INGREDIENTS FOR ACCURATE COLLIDER PHYSICS (1/2)

Gavin Salam, CERN

PSI Summer School Exothiggs, Zuoz, August 2016

The LHC and its Experiments

- $\sim 16.5 \mathrm{mi}$ circumference, ~ 300 feet underground
- 1232 superconducting twin-bore Dipoles ($49 \mathrm{ft}, 35 \mathrm{t}$ each)
- Dipole Field Strength 8.4 T (13 kA current), Operating Temperature 1.9 K - Beam intensity 0.5 A (2.2 10^{-6} loss causes quench), 362 MJ stored energy

ALICE: heavy-ion physics

CMS: general purpose

LHCb: B-physics

+ TOTEM, LHCf

LHC - TWO ROLES - A DISCOVERY MACHINE AND A PRECISION MACHINE

Today

> $20 \mathrm{fb}^{-1}$ at 8 TeV

- $13 \mathrm{fb}^{-1}$ at 13 TeV

Future

> 2018: 100 fib $^{-1}$ @ 13 TeV
> 2023: $300 \mathrm{fb}^{-1}$ @ 1 ? TeV
> 2035: $3000 \mathrm{fb}^{-1}$ @ 14 TeV
$1 \mathrm{fb}^{-1}=10^{14}$ collisions

Increase in luminosity brings discovery reach and precision

The LHC and its Experiments

ALICE: heavy-ion physics

CMS: general purpose

LHCb: B-physics

+ TOTEM, LHCf

LHC - TWO ROLES - A DISCOVERY MACHINE and a Precision machine

Increase in luminosity brings discovery reach and precision

The LHC and its Experiments

- $\sim 16.5 \mathrm{mi}$ circumference, ~ 300 feet underground
- 1232 superconducting twin-bore Dipoles ($49 \mathrm{ft}, 35 \mathrm{t}$ each)
- Dipole Field Strength 8.4 T (13 kA current), Operating Temperature 1.9 K - Beam intensity 0.5 A (2.2 10^{-6} loss causes quench), $\mathbf{3 6 2} \mathbf{~ M J}$ stored energy

ALICE: heavy-ion physics

LHCb: B-physics

+ TOTEM, LHCf

LHC - TWO ROLES - A DISCOVERY MACHINE AND A PRECISION MACHINE

Higgs couplings

Increase in luminosity brings discovery reach and precision

LONG-TERM HIGGS PRECISION?

Naive extrapolation suggests LHC has long-term potential to do Higgs physics at $\mathbf{1 \%}$ accuracy

the Higgs sector

The theory is old (1960s-70s).
But the particle and it's theory are unlike anything we've seen in nature.

- A fundamental scalar φ, i.e. spin 0 (all other particles are spin 1 or $1 / 2$)
> A potential $\mathrm{V}(\varphi) \sim-\mu^{2}\left(\varphi \varphi^{\dagger}\right)+\lambda\left(\varphi \varphi^{\dagger}\right)^{2}$, which until now was limited to being
 theorists' "toy model" (φ)
> "Yukawa" interactions responsible for fermion masses, $y_{i} \phi \bar{\psi} \psi$, with couplings $\left(y_{i}\right)$ spanning 5 orders of magnitude

the Higgs sector

The theory is old (1960s-70s).
But the particle and it's theory are unlike anything we've seen in nature.
> A fundamental scalar φ, i.e. spin 0 (all other particles are spin 1 or $1 / 2$)
> A potential $\mathrm{V}(\varphi) \sim-\mu^{2}\left(\varphi \varphi^{\dagger}\right)+\lambda\left(\varphi \varphi^{\dagger}\right)^{2}$, which until now was limited to being theorists' "toy model" (φ^{4})
> "Yukawa" interactions responsible for fermion masses, $y_{i} \phi \bar{\psi} \psi$, with couplings $\left(y_{i}\right)$ spanning 5 orders of magnitude

Higgs sector needs stress-testing

Is Higgs fundamental or composite? If fundamental, is it "minimal"? Is it really φ^{4} ? Are Yukawa couplings responsible for all fermion masses?

ATLAS H \rightarrow WW* ANALYSIS [1604.02997]

3 Signal and background models

The ggF and VBF production modes for $H \rightarrow W W^{*}$ are modelled at next-to-leading order (NLO] in the strong coupling α_{S} with the Powheg MC generator [22-25], nterfaced with Pythia8 [26] (version 8.165) for the parton shower, hadronisation, and underlying event. The CT10 [27] PDF set is used and the parameters of the Pythia8 generator controlling the modelling of the parton shower and the underlying event are those corresponding to the AU2 set [28]. The Higgs boson mass set in the generation is 125.0 GeV , which is close to the measured value. The Powheg ggF model takes into account finite quark masses and a running-width Breit-Wigner distribution that includes electroweak corrections at NLO [29]. To improve the modelling of the Higgs boson p_{T} distribution, a reweighting scheme is applied to reproduce the prediction of the next-to-next-to-leading-order (NNLO) and next-to-next-to-leading-logarithm (NNLL) dynamic-scale calculation given by the HRes 2.1 program [30] Events with ≥ 2 jets are further reweighted to reproduce the p_{T}^{H} spectrum predicted by the NLO Powheg simulation of Higgs boson production in association with two jets ($H+2$ jets) [31]. Interference with continuum $W W$ production [32, 33] has a negligible impact on this analysis due to the transverse-mass selection criteria described in Section 4 and is not included in the signal model.

