$$

- ▶ corrections to σ_{tot} come from hard ($E \sim Q$), large-angle gluons
- Soft gluons don't matter:
 - Physics reason: soft gluons emitted on long timescale ~ 1/(Eθ²) relative to collision (1/Q) cannot influence cross section.
 - ► Transition to hadrons also occurs on long time scale (~ 1/Λ) and can also be ignored.
- ▶ Correct renorm. scale for $\alpha_{\rm s}$: $\mu \sim Q$ perturbation theory valid.

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} \left(R(E/Q,\theta) - V(E/Q,\theta) \right) \right)$$

- From calculation: $\lim_{E\to 0} R(E/Q, \theta) = 1$.
- ► For every divergence $R(E/Q, \theta)$ and $V(E/Q, \theta)$ should cancel:

$$\lim_{E\to 0}(R-V)=0\,,\qquad \qquad \lim_{\theta\to 0,\pi}(R-V)=0$$

- ▶ corrections to σ_{tot} come from hard ($E \sim Q$), large-angle gluons
- Soft gluons don't matter:
 - ▶ Physics reason: soft gluons emitted on long timescale ~ 1/(Eθ²) relative to collision (1/Q) cannot influence cross section.
 - ► Transition to hadrons also occurs on long time scale (~ 1/Λ) and can also be ignored.
- ▶ Correct renorm. scale for α_s : $\mu \sim Q$ perturbation theory valid.

Our treatment so far was a bit rough: designed to emphasize physical nature of divergences.

In practice calculations will be done in 4 + ϵ dimensions and infrared divergences translate to powers of $1/\epsilon.$

Full final answer for σ_{tot} at next-to-leading order (NLO) is, for massless quarks,

$$\sigma_{\rm tot} = \sigma_{q\bar{q}} \left(1 + \frac{3}{4} \frac{\alpha_{\rm s} C_F}{\pi} + \mathcal{O}\left(\alpha_{\rm s}^2\right) \right)$$

X	x	X	x	x	X	x	0 loops (tree-level)
ο	ο	ο	ο				1 loop
ø	ø						2 loops
0	1	2	3	4	5	6	
		_		_			

ij \rightarrow Z + n partons

To get N^pLO you need the Born (LO) diagram supplemented with all combination of *n* loops and p - n extra emissions, with $0 \le n \le p$.

I

ij \rightarrow Z + n partons

ij \rightarrow Z + n partons

ij \rightarrow Z + n partons

[Total cross sections] [Beyond NLO]

Beyond NLO: e.g. NNLO

Z @ LO

ij \rightarrow Z + n partons

Z @ NLO

ij \rightarrow Z + n partons

Z @ NNLO

Dependence of total cross section on only *hard* gluons is reflected in 'good behaviour' of perturbation series:

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + 1.045 \frac{\alpha_{s}(Q)}{\pi} + 0.94 \left(\frac{\alpha_{s}(Q)}{\pi} \right)^{2} - 15 \left(\frac{\alpha_{s}(Q)}{\pi} \right)^{3} + \mathcal{O}\left(\alpha_{s}^{4} \right) + \mathcal{O}\left(\frac{\Lambda^{4}}{Q^{4}} \right) \right)$$

(Coefficients given for $Q = M_Z$)

Dependence of total cross section on only *hard* gluons is reflected in 'good behaviour' of perturbation series:

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + 1.045 \frac{\alpha_{s}(Q)}{\pi} + 0.94 \left(\frac{\alpha_{s}(Q)}{\pi} \right)^{2} - 15 \left(\frac{\alpha_{s}(Q)}{\pi} \right)^{3} + \mathcal{O}\left(\alpha_{s}^{4} \right) + \mathcal{O}\left(\frac{\Lambda^{4}}{Q^{4}} \right) \right)$$

(Coefficients given for $Q = M_Z$)

Exercise: substitute $\alpha_s(M_Z) = 0.118$ to get a feel for the quality of the expansion.

