Basics of QCD: jets & jet substructure

Gavin Salam (CERN)

with extensive use of material by Matteo Cacciari and Gregory Soyez

ICTP–SAIFR school on QCD and LHC physics July 2015, São Paulo, Brazil

Find all papers by ATLAS and CMS

reportnumber:CERN-PH-EP an	d (collaboration:ATLAS or collaboration:CMS) Brid	əf format 💌	Search Easy Search	850 records found
find j "Phys.Rev.Lett.,105*" :: more	2		Advanced Search	
Sort by: latest first No exact match found	Display results:	ad		
HEP 850 records	found 1 - 25 >>> jump to record: 1		S	earch took 0.18 seconds.
1. Z boson product ATLAS Collaboration (CERN-PH-EP-2015-14 e-Print: arXiv:1507.062 References Bil ADS Abstract S Detailed record	ion in p +Pb collisions at $\sqrt{s_{NN}} = 5$ Georges Aad (Marseille, CPPM) <i>et al.</i>). Jul 22, 3 6 232 [hep-ex] PDF oTeX LaTeX(US) LaTeX(EU) Harvmac End ervice	02 TeV me a 2015. 19 pp. <u>Note</u>	asured with the ATLA	S detector
2. Search for an add	litional, heavy Higgs boson in the H	$\rightarrow ZZ \operatorname{dec}$	ay channel at \sqrt{s} = 8 ⁻	TeV in <i>pp</i> collision data with the
ATLAS detector ATLAS Collaboration (CERN-PH-EP-2015-15 e-Print: arXiv:1507.05	Georges Aad (Marseille, CPPM) <i>et al.</i>). Jul 21, 3 4 930 [hep-ex] <u>PDF</u>	2015. 46 pp.		
References Bil	<u>oTeX LaTeX(US) LaTeX(EU) Harvmac Enc</u>	Note		

ADS Abstract Service

Detailed record

3. Pseudorapidity distribution of charged hadrons in proton-proton collisions at sqrt(s) = 13 TeV

CMS Collaboration (Vardan Khachatryan (Yerevan Phys. Inst.) et al.). Jul 21, 2015.

Pull out those that refer to one widely used jet-alg

 reportnumber:CERN-PH-EP and (collaboration:ATLAS or collaboration:CMS) at d refersto:recid:779080 Brief format
 Search Advanced Search Advanced Search
 538 records found

 find i "Phys.Rev.Lett..105** :: more
 Display results:
 > 60% of papers use jets!

 latest first i desc. i or rank by - i 25 results i single list i
 isingle list i

No exact match found for cern-ph-ep, using cern ph ep instead ...

HEP	538 records found 1 - 25 ► jump to record: 1	Search took 0.18 seconds.		
1. Search for an additional, heavy Higgs boson in the $H \rightarrow ZZ$ decay channel at \sqrt{s} = 8 TeV in pp collision data with the ATLAS detector				
ATLAS Collaboration (Georges Aad (Marseille, CPPM) et al.). Jul 21, 2015. 46 pp.				
CERN-	PH-EP-2015-154			
e-Print:	arXiv:1507.05930 [hep-ex] PDF			
1	<u>References</u> <u>BibTeX</u> <u>LaTeX(US)</u> <u>LaTeX(EU)</u> <u>Harvmac</u> <u>EndNote</u>			
1	ADS Abstract Service			

Detailed record

2. Summary of the searches for squarks and gluinos using \sqrt{s} = 8 TeV pp collisions with the ATLAS experiment at the LHC

ATLAS Collaboration (Georges Aad (Marseille, CPPM) et al.). Jul 20, 2015. 91 pp. CERN-PH-EP-2015-162 e-Print: arXiv:1507.05525 [hep-ex] | PDF

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote ADS Abstract Service Detailed record - Cited by 1 record

3. Search for photonic signatures of gauge-mediated supersymmetry in 8 TeV pp collisions with the ATLAS detector

ATLAS Collaboration (Georges Aad (Marseille, CPPM) et al.), Jul 20, 2015, 43 pp.

e jets?

tion

Projection to jets should be resilient to QCD effects

2 clear jets

2 clear jets

3 jets?