Jets fre reconstructed from topological clusters of calorimeter cells [50-52] using the anti- k_{t} algorithm with a radius parameter of $R=0.4$ [53]. Jet energies are corrected for the effects of calorimeter non-

ATLAS H \rightarrow WW* ANALYSIS [1604.02997]

That whole

 paragraph was just for the red part of this distribution (the Higgs signal).Complexity of modelling each of the backgrounds is comparable
(a) $N_{\text {jet }}=0$

AIMS OF THESE LECTURES

> Give you basic understanding of the "jargon" of theoretical collider prediction methods and inputs
> Give you insight into the power \& limitations of different techniques for making collider predictions

A proton-proton collision: INITIAL STATE

proton

proton

A proton-proton collision: FINAL STATE

IT'S MOSTLY QUANTUM CHROMODYNAMICS (QCD)

Quarks - 3 colours: $\psi_{a}=\left(\begin{array}{l}\psi_{1} \\ \psi_{2} \\ \psi_{3}\end{array}\right)$
Quark part of Lagrangian:

$$
\mathcal{L}_{q}=\bar{\psi}_{a}\left(i \gamma^{\mu} \partial_{\mu} \delta_{a b}-g_{s} \gamma^{\mu} t_{a b}^{C} \mathcal{A}_{\mu}^{C}-m\right) \psi_{b}
$$

$S U(3)$ local gauge symmetry $\leftrightarrow 8\left(=3^{2}-1\right)$ generators $t_{a b}^{1} \ldots t_{a b}^{8}$ corresponding to 8 gluons $\mathcal{A}_{\mu}^{1} \ldots \mathcal{A}_{\mu}^{8}$.
A representation is: $t^{A}=\frac{1}{2} \lambda^{A}$,

$$
\begin{aligned}
& \lambda^{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \lambda^{2}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \lambda^{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), \lambda^{4}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \\
& \lambda^{5}=\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right), \lambda^{6}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \lambda^{7}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right), \lambda^{8}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & 0 & 0 \\
0 & \frac{1}{\sqrt{3}} & 0 \\
0 & 0 & \frac{-2}{\sqrt{3}}
\end{array}\right),
\end{aligned}
$$

IT'S MOSTLY QUANTUM CHROMODYNAMICS (QCD)

Field tensor: $F_{\mu \nu}^{A}=\partial_{\mu} \mathcal{A}_{\nu}^{A}-\partial_{\nu} \mathcal{A}_{\nu}^{A}-g_{s} f_{A B C} \mathcal{A}_{\mu}^{B} \mathcal{A}_{\nu}^{C} \quad\left[t^{A}, t^{B}\right]=i f_{A B C} t^{C}$
$f_{A B C}$ are structure constants of $S U(3)$ (antisymmetric in all indices $S U(2)$ equivalent was $\epsilon^{A B C}$). Needed for gauge invariance of gluon part of Lagrangian:

$$
\mathcal{L}_{G}=-\frac{1}{4} F_{A}^{\mu \nu} F^{A \mu \nu}
$$

IT'S MOSTLY QUANTUM CHROMODYNAMICS (QCD)

The only complete solution uses lattice QCD
> put all quark \& gluon fields on a 4d lattice
(NB: imaginary time)
> Figure out most likely configurations (Monte Carlo sampling)

IT'S MOSTLY QUANTUM CHROMODYNAMICS (QCD)

The only complete solution uses lattice QCD
> put all quark \& gluon fields on a 4d lattice
(NB: imaginary time)
> Figure out most likely configurations
(Monte Carlo sampling)
hadron spectrum from lattice QCD

Durr et al, arXiv:0906.3599

IT'S MOSTLY QUANTUM CHROMODYNAMICS (QCD)

The only complete solution uses lattice QCD
> put all quark \& gluon fields on a 4d lattice
(NB: imaginary time)
> Figure out most likely configurations (Monte Carlo sampling)
hadron spectrum from lattice QCD

Durr et al, arXiv:0906.3599

For LHC reactions, lattice would have to
> Resolve smallest length scales ($2 \mathrm{TeV} \sim 10^{-4} \mathrm{fm}$)

- Contain whole reaction (pion formed on timescale of 1 fm , with boost of 10000 - i.e. $10^{4} \mathrm{fm}$)
That implies 10^{8} nodes in each dimension, i.e. 10^{32} nodes - unrealistic

A proton-proton collision: FILLING IN THE PICTURE

A proton-proton collision: FILLING IN THE PICTURE

A proton-proton collision: SIMPLIFYING IN THE PICTURE

WHY IS SIMPLIFICATION "ALLOWED"?

> Proton's dynamics occurs on timescale O (1 fm)
Final-state hadron dynamics occurs on timescale O(1fm)
> Production of Higgs, Z (and other "hard processes") occurs on timescale $1 / \mathrm{M}_{\mathrm{H}} \sim 1 / 125 \mathrm{GeV} \sim 0.002 \mathrm{fm}$

proton
proton

That means we can separate - "factorise" - the hard process, i.e. treat it as independent from all the hadronic dynamics

WHY IS SIMPLIFICATION "ALLOWED"? KEY IDEA \#2

SHORT-DISTANCE QCD CORRECTIONS ARE PERTURBATIVE

> On timescales $1 / \mathrm{M}_{\mathrm{H}} \sim 1 / 125 \mathrm{GeV} \sim 0.002 \mathrm{fm}$ you can take advantage of asymptotic freedom

- i.e. you can write results in terms of an expansion in the (not so) strong coupling constant $\mathrm{a}_{\mathrm{s}}(125 \mathrm{GeV}) \sim 0.11$

$$
\left.\hat{\sigma}=\hat{\sigma}_{0} \sqrt{1}+c_{1} \alpha_{s}+c_{2} \alpha_{s}^{2}+\cdots\right)
$$

(Leading Order)

WHY IS SIMPLIFICATION "ALLOWED"? KEY IDEA \#2

SHORT-DISTANCE QCD CORRECTIONS ARE PERTURBATIVE

> On timescales $1 / \mathrm{M}_{\mathrm{H}} \sim 1 / 125 \mathrm{GeV} \sim 0.002 \mathrm{fm}$ you can take advantage of asymptotic freedom

- i.e. you can write results in terms of an expansion in the (not so) strong coupling constant $\mathrm{a}_{\mathrm{s}}(125 \mathrm{GeV}) \sim 0.11$

$$
\hat{\sigma}=\hat{\sigma}_{0}\left(1+c_{1} \alpha_{s}+c_{2} \alpha_{s}^{2}+\cdots\right)
$$

