QCD (for Colliders) Lecture 2

Gavin Salam, CERN

Fourth Asia-Europe-Pacific School of High-Energy Physics September 2018, Qhy Nhon, Vietnam

Yesterday:
> QCD Lagrangian

- Running coupling
> Soft gluon emission \& its divergences

Today

- Real-virtual cancellation
- Factorisation
- Parton Distribution Functions (PDFs)
> Total cross sections \& their perturbative series

GLUON EMISSION FROM A QUARK

Consider an emission with
$>$ energy $E<\sqrt{ }$ s ("soft")
$>$ angle $\boldsymbol{\theta} \ll 1$
("collinear" wrt quark)
Examine correction to some hard process with cross section σ_{0}

$$
d \sigma \simeq \sigma_{0} \times \frac{2 \alpha_{s} C_{F}}{\pi} \frac{d E}{E} \frac{d \theta}{\theta}
$$

This has a divergence when $\mathrm{E} \rightarrow 0$ or $\theta \rightarrow 0$ [in some sense because of quark propagator going on-shell]

How come we get finite cross sections?

Divergences are present in both real and virtual diagrams.

If you are "inclusive", i.e. your measurement doesn't care whether a soft/collinear gluon has been emitted then the real and virtual divergences cancel.

Beyond inclusive cross sections: infrared and collinear (IRC) safety

For an observable's distribution to be calculable in [fixed-order] perturbation theory, the observable should be infra-red safe, i.e. insensitive to the emission of soft or collinear gluons. In particular if \vec{p}_{i} is any momentum occurring in its definition, it must be invariant under the branching

$$
\vec{p}_{i} \rightarrow \vec{p}_{j}+\vec{p}_{k}
$$

whenever \vec{p}_{j} and \vec{p}_{k} are parallel [collinear] or one of them is small [infrared].
[QCD and Collider Physics (Ellis, Stirling \& Webber)]

Examples
Multiplicity of gluons is not IRC safe
[modified by soft/collinear splitting]
Energy of hardest particle is not IRC safe
[modified by collinear splitting]
Energy flow into a cone is IRC safe
[soft emissions don't change energy flow, collinear emissions don't change its direction]

A proton-proton collision: INITIAL STATE

proton

proton

A proton-proton collision: FINAL STATE

A proton-proton collision: FILLING IN THE PICTURE

A proton-proton collision: SIMPLIFYING IN THE PICTURE

THE MASTER EQUATION — FACTORISATION

$$
\begin{aligned}
\sigma\left(h_{1} h_{2} \rightarrow \text { ZH }+X\right) & =\sum_{n=0}^{\infty} \alpha_{s}^{n}\left(\mu_{R}^{2}\right) \sum_{i, j} \int d x_{1} d x_{2} f_{i / h_{1}}\left(x_{1}, \mu_{F}^{2}\right) f_{j / h_{2}}\left(x_{2}, \mu_{F}^{2}\right) \\
& \times \hat{\sigma}_{i j \rightarrow Z H+X}^{(n)}\left(x_{1} x_{2} s, \mu_{R}^{2}, \mu_{F}^{2}\right)+\mathcal{O}\left(\frac{\Lambda^{2}}{M_{W}^{4}}\right),
\end{aligned}
$$

THE MASTER EQUATION — FACTORISATION

$$
\sigma\left(h_{1} h_{2} \rightarrow \mathrm{ZH}+X\right)=\sum_{n=0}^{\infty} \alpha_{s}^{n}\left(\mu_{R}^{2}\right) \sum_{i, j} \int d x_{1} d x_{2} f_{i / h_{1}}\left(x_{1}, \mu_{F}^{2}\right) f_{j / h_{2}}\left(x_{2}, \mu_{F}^{2}\right)
$$

THE MASTER EQUATION — FACTORISATION

$$
\sigma\left(h_{1} h_{2} \rightarrow Z H+X\right)=\sum_{n=0}^{\infty} \alpha_{s}^{n}\left(\mu_{R}^{2}\right) \sum_{i, j} \int d x_{1} d x_{2} f_{i / h_{1}}\left(x_{1}, \mu_{F}^{2}\right) f_{j / h_{2}}\left(x_{2}, \mu_{F}^{2}\right)
$$