Dependence of total cross section on only *hard* gluons is reflected in 'good behaviour' of perturbation series:

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + 1.045 \frac{\alpha_{s}(Q)}{\pi} + 0.94 \left(\frac{\alpha_{s}(Q)}{\pi} \right)^{2} - 15 \left(\frac{\alpha_{s}(Q)}{\pi} \right)^{3} + \mathcal{O}\left(\alpha_{s}^{4} \right) + \mathcal{O}\left(\frac{\Lambda^{4}}{Q^{4}} \right) \right)$$

(Coefficients given for $Q = M_Z$)

Exercise: substitute $\alpha_s(M_Z) = 0.118$ to get a feel for the quality of the expansion.

Question: did we have to write the result as a function of $\alpha_s(Q)$? Actually, it is standard to write results as a function of $\alpha_s(\mu_R)$, where μ_R is the **renormalisation scale**, to be taken $\mu_R \sim Q$. Let's express NLO results for arbitrary μ_R in terms of $\alpha_s(Q)$:

$$\sigma^{\text{NLO}}(\mu_R) = \sigma_{q\bar{q}} \left(1 + c_1 \alpha_{\text{s}}(\mu_R) \right)$$
$$= \sigma_{q\bar{q}} \left(1 + c_1 \alpha_{\text{s}}(Q) - 2c_1 b_0 \ln \frac{\mu_R}{Q} \alpha_{\text{s}}^2(Q) + \mathcal{O}\left(\alpha_{\text{s}}^3\right) \right)$$

As we vary the renormalisation scale μ_R , we introduce $\mathcal{O}(\alpha_s^2)$ pieces into the X-section. I.e. generate some set of NNLO terms ~ uncertainty on X-section from missing NNLO calculation.

If we now calculate the full NNLO correction, then it will be structured so as to cancel the $\mathcal{O}\left(\alpha_{\rm s}^2\right)$ scale variation

$$\sigma^{\text{NNLO}}(\mu_R) = \sigma_{q\bar{q}} \left[1 + c_1 \alpha_{\text{s}}(\mu_R) + c_2(\mu_R) \alpha_{\text{s}}^2(\mu_R) \right]$$
$$c_2(\mu_R) = c_2(Q) + 2c_1 b_0 \ln \frac{\mu_R}{Q}$$

Remaining uncertainty is now $\mathcal{O}\left(lpha_{\mathsf{s}}^{\mathsf{3}}
ight)$

Let's express NLO results for arbitrary μ_R in terms of $\alpha_s(Q)$:

$$\sigma^{\text{NLO}}(\mu_R) = \sigma_{q\bar{q}} \left(1 + c_1 \alpha_{\text{s}}(\mu_R)\right)$$

$$= \sigma_{q\bar{q}} \left(\alpha_{\text{s}}(\mu_R) = \frac{\alpha_{\text{s}}(Q)}{1 + 2b_0 \alpha_{\text{s}}(Q) \ln \mu_R/Q}\right)$$
we vary the renormal
$$= \alpha_{\text{s}}(Q) - 2b_0 \alpha_{\text{s}}^2(Q) \ln \mu_R/Q + \mathcal{O}(\alpha_{\text{s}}^3)$$
section from missing NNLO calculation

If we now calculate the full NNLO correction, then it will be structured so as to cancel the $\mathcal{O}\left(\alpha_{\rm s}^2\right)$ scale variation

$$\sigma^{\text{NNLO}}(\mu_R) = \sigma_{q\bar{q}} \left[1 + c_1 \alpha_s(\mu_R) + c_2(\mu_R) \alpha_s^2(\mu_R) \right]$$
$$c_2(\mu_R) = c_2(Q) + 2c_1 b_0 \ln \frac{\mu_R}{Q}$$

Remaining uncertainty is now $\mathcal{O}\left(lpha_{s}^{3}
ight)$

[Total cross sections] [Scale dependence] Scale dependence

Let's express NLO results for arbitrary μ_R in terms of $\alpha_s(Q)$:

$$\sigma^{\text{NLO}}(\mu_R) = \sigma_{q\bar{q}} \left(1 + c_1 \alpha_{\text{s}}(\mu_R) \right)$$
$$= \sigma_{q\bar{q}} \left(1 + c_1 \alpha_{\text{s}}(Q) - 2c_1 b_0 \ln \frac{\mu_R}{Q} \alpha_{\text{s}}^2(Q) + \mathcal{O}\left(\alpha_{\text{s}}^3\right) \right)$$

As we vary the renormalisation scale μ_R , we introduce $\mathcal{O}(\alpha_s^2)$ pieces into the X-section. I.e. generate some set of NNLO terms ~ uncertainty on X-section from missing NNLO calculation.