NLO
(Next-to-Leading Order)

WHY IS SIMPLIFICATION "ALLOWED"? KEY IDEA \#2

SHORT-DISTANCE QCD CORRECTIONS ARE PERTURBATIVE

> On timescales $1 / \mathrm{M}_{\mathrm{H}} \sim 1 / 125 \mathrm{GeV} \sim 0.002 \mathrm{fm}$ you can take advantage of asymptotic freedom

- i.e. you can write results in terms of an expansion in the (not so) strong coupling constant $\mathrm{a}_{\mathrm{s}}(125 \mathrm{GeV}) \sim 0.11$

$$
\hat{\sigma}=\hat{\sigma}_{0}\left(1+c_{1} \alpha_{s}+c_{2} \alpha_{s}^{2}+\cdots\right)
$$

NNLO
(Next-to-next-to-Leading Order)

THE MASTER EQUATION

$$
\begin{aligned}
\sigma\left(h_{1} h_{2} \rightarrow Z H+X\right) & =\sum_{n=0}^{\infty} \alpha_{s}^{n}\left(\mu_{R}^{2}\right) \sum_{i, j} \int d x_{1} d x_{2} f_{i / h_{1}}\left(x_{1}, \mu_{F}^{2}\right) f_{j / h_{2}}\left(x_{2}, \mu_{F}^{2}\right) \\
& \times \hat{\sigma}_{i j \rightarrow Z H+X}^{(n)}\left(x_{1} x_{2} s, \mu_{R}^{2}, \mu_{F}^{2}\right)+\mathcal{O}\left(\frac{\Lambda^{2}}{M_{W}^{4}}\right),
\end{aligned}
$$

THE MASTER EQUATION

$$
\begin{aligned}
\sigma\left(h_{1} h_{2} \rightarrow \mathbf{Z H}+X\right) & =\sum_{n=0}^{\infty} \alpha_{s}^{n}\left(\mu_{R}^{2}\right) \sum_{i, j} \int d x_{1} d x_{2} f_{i / h_{1}}\left(x_{1}, \mu_{F}^{2}\right) f_{j / h_{2}}\left(x_{2}, \mu_{F}^{2}\right) \\
& \times \hat{\sigma}_{i j \rightarrow Z H+X}^{(n)}\left(x_{1} x_{2} s, \mu_{R}^{2}, \mu_{F}^{2}\right)+\mathcal{O}\left(\frac{\Lambda^{2}}{M_{W}^{4}}\right),
\end{aligned}
$$

THE MASTER EQUATION

$$
\begin{aligned}
& \sigma\left(h_{1} h_{2} \rightarrow \mathbf{Z H}+X\right)=\sum_{n=0}^{\infty} \alpha_{s}^{n}\left(\mu_{R}^{2}\right) \sum_{i, j} \int d x_{1} d x_{2} f_{i / h_{1}}\left(x_{1}, \mu_{F}^{2}\right) f_{j / h_{2}}\left(x_{2}, \mu_{F}^{2}\right) \\
& \times \hat{\sigma}_{i j \rightarrow Z H+X}^{(n)}\left(x_{1} x_{2} s, \mu_{R}^{2}, \mu_{F}^{2}\right)+\mathcal{O}\left(\frac{\Lambda^{2}}{M_{W}^{4}}\right), \underbrace{\text { Parton distribution function }}_{\text {proton }} \\
& \text { proton }
\end{aligned}
$$

THE MASTER EQUATION

> Perturbative sum over powers of the strong coupling: typically we use first 2-3 orders

$$
\begin{aligned}
\sigma\left(h_{1} h_{2} \rightarrow Z H+X\right) & =\sum_{n=0}^{\infty} \alpha_{s}^{n}\left(\mu_{R}^{2}\right) \sum_{i, j} \int d x_{1} d x_{2} f_{i / h_{1}}\left(x_{1}, \mu_{F}^{2}\right) f_{j / h_{2}}\left(x_{2}, \mu_{F}^{2}\right) \\
& \times \hat{\sigma}_{i j \rightarrow Z H+X}^{(n)}\left(x_{1} x_{2} s, \mu_{R}^{2}, \mu_{F}^{2}\right)+\mathcal{O}\left(\frac{\Lambda^{2}}{M_{W}^{4}}\right)
\end{aligned}
$$

THE MASTER EQUATION

$$
\begin{aligned}
\sigma\left(h_{1} h_{2} \rightarrow \mathrm{ZH}+X\right) & =\sum_{n=0}^{\infty} \alpha_{s}^{n}\left(\mu_{R}^{2}\right) \sum_{i, j} \int d x_{1} d x_{2} f_{i / h_{1}}\left(x_{1}, \mu_{F}^{2}\right) f_{j / h_{2}}\left(x_{2}, \mu_{F}^{2}\right) \\
& \times \hat{\sigma}_{i j \rightarrow Z H+X}^{(n)}\left(x_{1} x_{2} s, \mu_{R}^{2}, \mu_{F}^{2}\right)+\mathcal{O}\left(\frac{\Lambda^{2}}{M_{W}^{4}}\right),
\end{aligned}
$$

THE MASTER EQUATION

$$
\sigma\left(h_{1} h_{2} \rightarrow Z H+X\right)=\sum_{n=0}^{\infty} \alpha_{s}^{n}\left(\mu_{R}^{2}\right) \sum_{i, j} \int d x_{1} d x_{2} f_{i / h_{1}}\left(x_{1}, \mu_{F}^{2}\right) f_{j / h_{2}}\left(x_{2}, \mu_{F}^{2}\right)
$$

THE STRONG COUPLING

RUNNING COUPLING

All couplings run (QED, QCD, EW), i.e. they depend on the momentum scale (Q^{2}) of your process.