THE MASTER EQUATION — FACTORISATION

> Perturbative sum over powers of the strong coupling: typically we know first $2-4$ orders

$$
\sigma\left(h_{1} h_{2} \rightarrow Z H+X\right)=\sum_{n=0}^{\infty} \alpha_{s}^{n}\left(\mu_{R}^{2}\right) \sum_{i, j} \int d x_{1} d x_{2} f_{i / h_{1}}\left(x_{1}, \mu_{F}^{2}\right) f_{j / h_{2}}\left(x_{2}, \mu_{F}^{2}\right)
$$

$$
\times \hat{\sigma}_{i j \rightarrow Z H+X}^{(n)}\left(x_{1} x_{2} s, \mu_{R}^{2}, \mu_{F}^{2}\right)+\mathcal{O}\left(\frac{\Lambda^{2}}{M_{W}^{4}}\right)
$$

THE MASTER EQUATION — FACTORISATION

$$
\begin{aligned}
\sigma\left(h_{1} h_{2} \rightarrow \mathrm{ZH}+X\right) & =\sum_{n=0}^{\infty} \alpha_{s}^{n}\left(\mu_{R}^{2}\right) \sum_{i, j} \int d x_{1} d x_{2} f_{i / h_{1}}\left(x_{1}, \mu_{F}^{2}\right) f_{j / h_{2}}\left(x_{2}, \mu_{F}^{2}\right) \\
& \times \hat{\sigma}_{i j \rightarrow Z H+X}^{(n)}\left(x_{1} x_{2} s, \mu_{R}^{2}, \mu_{F}^{2}\right)+\mathcal{O}\left(\frac{\Lambda^{2}}{M_{W}^{4}}\right)
\end{aligned}
$$

THE MASTER EQUATION — FACTORISATION

$$
\sigma\left(h_{1} h_{2} \rightarrow \mathrm{ZH}+\mathrm{X}\right)=\sum_{n=0}^{\infty} \alpha_{s}^{n}\left(\mu_{R}^{2}\right) \sum_{i, j} \int d x_{1} d x_{2} f_{i / h_{1}}\left(x_{1}, \mu_{F}^{2}\right) f_{j / h_{2}}\left(x_{2}, \mu_{F}^{2}\right)
$$

PARTON DISTRIBUTION FUNCTIONS (PDFs)

DEEP INELASTIC SCATTERING

Hadron-hadron is complex because of two incoming partons - so start with simpler Deep Inelastic Scattering (DIS).

Kinematic relations:

$$
\begin{array}{r}
x=\frac{Q^{2}}{2 p \cdot q} ; \quad y=\frac{p . q}{p \cdot k} ; \quad Q^{2}=x y s \\
\sqrt{s}=\text { c.o.m. energy }
\end{array}
$$

- $Q^{2}=$ photon virtuality \leftrightarrow transverse resolution at which it probes proton structure
- $x=$ longitudinal momentum fraction of struck parton in proton
- $y=$ momentum fraction lost by electron (in proton rest frame)

DEEP INELASTIC SCATTERING

H.

$$
Q^{2}=25030 \mathrm{GeV}^{2} ; \mathrm{y}=0.56 ; \quad \mathbf{x}=0.50
$$

DEEP INELASTIC SCATTERING

Write DIS X-section to zeroth order in α_{s} ('quark parton model'):

$$
\begin{gathered}
\frac{d^{2} \sigma^{e m}}{d x d Q^{2}} \simeq \frac{4 \pi \alpha^{2}}{x Q^{4}}\left(\frac{1+(1-y)^{2}}{2} F_{2}^{e m}+\mathcal{O}\left(\alpha_{\mathrm{s}}\right)\right) \\
\propto F_{2}^{e m} \quad[\text { structure function }] \\
F_{2}=x\left(e_{u}^{2} u(x)+e_{d}^{2} d(x)\right)=x\left(\frac{4}{9} u(x)+\frac{1}{9} d(x)\right) \\
{[u(x), d(x): \text { parton distribution functions (PDF)] }}
\end{gathered}
$$

NB:

- use perturbative language for interactions of up and down quarks
- but distributions themselves have a non-perturbative origin.

Higher order corrections from initial state splittings?