2 clear jets

3 jets? or 4 jets?

Gavin Salam (CERN)

QCD basics 4

Make a choice: specify a jet definition

- Which particles do you put together into a same jet?
- How do you recombine their momenta (4-momentum sum is the obvious choice, right?)

"Jet [definitions] are legal contracts between theorists and experimentalists" -- MJ Tannenbaum

They're also a way of organising the information in an event 1000's of particles per events, up to 20.000,000 events per second

ety

Invalidates perturbation theory

hadron-collider kt algorithm

Two parameters, *R* and *p*_{*t*,*min*}

(These are the two parameters in essentially every widely used hadron-collider jet algorithm)

$$d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad \Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

Sequential recombination algorithm

- 1. Find smallest of d_{ij} , d_{iB}
- 2. If *ij*, recombine them
- 3. If *iB*, call i a jet and remove from list of particles
- 4. repeat from step 1 until no particles left Only use jets with $p_t > p_{t,min}$

Inclusive kt algorithm

Pt,min S.D. Ellis & Soper, 1993 Catani, Dokshitzer, Seymour & Webber, 1993 Cambridge/Aachen: the simplest of hadron-collider algorithms

- Recombine pair of objects closest in ΔR_{ij}
- Repeat until all $\Delta R_{ij} > R$ remaining objects are jets

Dokshitzer, Leder, Moretti, Webber '97 (Cambridge): more involved e+e- form Wobisch & Wengler '99 (Aachen): simple inclusive hadron-collider form One still applies a p_{t,min} cut to the jets, as for inclusive k_t

> C/A privileges the collinear divergence of QCD; it 'ignores' the soft one

anti-kt

Anti-kt: formulated similarly to inclusive kt, but with

$$d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_{ti}^2}$$

Cacciari, GPS & Soyez '08 [+Delsart unpublished]

Anti-kt privileges the collinear divergence of QCD and disfavours clustering between pairs of soft particles

Most pairwise clusterings involve at least one hard particle

Clustering grows around hard cores $d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_{ti}^2}$

Clustering grows around hard cores $d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_{ti}^2}$

Clustering grows around hard cores $d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_{ti}^2}$

Clustering grows around hard cores $d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_{ti}^2}$

Clustering grows around hard cores $d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_{ti}^2}$

Clustering grows around hard cores $d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_{ti}^2}$

Clustering grows around hard cores $d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_{ti}^2}$

Clustering grows around hard cores

$$_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_{ti}^2}$$

Anti-kt gives circular jets ("cone-like") in a way that's infrared safe

Linearity: k_t v. anti- k_t

Linearity: k_t v. anti- k_t

p_t/GeV kt clustering, R=1 3 y

p_t/GeV kt clustering, R=1 Т -3 y


```
// specify a jet definition
double R = 0.4
JetDefinition jet def(antikt algorithm, R);
```

jet_algorithm can be any one of the four IRC safe algorithms, or also most of the old IRC-unsafe ones, for legacy purposes

```
// specify the input particles
vector<PseudoJet> input_particles = . . .;
```

More this afternoon in the tutorial

```
// specify a jet definition
double R = 0.4
JetDefinition jet def(antikt algorithm, R);
```

jet_algorithm can be any one of the four IRC safe algorithms, or also most of the old IRC-unsafe ones, for legacy purposes

```
// specify the input particles
vector<PseudoJet> input_particles = . . .;
```

```
// extract the jets
vector<PseudoJet> jets = jet_def(input_particles);
```

```
// pt of hardest jet
double pt_hardest = jets[0].pt();
```

```
// constituents of hardest jet
vector<PseudoJet> constituents = jets[0].constituents();
```

More this afternoon in the tutorial

single parton @ LO: jet radius irrelevant

Small jet radius Large jet radius

perturbative fragmentation: large jet radius better (it captures more)

Small jet radius Large jet radius Ύк, non-perturbative hadronisation

non-perturbative fragmentation: large jet radius better (it captures more)

Pileup

Pileup

Pileup

Gavin Salam (CERN)

QCD basics 4

underlying ev. & pileup "noise": **small jet radius better** (it captures less)

Small jet radius

Large jet radius

multi-hard-parton events: **small jet radius better** (it resolves partons more effectively)

Can we capture all quarks and gluons?