The QCD coupling, $\alpha_{s}\left(Q^{2}\right)$, runs fast:

$$
\begin{array}{ll}
Q^{2} \frac{\partial \alpha_{s}}{\partial Q^{2}}=\beta\left(\alpha_{\mathrm{s}}\right), & \beta\left(\alpha_{\mathrm{s}}\right)=-\alpha_{\mathrm{s}}^{2}\left(b_{0}+b_{1} \alpha_{\mathrm{s}}+b_{2} \alpha_{\mathrm{s}}^{2}+\ldots\right), \\
b_{0}=\frac{11 C_{A}-2 n_{f}}{12 \pi}, & b_{1}=\frac{17 C_{A}^{2}-5 C_{A} n_{f}-3 C_{F} n_{f}}{24 \pi^{2}}=\frac{153-19 n_{f}}{24 \pi^{2}}
\end{array}
$$

Note sign: Asymptotic Freedom, due to gluon to self-interaction 2004 Novel prize: Gross, Politzer \& Wilczek

- At high scales Q, coupling becomes small
\Rightarrow quarks and gluons are almost free, interactions are weak
- At low scales, coupling becomes strong
\Rightarrow quarks and gluons interact strongly - confined into hadrons
Perturbation theory fails.
$C_{A}=3, n_{f}=$ number of light quark flavours; $Q\left(\rightarrow \mu_{R}\right)$ is the "renormalisation scale" ${ }_{30}$

THE STRONG COUPLING V. SCALE

Solve $Q^{2} \frac{\partial \alpha_{s}}{\partial Q^{2}}=-b_{0} \alpha_{s}^{2} \Rightarrow \alpha_{s}\left(Q^{2}\right)=\frac{\alpha_{s}\left(Q_{0}^{2}\right)}{1+b_{0} \alpha_{s}\left(Q_{0}^{2}\right) \ln \frac{Q^{2}}{Q_{0}^{2}}}=\frac{1}{b_{0} \ln \frac{Q^{2}}{\Lambda^{2}}}$
$\Lambda \simeq 0.2 \mathrm{GeV}$ (aka $\Lambda_{Q C D}$) is the fundamental scale of QCD, at which coupling blows up.

- Λ sets the scale for hadron masses (NB: Λ not unambiguously defined wrt higher orders)
- Perturbative calculations valid for scales $Q \gg \wedge$.

PDG World Average: $\boldsymbol{\alpha}_{s}\left(\mathrm{M}_{z}\right)=0.1181 \pm 0.0011(0.9 \%)$

STRONG-COUPLING DETERMINATIONS
> Most consistent set of independent determinations is from lattice
> Two best determinations are from same group (HPQCD, 1004.4285, 1408.4169)
$\mathrm{a}_{\mathrm{s}}\left(\mathrm{M}_{\mathrm{Z}}\right)=0.1183 \pm 0.0007(0.6 \%)$ [heavy-quark correlators]
$\mathrm{a}_{\mathrm{s}}\left(\mathrm{M}_{\mathrm{z}}\right)=0.1183 \pm 0.0007(0.6 \%)$ [Wilson loops]
> Many determinations quote small uncertainties ($\varsigma 1 \%$). All are disputed!
> Some determinations quote anomalously small central values $(\sim 0.113 \mathrm{v}$. world avg. of 0.1181 ± 0.0011). Also disputed

PARTON DISTRIBUTION FUNCTIONS (PDFs)

DEEP INELASTIC SCATTERING

Hadron-hadron is complex because of two incoming partons - so start with simpler Deep Inelastic Scattering (DIS).

Kinematic relations:

$$
x=\frac{Q^{2}}{2 p \cdot q} ; \quad y=\frac{p . q}{p . k} ; \quad Q^{2}=x y s
$$

$$
\sqrt{s}=\text { c.o.m. energy }
$$

- $Q^{2}=$ photon virtuality \leftrightarrow transverse resolution at which it probes proton structure
- $x=$ longitudinal momentum fraction of struck parton in proton
- $y=$ momentum fraction lost by electron (in proton rest frame)

DEEP INELASTIC SCATTERING

(Hi)

$$
\mathrm{Q}^{2}=25030 \mathrm{GeV}^{2} ; \quad \mathrm{y}=0: 56 ; \quad \mathrm{x}=0.50
$$

DEEP INELASTIC SCATTERING

Write DIS X-section to zeroth order in α_{s} ('quark parton model'):

$$
\begin{gathered}
\frac{d^{2} \sigma^{e m}}{d x d Q^{2}} \simeq \frac{4 \pi \alpha^{2}}{x Q^{4}}\left(\frac{1+(1-y)^{2}}{2} F_{2}^{e m}+\mathcal{O}\left(\alpha_{\mathrm{s}}\right)\right) \\
\propto F_{2}^{e m} \quad[\text { structure function }] \\
F_{2}=x\left(e_{u}^{2} u(x)+e_{d}^{2} d(x)\right)=x\left(\frac{4}{9} u(x)+\frac{1}{9} d(x)\right) \\
{[u(x), d(x): \text { parton distribution functions (PDF)] }}
\end{gathered}
$$

NB:

- use perturbative language for interactions of up and down quarks
- but distributions themselves have a non-perturbative origin.