For initial state splitting, hard process occurs after splitting, and momentum entering hard process is modified: $p \rightarrow z p$.

$$
\sigma_{g+h}(p) \simeq \sigma_{h}(z p) \frac{\alpha_{\mathrm{s}} C_{F}}{\pi} \frac{d z}{1-z} \frac{d k_{t}^{2}}{k_{t}^{2}}
$$

For virtual terms, momentum entering hard process is unchanged

$$
\sigma_{V+h}(p) \simeq-\sigma_{h}(p) \frac{\alpha_{\mathrm{s}} C_{F}}{\pi} \frac{d z}{1-z} \frac{d k_{t}^{2}}{k_{t}^{2}}
$$

Total cross section gets contribution with two different hard X-sections

$$
\sigma_{g+h}+\sigma_{V+h} \simeq \frac{\alpha_{\mathrm{s}} C_{F}}{\pi} \int \frac{d k_{t}^{2}}{k_{t}^{2}} \frac{d z}{1-z}\left[\sigma_{h}(z p)-\sigma_{h}(p)\right]
$$

NB: We assume σ_{h} involves momentum transfers $\sim Q \gg k_{t}$, so ignore extra transverse momentum in σ_{h}

Higher order corrections from initial state splittings?

$$
\sigma_{g+h}+\sigma_{V+h} \simeq \frac{\alpha_{s} C_{F}}{\pi} \underbrace{\int_{0}^{Q^{2}} \frac{d k_{t}^{2}}{k_{t}^{2}}}_{\text {infinite }} \underbrace{\int \frac{d z}{1-z}\left[\sigma_{h}(z p)-\sigma_{h}(p)\right]}_{\text {finite }}
$$

- In soft limit $(z \rightarrow 1), \sigma_{h}(z p)-\sigma_{h}(p) \rightarrow 0$: soft divergence cancels.
- For $1-z \neq 0, \sigma_{h}(z p)-\sigma_{h}(p) \neq 0$, so z integral is non-zero but finite.

BUT: k_{t} integral is just a factor, and is infinite
This is a collinear $\left(k_{t} \rightarrow 0\right)$ divergence. Cross section with incoming parton is not collinear safe!

This always happens with coloured initial-state particles So how do we do QCD calculations in such cases?

Parton distributions and DGLAP

> Write up-quark distribution in proton as

$$
u\left(x, \mu_{F}^{2}\right)
$$

> Perturbative collinear (IR) divergence absorbed into the parton distribution (NB divergence not physical: non-perturbative physics provides a physical cutoff)
$>\mu_{\mathrm{F}}$ is the factorisation scale - a bit like the renormalisation scale $\left(\mu_{R}\right)$ for the running coupling.
> As you vary the factorisation scale, the parton distributions evolve with a renormalisation-group type equation

DGLAP EQUATION

take derivative wrt factorization scale μ^{2}

$$
\frac{d q\left(x, \mu^{2}\right)}{d \ln \mu^{2}}=\frac{\alpha_{\mathrm{s}}}{2 \pi} \int_{x}^{1} d z p_{q q}(z) \frac{q\left(x / z, \mu^{2}\right)}{z}-\frac{\alpha_{\mathrm{s}}}{2 \pi} \int_{0}^{1} d z p_{q q}(z) q\left(x, \mu^{2}\right)
$$

$p_{q q}$ is real $q \leftarrow q$ splitting kernel: $p_{q q}(z)=C_{F} \frac{1+z^{2}}{1-z}$

DGLAP EQUATION

Awkward to write real and virtual parts separately. Use more compact notation:

$$
\frac{d q\left(x, \mu^{2}\right)}{d \ln \mu^{2}}=\frac{\alpha_{\mathrm{s}}}{2 \pi} \underbrace{\int_{x}^{1} d z P_{q q}(z) \frac{q\left(x / z, \mu^{2}\right)}{z}}_{P_{q q} \otimes q}, \quad P_{q q}=C_{F}\left(\frac{1+z^{2}}{1-z}\right)_{+}
$$

This involves the plus prescription:

$$
\begin{aligned}
& \int_{0}^{1} d z[g(z)]_{+} f(z)=\int_{0}^{1} d z g(z) f(z)-\int_{0}^{1} d z g(z) f(1) \\
& z=1 \text { divergences of } g(z) \text { cancelled if } f(z) \text { sufficiently smooth at } z=1
\end{aligned}
$$