Should we capture all quarks and gluons?

$pp ightarrow t \overline{t}$ simulated with Pythia, displayed with Delphes

Alpgen pp $\rightarrow t\bar{t} \rightarrow 6q$ fraction of pp \rightarrow tt \rightarrow 6q events with all R_{qq} > R 1 require all $p_{tq} > 10 \text{ GeV}$ 0.8 0.6 0.4 0.2 pp, 7 TeV Alpgen partons 0 0.5 1.5 0 R

Alpgen pp $\rightarrow t\bar{t} \rightarrow 6q$ fraction of pp \rightarrow tt \rightarrow 6q events with all R_{qq} > R 1 require all $p_{tq} > 20 \text{ GeV}$ 0.8 0.6 0.4 0.2 pp, 7 TeV Alpgen partons 0 0.5 1.5 0 R

CFHEP, April 2014 18 / 19

Two things that make jets@LHC special

The large hierarchy of scales

 $\sqrt{s} \gg M_{EW}$

The huge pileup

 $n_{pileup} \sim 20 - 40$

[These involve two opposite extremes: low p_t and high p_t , which nevertheless talk to each other]

RS KK resonances $\rightarrow t\bar{t}$, from Frederix & Maltoni, 0712.2355

NB: QCD dijet spectrum is $\sim 10^3$ times $t\overline{t}$

QCD basics 4

Boosted EW scale objects

Normal analyses: two quarks from $X \rightarrow q\bar{q}$ reconstructed as two jets

High- p_t regime: EW object X is boosted, decay is collimated, $q\bar{q}$ both in same jet

Happens for $p_t \gtrsim 2m/R$ $p_t \gtrsim 320$ GeV for $m = m_W$, R = 0.5

Papers on jet substructure

More than 150 papers since 2008 (+ some background noise)

Pioneered by M. Seymour in the early '90s

Exploded around 2008

Tagging & Grooming

Two widely used terms though there's not a consensus about what they mean

Tagging

reduces the background, leaves much of signal

Grooming

 improves signal mass resolution (removing pileup, etc.), without significantly changing background & signal event numbers
One core idea for tagging

QCD jet mass distribution has the approximate

$$\frac{dN}{d\ln m} \sim \alpha_{\rm s} \ln \frac{p_t R}{m} \times {\rm Sudakov}$$

Work from '80s and '90s + Almeida et al '08

approximate

$$rac{dN}{d\ln m} \sim lpha_{
m s} \ln rac{p_t R}{m} imes {
m Sudakov}$$

Work from '80s and '90s + Almeida et al '08

S

54

The logarithm comes from integral over soft divergence of QCD:

approximate

$$rac{dN}{d\ln m}\sim lpha_{
m s}\ln rac{p_t R}{m} imes {
m Sudakov}$$

Work from '80s and '90s + Almeida et al '08

The logarithm comes from integral over soft divergence of QCD:

$$\int_{\frac{m^2}{p_t^2 R^2}}^{\frac{1}{2}} \frac{dz}{z}$$

A hard cut on z reduces QCD background & simplifies its shape

55

Inside the jet mass

Inside the jet mass

Gavin Salam (CERN)

QCD basics 4

ICTP-SAIFR school, July 2015

57

Signal + bkgd after cut on z

One core idea for grooming

[see blackboard]

QCD basics 4

mass

"Grooming"

How do the tools work in practice?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

 k_t clusters soft "junk" early on in the clustering

Its last step is to merge two hard pieces. Easily undone to identify underlying kinematics

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

 k_t clusters soft "junk" early on in the clustering

Its last step is to merge two hard pieces. Easily undone to identify underlying kinematics

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

 k_t clusters soft "junk" early on in the clustering

Its last step is to merge two hard pieces. Easily undone to identify underlying kinematics

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

 k_t clusters soft "junk" early on in the clustering

Its last step is to merge two hard pieces. Easily undone to identify underlying kinematics

This meant it was the first algorithm to be used for jet substructure.