PARTON DISTRIBUTION AND DGLAP

> Write up-quark distribution in proton as

$$
u\left(x, \mu_{F}^{2}\right)
$$

$>\mu_{\mathrm{F}}$ is the factorisation scale - a bit like the renormalisation scale $\left(\mu_{\mathrm{R}}\right)$ for the running coupling.
> As you vary the factorisation scale, the parton distributions evolve with a renormalisation-group type equation

Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations

DGLAP EQUATION

take derivative wrt factorization scale μ^{2}

$$
\frac{d q\left(x, \mu^{2}\right)}{d \ln \mu^{2}}=\frac{\alpha_{\mathrm{s}}}{2 \pi} \int_{x}^{1} d z p_{q q}(z) \frac{q\left(x / z, \mu^{2}\right)}{z}-\frac{\alpha_{\mathrm{s}}}{2 \pi} \int_{0}^{1} d z p_{q q}(z) q\left(x, \mu^{2}\right)
$$

$p_{q q}$ is real $q \leftarrow q$ splitting kernel: $p_{q q}(z)=C_{F} \frac{1+z^{2}}{1-z}$

DGLAP EQUATION

Awkward to write real and virtual parts separately. Use more compact notation:

$$
\frac{d q\left(x, \mu^{2}\right)}{d \ln \mu^{2}}=\frac{\alpha_{\mathrm{s}}}{2 \pi} \underbrace{\int_{x}^{1} d z P_{q q}(z) \frac{q\left(x / z, \mu^{2}\right)}{z}}_{P_{q q} \otimes q}, \quad P_{q q}=C_{F}\left(\frac{1+z^{2}}{1-z}\right)_{+}
$$

This involves the plus prescription:

$$
\begin{aligned}
& \int_{0}^{1} d z[g(z)]_{+} f(z)=\int_{0}^{1} d z g(z) f(z)-\int_{0}^{1} d z g(z) f(1) \\
& \quad z=1 \text { divergences of } g(z) \text { cancelled if } f(z) \text { sufficiently smooth at } z=1
\end{aligned}
$$

DGLAP EQUATION

Proton contains both quarks and gluons - so DGLAP is a matrix in flavour space:

$$
\frac{d}{d \ln Q^{2}}\binom{q}{g}=\left(\begin{array}{ll}
P_{q \leftarrow q} & P_{q \leftarrow g} \\
P_{g \leftarrow q} & P_{g \leftarrow g}
\end{array}\right) \otimes\binom{q}{g}
$$

[In general, matrix spanning all flavors, anti-flavors, $P_{q q^{\prime}}=0$ (LO), $\left.P_{\bar{q} g}=P_{q g}\right]$
Splitting functions are:

$$
\begin{aligned}
& P_{q g}(z)=T_{R}\left[z^{2}+(1-z)^{2}\right], \quad P_{g q}(z)=C_{F}\left[\frac{1+(1-z)^{2}}{z}\right], \\
& P_{g g}(z)=2 C_{A}\left[\frac{z}{(1-z)_{+}}+\frac{1-z}{z}+z(1-z)\right]+\delta(1-z) \frac{\left(11 C_{A}-4 n_{f} T_{R}\right)}{6} .
\end{aligned}
$$

Have various symmetries / significant properties, e.g.

- $P_{q g}, P_{g g}:$ symmetric $z \leftrightarrow 1-z$
(except virtuals)
- $P_{q q}, P_{g g}:$ diverge for $z \rightarrow 1$ soft gluon emission
- $P_{g g}, P_{g q}:$ diverge for $z \rightarrow 0$

2015 EPS HEP prize to Bjorken, Altarelli, Dokshitzer, Lipatov \& Parisi

NLO DGLAP

NLO:

$$
\begin{aligned}
& P_{\mathrm{ps}}^{(1)}(x)=4 C_{F} n_{f}\left(\frac{20}{9} \frac{1}{x}-2+6 x-4 \mathrm{H}_{0}+x^{2}\left[\frac{8}{3} \mathrm{H}_{0}-\frac{56}{9}\right]+(1+x)\left[5 \mathrm{H}_{0}-2 \mathrm{H}_{0,0}\right]\right) \\
& P_{\mathrm{qg}}^{(1)}(x)=4 C_{A} n_{f}\left(\frac{20}{9} \frac{1}{x}-2+25 x-2 p_{\mathrm{qg}}(-x) \mathrm{H}_{-1,0}-2 p_{\mathrm{qg}}(x) \mathrm{H}_{1,1}+x^{2}\left[\frac{44}{3} \mathrm{H}_{0}-\frac{218}{9}\right]\right. \\
& \left.+4(1-x)\left[\mathrm{H}_{0,0}-2 \mathrm{H}_{0}+x \mathrm{H}_{1}\right]-4 \zeta_{2} x-6 \mathrm{H}_{0,0}+9 \mathrm{H}_{0}\right)+4 C_{F} n_{f}\left(2 p _ { \mathrm { qg } } (x) \left[\mathrm{H}_{1,0}+\mathrm{H}_{1,1}+\mathrm{H}_{2}\right.\right. \\
& \left.\left.-\zeta_{2}\right]+4 x^{2}\left[\mathrm{H}_{0}+\mathrm{H}_{0,0}+\frac{5}{2}\right]+2(1-x)\left[\mathrm{H}_{0}+\mathrm{H}_{0,0}-2 x \mathrm{H}_{1}+\frac{29}{4}\right]-\frac{15}{2}-\mathrm{H}_{0,0}-\frac{1}{2} \mathrm{H}_{0}\right) \\
& P_{\mathrm{gq}}^{(1)}(x)=4 C_{A} C_{F}\left(\frac{1}{x}+2 p_{\mathrm{gq}}(x)\left[\mathrm{H}_{1,0}+\mathrm{H}_{1,1}+\mathrm{H}_{2}-\frac{11}{6} \mathrm{H}_{1}\right]-x^{2}\left[\frac{8}{3} \mathrm{H}_{0}-\frac{44}{9}\right]+4 \zeta_{2}-2\right. \\
& \left.-7 \mathrm{H}_{0}+2 \mathrm{H}_{0,0}-2 \mathrm{H}_{1} x+(1+x)\left[2 \mathrm{H}_{0,0}-5 \mathrm{H}_{0}+\frac{37}{9}\right]-2 p_{\mathrm{gq}}(-x) \mathrm{H}_{-1,0}\right)-4 C_{F} n_{f}\left(\frac{2}{3} x\right. \\
& \left.-p_{\mathrm{gq}}(x)\left[\frac{2}{3} \mathrm{H}_{1}-\frac{10}{9}\right]\right)+4 C_{F}{ }^{2}\left(p_{\mathrm{gq}}(x)\left[3 \mathrm{H}_{1}-2 \mathrm{H}_{1,1}\right]+(1+x)\left[\mathrm{H}_{0,0}-\frac{7}{2}+\frac{7}{2} \mathrm{H}_{0}\right]-3 \mathrm{H}_{0,0}\right. \\
& \left.+1-\frac{3}{2} \mathrm{H}_{0}+2 \mathrm{H}_{1} x\right) \\
& P_{\mathrm{gg}}^{(1)}(x)=4 C_{A} n_{f}\left(1-x-\frac{10}{9} p_{\mathrm{gg}}(x)-\frac{13}{9}\left(\frac{1}{x}-x^{2}\right)-\frac{2}{3}(1+x) \mathrm{H}_{0}-\frac{2}{3} \delta(1-x)\right)+4 C_{A}^{2}(27 \\
& +(1+x)\left[\frac{11}{3} \mathrm{H}_{0}+8 \mathrm{H}_{0,0}-\frac{27}{2}\right]+2 p_{\operatorname{gg}}(-x)\left[\mathrm{H}_{0,0}-2 \mathrm{H}_{-1,0}-\zeta_{2}\right]-\frac{67}{9}\left(\frac{1}{x}-x^{2}\right)-12 \mathrm{H}_{0} \\
& \left.-\frac{44}{3} x^{2} \mathrm{H}_{0}+2 p_{\mathrm{gg}}(x)\left[\frac{67}{18}-\zeta_{2}+\mathrm{H}_{0,0}+2 \mathrm{H}_{1,0}+2 \mathrm{H}_{2}\right]+\delta(1-x)\left[\frac{8}{3}+3 \zeta_{3}\right]\right)+4 C_{F} n_{f}\left(2 \mathrm{H}_{0}\right. \\
& \left.+\frac{2}{3} \frac{1}{x}+\frac{10}{3} x^{2}-12+(1+x)\left[4-5 \mathrm{H}_{0}-2 \mathrm{H}_{0,0}\right]-\frac{1}{2} \delta(1-x)\right) \text {. }
\end{aligned}
$$