DGLAP EQUATION

Proton contains both quarks and gluons - so DGLAP is a matrix in flavour space:

$$
\frac{d}{d \ln Q^{2}}\binom{q}{g}=\left(\begin{array}{ll}
P_{q \leftarrow q} & P_{q \leftarrow g} \\
P_{g \leftarrow q} & P_{g \leftarrow g}
\end{array}\right) \otimes\binom{q}{g}
$$

[In general, matrix spanning all flavors, anti-flavors, $\left.P_{q q^{\prime}}=0(\mathrm{LO}), P_{\bar{q} g}=P_{q g}\right]$
Splitting functions are:

$$
\begin{aligned}
& P_{q g}(z)=T_{R}\left[z^{2}+(1-z)^{2}\right], \quad P_{g q}(z)=C_{F}\left[\frac{1+(1-z)^{2}}{z}\right], \\
& P_{g g}(z)=2 C_{A}\left[\frac{z}{(1-z)_{+}}+\frac{1-z}{z}+z(1-z)\right]+\delta(1-z) \frac{\left(11 C_{A}-4 n_{f} T_{R}\right)}{6} .
\end{aligned}
$$

Have various symmetries / significant properties, e.g.

- $P_{q g}, P_{g g}:$ symmetric $z \leftrightarrow 1-z$
(except virtuals)
- $P_{q q}, P_{g g}:$ diverge for $z \rightarrow 1$ soft gluon emission
- $P_{g g}, P_{g q}:$ diverge for $z \rightarrow 0$

2015 EPS HEP prize to Bjorken, Altarelli, Dokshitzer, Lipatov \& Parisi

NLO DGLAP

NLO:

$$
\begin{aligned}
& P_{\mathrm{ps}}^{(1)}(x)=4 C_{F} n_{f}\left(\frac{20}{9} \frac{1}{x}-2+6 x-4 \mathrm{H}_{0}+x^{2}\left[\frac{8}{3} \mathrm{H}_{0}-\frac{56}{9}\right]+(1+x)\left[5 \mathrm{H}_{0}-2 \mathrm{H}_{0,0}\right]\right) \\
& P_{\mathrm{qg}}^{(1)}(x)=4 C_{A} n_{f}\left(\frac{20}{9} \frac{1}{x}-2+25 x-2 p_{\mathrm{qg}}(-x) \mathrm{H}_{-1,0}-2 p_{\mathrm{qg}}(x) \mathrm{H}_{1,1}+x^{2}\left[\frac{44}{3} \mathrm{H}_{0}-\frac{218}{9}\right]\right. \\
& \left.+4(1-x)\left[\mathrm{H}_{0,0}-2 \mathrm{H}_{0}+x \mathrm{H}_{1}\right]-4 \zeta_{2} x-6 \mathrm{H}_{0,0}+9 \mathrm{H}_{0}\right)+4 C_{F} n_{f}\left(2 p _ { \mathrm { qg } } (x) \left[\mathrm{H}_{1,0}+\mathrm{H}_{1,1}+\mathrm{H}_{2}\right.\right. \\
& \left.\left.-\zeta_{2}\right]+4 x^{2}\left[\mathrm{H}_{0}+\mathrm{H}_{0,0}+\frac{5}{2}\right]+2(1-x)\left[\mathrm{H}_{0}+\mathrm{H}_{0,0}-2 x \mathrm{H}_{1}+\frac{29}{4}\right]-\frac{15}{2}-\mathrm{H}_{0,0}-\frac{1}{2} \mathrm{H}_{0}\right) \\
& P_{\mathrm{gq}}^{(1)}(x)=4 C_{A} C_{F}\left(\frac{1}{x}+2 p_{\mathrm{gq}}(x)\left[\mathrm{H}_{1,0}+\mathrm{H}_{1,1}+\mathrm{H}_{2}-\frac{11}{6} \mathrm{H}_{1}\right]-x^{2}\left[\frac{8}{3} \mathrm{H}_{0}-\frac{44}{9}\right]+4 \zeta_{2}-2\right. \\
& \left.-7 \mathrm{H}_{0}+2 \mathrm{H}_{0,0}-2 \mathrm{H}_{1} x+(1+x)\left[2 \mathrm{H}_{0,0}-5 \mathrm{H}_{0}+\frac{37}{9}\right]-2 p_{\mathrm{gq}}(-x) \mathrm{H}_{-1,0}\right)-4 C_{F} n_{f}\left(\frac{2}{3} x\right. \\
& \left.-p_{\mathrm{gq}}(x)\left[\frac{2}{3} \mathrm{H}_{1}-\frac{10}{9}\right]\right)+4 C_{F}{ }^{2}\left(p_{\mathrm{gq}}(x)\left[3 \mathrm{H}_{1}-2 \mathrm{H}_{1,1}\right]+(1+x)\left[\mathrm{H}_{0,0}-\frac{7}{2}+\frac{7}{2} \mathrm{H}_{0}\right]-3 \mathrm{H}_{0,0}\right. \\
& \left.+1-\frac{3}{2} \mathrm{H}_{0}+2 \mathrm{H}_{1} x\right) \\
& P_{\mathrm{gg}}^{(1)}(x)=4 C_{A} n_{f}\left(1-x-\frac{10}{9} p_{\mathrm{gg}}(x)-\frac{13}{9}\left(\frac{1}{x}-x^{2}\right)-\frac{2}{3}(1+x) \mathrm{H}_{0}-\frac{2}{3} \delta(1-x)\right)+4 C_{A}^{2}(27 \\
& +(1+x)\left[\frac{11}{3} \mathrm{H}_{0}+8 \mathrm{H}_{0,0}-\frac{27}{2}\right]+2 p_{\operatorname{gg}}(-x)\left[\mathrm{H}_{0,0}-2 \mathrm{H}_{-1,0}-\zeta_{2}\right]-\frac{67}{9}\left(\frac{1}{x}-x^{2}\right)-12 \mathrm{H}_{0} \\
& \left.-\frac{44}{3} x^{2} \mathrm{H}_{0}+2 p_{\mathrm{gg}}(x)\left[\frac{67}{18}-\zeta_{2}+\mathrm{H}_{0,0}+2 \mathrm{H}_{1,0}+2 \mathrm{H}_{2}\right]+\delta(1-x)\left[\frac{8}{3}+3 \zeta_{3}\right]\right)+4 C_{F} n_{f}\left(2 \mathrm{H}_{0}\right. \\
& \left.+\frac{2}{3} \frac{1}{x}+\frac{10}{3} x^{2}-12+(1+x)\left[4-5 \mathrm{H}_{0}-2 \mathrm{H}_{0,0}\right]-\frac{1}{2} \delta(1-x)\right) \text {. }
\end{aligned}
$$

$$
\begin{array}{r}
P_{a b}=\frac{\alpha_{\mathrm{s}}}{2 \pi} P^{(0)}+ \\
\frac{\alpha_{\mathrm{s}}^{2}}{16 \pi^{2}} P^{(1)}
\end{array}
$$

Curci, Furmanski \& Petronzio '80

NNLO DGLAP

$$
\begin{aligned}
& P_{a b}=\frac{\alpha_{s}}{2 \pi} P_{a b}^{(0)} \\
& +\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} P_{a b}^{(1)} \\
& +\left(\frac{\alpha_{s}}{2 \pi}\right)^{3} P_{a b}^{(2)}
\end{aligned}
$$

NNLO, $P_{a b}^{(2)}$: Moch, Vermaseren \& Vogt '04

N3LO DGLAP [in progress]

Four-Loop Non-Singlet Splitting Functions in the Planar Limit and Beyond

$$
\begin{aligned}
& P_{a b}=\frac{\alpha_{s}}{2 \pi} P_{a b}^{(0)} \\
& +\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} P_{a b}^{(1)} \\
& +\left(\frac{\alpha_{s}}{2 \pi}\right)^{3} P_{a b}^{(2)} \\
& +\left(\frac{\alpha_{s}}{2 \pi}\right)^{4} P_{a b}^{(3)}
\end{aligned}
$$

S. Moch ${ }^{a}$, B. Ruijl ${ }^{b, c}$, T. Ueda ${ }^{b}$, J.A.M. Vermaseren ${ }^{b}$ and A. Vogt ${ }^{d}$
arXiv:1707.08315v2 [hep-ph] 5 Oct 2017