Seymour '93

Butterworth, Cox & Forshaw '02

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

C/A identifies two hard blobs with limited soft contamination

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

C/A identifies two hard blobs with limited soft contamination, joins them

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

C/A identifies two hard blobs with limited soft contamination, joins them

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

C/A identifies two hard blobs with limited soft contamination, joins them, and then adds in remaining soft junk

The interesting substructure is buried inside the clustering sequence — it's less contamined by soft junk, but needs to be pulled out with special techniques

Butterworth, Davison, Rubin & GPS '08 Kaplan, Schwartz, Reherman & Tweedie '08 Butterworth, Ellis, Rubin & GPS '09 Ellis, Vermilion & Walsh '09

SIGNAL

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Zbb BACKGROUND

Cluster event, C/A, R=1.2

Butterworth, Davison, Rubin & GPS '08

SIGNAL

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Zbb BACKGROUND

Fill it in, \rightarrow show jets more clearly

Butterworth, Davison, Rubin & GPS '08

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

p_t [GeV]

90[.]

80

70

60

50

40

30

20

10

0 6

5

 $200 < p_{tZ} < 250 \text{ GeV}$ 0.15 Hardest jet, pt=246.211 m=150.465 0.1 0.05 0 100 120 140 80 160 m_H [GeV] Zbb BACKGROUND $200 < p_{tZ} < 250 \text{ GeV}$ 0.008 0.006 0.004 -2 0.002 Consider hardest jet, m = 150 GeV 0 80 100 120 140 160 m_H [GeV] Butterworth, Davison, Rubin & GPS '08

arbitrary norm.

SIGNAL

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

SIGNAL

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

SIGNAL

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

SIGNAL

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Boosted Higgs analysis

 $pp \rightarrow ZH \rightarrow vvbb$

to subjets, Re-cluster with smaller 8 drop R, and keep only 3 hardest jets

Cluster with a large R

Undo the clustering into subjets, until a large mass drop is observed

different (2-body) substructure tools

Detailed relative positions depend on physics context (and are possibly contentious!)

different (2-body) substructure tools

Detailed relative positions depend on physics context (and are possibly contentious!)

different (2-body) substructure tools

Detailed relative positions depend on physics context (and are possibly contentious!)

different (2-body) substructure tools

Detailed relative positions depend on physics context (and are possibly contentious!)

Seeing W's and tops in a single jet

W's in a single jet

tops in a single jet

ATLAS di-boson excess

About 30 interpretations on arXiv so far!

Points to remember from these lectures

- Major difference relative to QED: quarks and gluons both emit gluons
- Non-perturbative physics lurks in many places; limiting its impact (jets), factorising unavoidable nonperturbative parts (PDFs), are both key to our successful use of perturbative QCD
- Tightly connected with infrared and collinear divergences, which are ubiquitous in QCD

EXTRAS

Time to cluster N particles in FastJet

Version 1.017 of FastJet Contrib is distributed with the following packages

Package	Version	Information
ClusteringVetoPlugin	1.0.0	README NEWS
ConstituentSubtractor	1.0.0	README NEWS
EnergyCorrelator	1.1.0	README NEWS
GenericSubtractor	1.2.0	README NEWS
JetCleanser	1.0.1	README NEWS
JetFFMoments	1.0.0	README NEWS
JetsWithoutJets	1.0.0	README NEWS
Nsubjettiness	2.1.0	README NEWS
RecursiveTools	1.0.0	README NEWS
ScJet	1.1.0	README NEWS
SoftKiller	1.0.0	README NEWS
SubjetCounting	1.0.1	README NEWS
ValenciaPlugin	2.0.0	README NEWS
VariableR	1.1.1	README NEWS