$$
\begin{array}{r}
P_{a b}=\frac{\alpha_{\mathrm{s}}}{2 \pi} P^{(0)}+ \\
\frac{\alpha_{\mathrm{s}}^{2}}{16 \pi^{2}} P^{(1)}
\end{array}
$$

Curci, Furmanski \& Petronzio '80

NNLO DGLAP

NNLO, $P_{a b}^{(2)}$: Moch, Vermaseren \& Vogt ' 04

DGLAP evolution (initial quarks only)

Take example evolution starting with just quarks:

$$
\begin{aligned}
& \partial_{\ln Q^{2}} q=P_{q \leftarrow q} \otimes q \\
& \partial_{\ln Q^{2}} g=P_{g \leftarrow q} \otimes q
\end{aligned}
$$

- quark is depleted at large x
- gluon grows at small x

DGLAP evolution (initial quarks only)

Take example evolution starting with just quarks:

$$
\begin{aligned}
& \partial_{\ln Q^{2}} q=P_{q \leftarrow q} \otimes q \\
& \partial_{\ln Q^{2}} g=P_{g \leftarrow q} \otimes q
\end{aligned}
$$

- quark is depleted at large x
- gluon grows at small x

DGLAP evolution (initial quarks only)

Take example evolution starting with just quarks:

$$
\begin{aligned}
& \partial_{\ln Q^{2}} q=P_{q \leftarrow q} \otimes q \\
& \partial_{\ln Q^{2}} g=P_{g \leftarrow q} \otimes q
\end{aligned}
$$

- quark is depleted at large x
- gluon grows at small x

DGLAP evolution (initial quarks only)

Take example evolution starting with just quarks:

$$
\begin{aligned}
& \partial_{\ln Q^{2}} q=P_{q \leftarrow q} \otimes q \\
& \partial_{\ln Q^{2}} g=P_{g \leftarrow q} \otimes q
\end{aligned}
$$

- quark is depleted at large x
- gluon grows at small x

DGLAP evolution (initial quarks only)

Take example evolution starting with just quarks:

$$
\begin{aligned}
& \partial_{\ln Q^{2}} q=P_{q \leftarrow q} \otimes q \\
& \partial_{\ln Q^{2}} g=P_{g \leftarrow q} \otimes q
\end{aligned}
$$

- quark is depleted at large x
- gluon grows at small x

DGLAP evolution (initial quarks only)

Take example evolution starting with just quarks:

$$
\begin{aligned}
& \partial_{\ln Q^{2}} q=P_{q \leftarrow q} \otimes q \\
& \partial_{\ln Q^{2}} g=P_{g \leftarrow q} \otimes q
\end{aligned}
$$

- quark is depleted at large x
- gluon grows at small x

DGLAP evolution (initial quarks only)

Take example evolution starting with just quarks:

$$
\begin{aligned}
& \partial_{\ln Q^{2}} q=P_{q \leftarrow q} \otimes q \\
& \partial_{\ln Q^{2}} g=P_{g \leftarrow q} \otimes q
\end{aligned}
$$

- quark is depleted at large x
- gluon grows at small x

DGLAP evolution (initial gluons only)

2nd example: start with just gluons.

$$
\begin{aligned}
& \partial_{\ln Q^{2}} q=P_{q \leftarrow g} \otimes g \\
& \partial_{\ln Q^{2}} g=P_{g \leftarrow g} \otimes g
\end{aligned}
$$

- gluon is depleted at large x.
- high- x gluon feeds growth of small x gluon \& quark.

DGLAP evolution (initial gluons only)

2nd example: start with just gluons.

$$
\begin{aligned}
& \partial_{\ln Q^{2}} q=P_{q \leftarrow g} \otimes g \\
& \partial_{\ln Q^{2}} g=P_{g \leftarrow g} \otimes g
\end{aligned}
$$

- gluon is depleted at large x.
- high- x gluon feeds growth of small x gluon \& quark.