DGLAP evolution (initial quarks only)

Take example evolution starting with just quarks:

$$
\begin{aligned}
& \partial_{\ln Q^{2}} q=P_{q \leftarrow q} \otimes q \\
& \partial_{\ln Q^{2}} g=P_{g \leftarrow q} \otimes q
\end{aligned}
$$

- quark is depleted at large x
- gluon grows at small x

DGLAP evolution (initial quarks only)

Take example evolution starting with just quarks:

$$
\begin{aligned}
& \partial_{\ln Q^{2}} q=P_{q \leftarrow q} \otimes q \\
& \partial_{\ln Q^{2}} g=P_{g \leftarrow q} \otimes q
\end{aligned}
$$

- quark is depleted at large x
- gluon grows at small x

DGLAP evolution (initial quarks only)

Take example evolution starting with just quarks:

$$
\begin{aligned}
& \partial_{\ln Q^{2}} q=P_{q \leftarrow q} \otimes q \\
& \partial_{\ln Q^{2}} g=P_{g \leftarrow q} \otimes q
\end{aligned}
$$

- quark is depleted at large x
- gluon grows at small x

DGLAP evolution (initial quarks only)

Take example evolution starting with just quarks:

$$
\begin{aligned}
& \partial_{\ln Q^{2}} q=P_{q \leftarrow q} \otimes q \\
& \partial_{\ln Q^{2}} g=P_{g \leftarrow q} \otimes q
\end{aligned}
$$

- quark is depleted at large x
- gluon grows at small x

DGLAP evolution (initial quarks only)

Take example evolution starting with just quarks:

$$
\begin{aligned}
& \partial_{\ln Q^{2}} q=P_{q \leftarrow q} \otimes q \\
& \partial_{\ln Q^{2}} g=P_{g \leftarrow q} \otimes q
\end{aligned}
$$

- quark is depleted at large x
- gluon grows at small x

DGLAP evolution (initial quarks only)

Take example evolution starting with just quarks:

$$
\begin{aligned}
& \partial_{\ln Q^{2}} q=P_{q \leftarrow q} \otimes q \\
& \partial_{\ln Q^{2}} g=P_{g \leftarrow q} \otimes q
\end{aligned}
$$

- quark is depleted at large x
- gluon grows at small x

DGLAP evolution (initial quarks only)

Take example evolution starting with just quarks:

$$
\begin{aligned}
& \partial_{\ln Q^{2}} q=P_{q \leftarrow q} \otimes q \\
& \partial_{\ln Q^{2}} g=P_{g \leftarrow q} \otimes q
\end{aligned}
$$

- quark is depleted at large x
- gluon grows at small x

DGLAP evolution (initial gluons only)

2nd example: start with just gluons.

$$
\begin{aligned}
& \partial_{\ln Q^{2}} q=P_{q \leftarrow g} \otimes g \\
& \partial_{\ln Q^{2}} g=P_{g \leftarrow g} \otimes g
\end{aligned}
$$

- gluon is depleted at large x.
- high- x gluon feeds growth of small x gluon \& quark.

DGLAP evolution (initial gluons only)

2nd example: start with just gluons.

$$
\begin{aligned}
& \partial_{\ln Q^{2}} q=P_{q \leftarrow g} \otimes g \\
& \partial_{\ln Q^{2}} g=P_{g \leftarrow g} \otimes g
\end{aligned}
$$

- gluon is depleted at large x.
- high- x gluon feeds growth of small x gluon \& quark.

DGLAP evolution (initial gluons only)

2nd example: start with just gluons.

$$
\begin{aligned}
& \partial_{\ln Q^{2}} q=P_{q \leftarrow g} \otimes g \\
& \partial_{\ln Q^{2}} g=P_{g \leftarrow g} \otimes g
\end{aligned}
$$

- gluon is depleted at large x.
- high- x gluon feeds growth of small x gluon \& quark.

DGLAP evolution (initial gluons only)

2nd example: start with just gluons.

$$
\begin{aligned}
& \partial_{\ln Q^{2}} q=P_{q \leftarrow g} \otimes g \\
& \partial_{\ln Q^{2}} g=P_{g \leftarrow g} \otimes g
\end{aligned}
$$

- gluon is depleted at large x.
- high- x gluon feeds growth of small x gluon \& quark.