If we now calculate the full NNLO correction, then it will be structured so as to cancel the $\mathcal{O}(\alpha_s^2)$ scale variation

$$\sigma^{\text{NNLO}}(\mu_R) = \sigma_{q\bar{q}} \left[1 + c_1 \alpha_{\text{s}}(\mu_R) + c_2(\mu_R) \alpha_{\text{s}}^2(\mu_R) \right]$$
$$c_2(\mu_R) = c_2(Q) + 2c_1 b_0 \ln \frac{\mu_R}{Q}$$

Remaining uncertainty is now $\mathcal{O}\left(lpha_{
m s}^3
ight)$

Let's express NLO results for arbitrary μ_R in terms of $\alpha_s(Q)$:

$$\sigma^{\text{NLO}}(\mu_R) = \sigma_{q\bar{q}} \left(1 + c_1 \alpha_{\text{s}}(\mu_R) \right)$$
$$= \sigma_{q\bar{q}} \left(1 + c_1 \alpha_{\text{s}}(Q) - 2c_1 b_0 \ln \frac{\mu_R}{Q} \alpha_{\text{s}}^2(Q) + \mathcal{O}\left(\alpha_{\text{s}}^3\right) \right)$$

As we vary the renormalisation scale μ_R , we introduce $\mathcal{O}(\alpha_s^2)$ pieces into the X-section. I.e. generate some set of NNLO terms ~ uncertainty on X-section from missing NNLO calculation.

If we now calculate the full NNLO correction, then it will be structured so as to cancel the $\mathcal{O}(\alpha_s^2)$ scale variation

$$\sigma^{\text{NNLO}}(\mu_R) = \sigma_{q\bar{q}} \left[1 + c_1 \alpha_{\text{s}}(\mu_R) + c_2(\mu_R) \alpha_{\text{s}}^2(\mu_R) \right]$$
$$c_2(\mu_R) = c_2(Q) + 2c_1 b_0 \ln \frac{\mu_R}{Q}$$

Remaining uncertainty is now $\mathcal{O}\left(\alpha_{s}^{3}\right)$.

Scale dependence: NNLO

See how at NNLO, scale dependence is much flatter, final uncertainty much smaller.

Because now we neglect only α_s^3 instead of α_s^2

Moral: not knowing exactly how to set scale \rightarrow blessing in disguise, since it gives us handle on uncertainty.

Scale variation ≡ standard procedure Beyond LO, often a good guide But not foolproof!

NB: if we had a large number of orders of perturbation theory, scale dependence would just disappear.

Scale dependence: NNLO

See how at NNLO, scale dependence is much flatter, final uncertainty much smaller.

Because now we neglect only $\alpha_{\rm s}^{\rm 3}$ instead of $\alpha_{\rm s}^{\rm 2}$

Moral: not knowing exactly how to set scale \rightarrow blessing in disguise, since it gives us handle on uncertainty.

Scale variation ≡ standard procedure Beyond LO, often a good guide But not foolproof!

NB: if we had a large number of orders of perturbation theory, scale dependence would just disappear.

Scale dependence: NNLO

See how at NNLO, scale dependence is much flatter, final uncertainty much smaller.

Because now we neglect only $\alpha_{\rm s}^{\rm 3}$ instead of $\alpha_{\rm s}^{\rm 2}$

Moral: not knowing exactly how to set scale \rightarrow blessing in disguise, since it gives us handle on uncertainty.

Scale variation \equiv standard procedure Beyond LO, often a good guide But not foolproof!

NB: if we had a large number of orders of perturbation theory, scale dependence would just disappear.

Suppose you have a geometric perturbative series,

$$\sigma = \sigma_0 \sum_{i=0}^{\infty} c^i \alpha_{\mathsf{s}}^i$$

Working in a limit where $\alpha_s \ll 1$, $c \gg 1$ and $c\alpha_s < 1$, evaluate the scale dependence on the estimate for σ obtained when the series is truncated at order *n*.

Is that scale dependence a good indication of the size of missing higher order terms?

Where to now?

There are two directions we can explore

 what happens with a more complicated initial state
 what happens when we look in more detail at the final state