DGLAP evolution (initial gluons only)

2nd example: start with just gluons.

$$
\begin{aligned}
& \partial_{\ln Q^{2}} q=P_{q \leftarrow g} \otimes g \\
& \partial_{\ln Q^{2}} g=P_{g \leftarrow g} \otimes g
\end{aligned}
$$

- gluon is depleted at large x.
- high- x gluon feeds growth of small x gluon \& quark.

DGLAP evolution (initial gluons only)

2nd example: start with just gluons.

$$
\begin{aligned}
& \partial_{\ln Q^{2}} q=P_{q \leftarrow g} \otimes g \\
& \partial_{\ln Q^{2}} g=P_{g \leftarrow g} \otimes g
\end{aligned}
$$

- gluon is depleted at large x.
- high- x gluon feeds growth of small x gluon \& quark.

DGLAP evolution (initial gluons only)

2nd example: start with just gluons.

$$
\begin{aligned}
& \partial_{\ln Q^{2}} q=P_{q \leftarrow g} \otimes g \\
& \partial_{\ln Q^{2}} g=P_{g \leftarrow g} \otimes g
\end{aligned}
$$

- gluon is depleted at large x.
- high- x gluon feeds growth of small x gluon \& quark.

DGLAP evolution (initial gluons only)

2nd example: start with just gluons.

$$
\begin{aligned}
& \partial_{\ln Q^{2}} q=P_{q \leftarrow g} \otimes g \\
& \partial_{\ln Q^{2}} g=P_{g \leftarrow g} \otimes g
\end{aligned}
$$

- gluon is depleted at large x.
- high- x gluon feeds growth of small x gluon \& quark.

DGLAP evolution (initial gluons only)

2nd example: start with just gluons.

$$
\begin{aligned}
& \partial_{\ln Q^{2}} q=P_{q \leftarrow g} \otimes g \\
& \partial_{\ln Q^{2}} g=P_{g \leftarrow g} \otimes g
\end{aligned}
$$

- gluon is depleted at large x.
- high- x gluon feeds growth of small x gluon \& quark.

DGLAP evolution:
> partons lose momentum and shift towards smaller X
> high-x partons drive growth of low-x gluon

determining the gluon

which is critical at hadron colliders (e.g. Higgs dominantly produced by gluon-gluon fusion), but not directly probed in Deep-Inelastic-Scattering

Consider DIS data - $F_{2}\left(x, Q^{2}\right)$ - in a world where the proton just had quarks

Fit quark distributions to $F_{2}\left(x, Q_{0}^{2}\right)$, at initial scale $Q_{0}^{2}=12 \mathrm{GeV}^{2}$. NB: Q_{0} often chosen lower
Assume there is no gluon at Q_{0}^{2} :

$$
g\left(x, Q_{0}^{2}\right)=0
$$

Use DGLAP equations to evolve to higher Q^{2}; compare with data.

Consider DIS data - $F_{2}\left(x, Q^{2}\right)$ - in a world where the proton just had quarks

Fit quark distributions to $F_{2}\left(x, Q_{0}^{2}\right)$, at initial scale $Q_{0}^{2}=12 \mathrm{GeV}^{2}$. NB: Q_{0} often chosen lower
Assume there is no gluon at Q_{0}^{2} :

$$
g\left(x, Q_{0}^{2}\right)=0
$$

Use DGLAP equations to evolve to higher Q^{2}; compare with data.

Consider DIS data - $F_{2}\left(x, Q^{2}\right)$ - in a world where the proton just had quarks

Fit quark distributions to $F_{2}\left(x, Q_{0}^{2}\right)$, at initial scale $Q_{0}^{2}=12 \mathrm{GeV}^{2}$. NB: Q_{0} often chosen lower
Assume there is no gluon at Q_{0}^{2} :

$$
g\left(x, Q_{0}^{2}\right)=0
$$

Use DGLAP equations to evolve to higher Q^{2}; compare with data.

Consider DIS data - $F_{2}\left(x, Q^{2}\right)$ - in a world where the proton just had quarks

Fit quark distributions to $F_{2}\left(x, Q_{0}^{2}\right)$, at initial scale $Q_{0}^{2}=12 \mathrm{GeV}^{2}$. NB: Q_{0} often chosen lower
Assume there is no gluon at Q_{0}^{2} :

$$
g\left(x, Q_{0}^{2}\right)=0
$$

Use DGLAP equations to evolve to higher Q^{2}; compare with data.

Consider DIS data - $F_{2}\left(x, Q^{2}\right)$ - in a world where the proton just had quarks

Fit quark distributions to $F_{2}\left(x, Q_{0}^{2}\right)$, at initial scale $Q_{0}^{2}=12 \mathrm{GeV}^{2}$. NB: Q_{0} often chosen lower
Assume there is no gluon at Q_{0}^{2} :

$$
g\left(x, Q_{0}^{2}\right)=0
$$

Use DGLAP equations to evolve to higher Q^{2}; compare with data.

Consider DIS data - $F_{2}\left(x, Q^{2}\right)$ - in a world where the proton just had quarks

Fit quark distributions to $F_{2}\left(x, Q_{0}^{2}\right)$, at initial scale $Q_{0}^{2}=12 \mathrm{GeV}^{2}$. $N B: Q_{0}$ often chosen lower
Assume there is no gluon at Q_{0}^{2} :

$$
g\left(x, Q_{0}^{2}\right)=0
$$

Use DGLAP equations to evolve to higher Q^{2}; compare with data.

Consider DIS data - $F_{2}\left(x, Q^{2}\right)$ - in a world where the proton just had quarks

Fit quark distributions to $F_{2}\left(x, Q_{0}^{2}\right)$, at initial scale $Q_{0}^{2}=12 \mathrm{GeV}^{2}$. $N B: Q_{0}$ often chosen lower
Assume there is no gluon at Q_{0}^{2} :

$$
g\left(x, Q_{0}^{2}\right)=0
$$

Use DGLAP equations to evolve to higher Q^{2}; compare with data.

COMPLETE FAILURE

to reproduce data evolution

Consider DIS data $-F_{2}\left(x, Q^{2}\right)-$ with specially tuned gluon

If gluon $\neq 0$, splitting

$$
g \rightarrow q \bar{q}
$$

generates extra quarks at large Q2 " ${ }^{\prime \prime}$ faster rise of F2

Global PDF fits (CT, MMHT, NNPDF, etc.) choose gluon distribution that leads to the correct Q2 evolution.

Consider DIS data $-F_{2}\left(x, Q^{2}\right)$ - with specially tuned gluon

If gluon $\neq 0$, splitting

$$
g \rightarrow q \bar{q}
$$

generates extra quarks at large Q2 " ${ }^{\prime \prime}$ faster rise of F2

Global PDF fits (CT, MMHT, NNPDF, etc.) choose gluon distribution that leads to the correct Q2 evolution.

Consider DIS data $-F_{2}\left(x, Q^{2}\right)$ - with specially tuned gluon

If gluon $\neq 0$, splitting

$$
g \rightarrow q \bar{q}
$$

generates extra quarks at large Q2 " ${ }^{\prime \prime}$ faster rise of F2

Global PDF fits (CT, MMHT, NNPDF, etc.) choose gluon distribution that leads to the correct Q2 evolution.

Consider DIS data $-F_{2}\left(x, Q^{2}\right)$ - with specially tuned gluon

If gluon $\neq 0$, splitting

$$
g \rightarrow q \bar{q}
$$

generates extra quarks at large Q2 " ${ }^{4}$ faster rise of F2

Global PDF fits (CT, MMHT, NNPDF, etc.) choose gluon distribution that leads to the correct Q2 evolution.

Consider DIS data $-F_{2}\left(x, Q^{2}\right)-$ with specially tuned gluon

If gluon $\neq 0$, splitting

$$
g \rightarrow q \bar{q}
$$

generates extra quarks at large Q2 "

Global PDF fits (CT, MMHT, NNPDF, etc.) choose gluon distribution that leads to the correct Q2 evolution.

Consider DIS data $-F_{2}\left(x, Q^{2}\right)$ - with specially tuned gluon

If gluon $\neq 0$, splitting

$$
g \rightarrow q \bar{q}
$$

generates extra quarks at large Q2 "

Global PDF fits (CT, MMHT, NNPDF, etc.) choose gluon distribution that leads to the correct Q2 evolution.

SUCCESS

Resulting gluon distribution, compared to quarks

Resulting gluon distribution is HUGE!

Carries 47% of proton's
momentum
(at scale of 100 GeV)
Crucial in order to satisfy momentum sum rule.

Large value of gluon has big impact on phenomenology

Consider DIS data $-F_{2}\left(x, Q^{2}\right)$ - with specially tuned gluon

If gluon $\neq 0$, splitting

$$
g \rightarrow q \bar{q}
$$

generates extra quarks at large Q2 " ${ }^{\prime \prime}$ faster rise of F2

Global PDF fits (CT, MMHT, NNPDF, etc.) choose gluon distribution that leads to the correct Q2 evolution.

Consider DIS data $-F_{2}\left(x, Q^{2}\right)$ - with specially tuned gluon

If gluon $\neq 0$, splitting

$$
g \rightarrow q \bar{q}
$$

generates extra quarks at large Q2 " ${ }^{\prime \prime}$ faster rise of F2

Global PDF fits (CT, MMHT, NNPDF, etc.) choose gluon distribution that leads to the correct Q2 evolution.

Consider DIS data $-F_{2}\left(x, Q^{2}\right)$ - with specially tuned gluon

If gluon $\neq 0$, splitting

$$
g \rightarrow q \bar{q}
$$

generates extra quarks at large Q2 " ${ }^{4}$ faster rise of F2

Global PDF fits (CT, MMHT, NNPDF, etc.) choose gluon distribution that leads to the correct Q2 evolution.

Consider DIS data $-F_{2}\left(x, Q^{2}\right)-$ with specially tuned gluon

If gluon $\neq 0$, splitting

$$
g \rightarrow q \bar{q}
$$

generates extra quarks at large Q2 " ${ }^{\prime \prime}$ faster rise of F2

Global PDF fits (CT, MMHT, NNPDF, etc.) choose gluon distribution that leads to the correct Q2 evolution.

Consider DIS data $-F_{2}\left(x, Q^{2}\right)$ - with specially tuned gluon

If gluon $\neq 0$, splitting

$$
g \rightarrow q \bar{q}
$$

generates extra quarks at large Q2 " ${ }^{\prime \prime}$ faster rise of F2

Global PDF fits (CT, MMHT, NNPDF, etc.) choose gluon distribution that leads to the correct Q2 evolution.

SUCCESS

TODAY'S PDF FITS

H1 and ZEUS

TODAY'S PDF FITS

Lepton charge asym. v. CT14 @ D0 \& CMS

THREE GLOBAL PDF FITS: CT14, MMHT2014, NNPDF3O

FINAL REMARKS ON PDFS

$>$ In range $10^{-3}<\mathrm{x}<0.1$, core PDFs (up, down, gluon) known to $\sim 1-2 \%$ accuracy
> For many LHC applications, you can use PDF4LHC15 set, which merges CT14, MMHT2014, NNPDF30

- Situation is not full consensus: ABM group claims substantially different gluon distribution

For visualisations of PDFs and related quantities, a good place to start is http://apfel.mi.infn.it/ (ApfelWeb)

EXTRA SLIDES

PDFS: What Route for Progress?

- Current status is $2-3 \%$ for core "precision" region
- Path to 1% is not clear - e.g. Z_{T} 's strongest constraint is on qg lumi, which is already best known (why?)
> It'll be interesting to revisit the question once ttbar, incl. jets, Z_{T}, etc. have all been incorporated at NNLO
- Can expts. get better lumi determination? 0.5% ?

PDF theory uncertanties

Theory Uncertainties

quark-gluon luminosity: INNLO-NLOI/(2NNLO)