DGLAP evolution (initial gluons only)

2nd example: start with just gluons.

$$
\begin{aligned}
& \partial_{\ln Q^{2}} q=P_{q \leftarrow g} \otimes g \\
& \partial_{\ln Q^{2}} g=P_{g \leftarrow g} \otimes g
\end{aligned}
$$

- gluon is depleted at large x.
- high- x gluon feeds growth of small x gluon \& quark.

DGLAP evolution (initial gluons only)

2nd example: start with just gluons.

$$
\begin{aligned}
& \partial_{\ln Q^{2}} q=P_{q \leftarrow g} \otimes g \\
& \partial_{\ln Q^{2}} g=P_{g \leftarrow g} \otimes g
\end{aligned}
$$

- gluon is depleted at large x.
- high- x gluon feeds growth of small x gluon \& quark.

DGLAP evolution (initial gluons only)

2nd example: start with just gluons.

$$
\begin{aligned}
& \partial_{\ln Q^{2}} q=P_{q \leftarrow g} \otimes g \\
& \partial_{\ln Q^{2}} g=P_{g \leftarrow g} \otimes g
\end{aligned}
$$

- gluon is depleted at large x.
- high- x gluon feeds growth of small x gluon \& quark.

DGLAP evolution:
> partons lose momentum and shift towards smaller x
> high-x partons drive growth of low-x gluon

determining the gluon

which is critical at hadron colliders (e.g. ttbar, Higgs dominantly produced by gluon-gluon fusion), but not directly probed in Deep-Inelastic-Scattering

Consider DIS data - $F_{2}\left(x, Q^{2}\right)$ - in a world where the proton just had quarks

Fit quark distributions to $F_{2}\left(x, Q_{0}^{2}\right)$, at initial scale $Q_{0}^{2}=12 \mathrm{GeV}^{2}$. NB: Q_{0} often chosen lower
Assume there is no gluon at Q_{0}^{2} :

$$
g\left(x, Q_{0}^{2}\right)=0
$$

Use DGLAP equations to evolve to higher Q^{2}; compare with data.

Consider DIS data - $F_{2}\left(x, Q^{2}\right)$ - in a world where the proton just had quarks

Fit quark distributions to $F_{2}\left(x, Q_{0}^{2}\right)$, at initial scale $Q_{0}^{2}=12 \mathrm{GeV}^{2}$. NB: Q_{0} often chosen lower
Assume there is no gluon at Q_{0}^{2} :

$$
g\left(x, Q_{0}^{2}\right)=0
$$

Use DGLAP equations to evolve to higher Q^{2}; compare with data.

Consider DIS data - $F_{2}\left(x, Q^{2}\right)$ - in a world where the proton just had quarks

Fit quark distributions to $F_{2}\left(x, Q_{0}^{2}\right)$, at initial scale $Q_{0}^{2}=12 \mathrm{GeV}^{2}$. NB: Q_{0} often chosen lower
Assume there is no gluon at Q_{0}^{2} :

$$
g\left(x, Q_{0}^{2}\right)=0
$$

Use DGLAP equations to evolve to higher Q^{2}; compare with data.

Consider DIS data - $F_{2}\left(x, Q^{2}\right)$ - in a world where the proton just had quarks

Fit quark distributions to $F_{2}\left(x, Q_{0}^{2}\right)$, at initial scale $Q_{0}^{2}=12 \mathrm{GeV}^{2}$. NB: Q_{0} often chosen lower
Assume there is no gluon at Q_{0}^{2} :

$$
g\left(x, Q_{0}^{2}\right)=0
$$

Use DGLAP equations to evolve to higher Q^{2}; compare with data.

Consider DIS data - $F_{2}\left(x, Q^{2}\right)$ - in a world where the proton just had quarks

Fit quark distributions to $F_{2}\left(x, Q_{0}^{2}\right)$, at initial scale $Q_{0}^{2}=12 \mathrm{GeV}^{2}$. NB: Q_{0} often chosen lower
Assume there is no gluon at Q_{0}^{2} :

$$
g\left(x, Q_{0}^{2}\right)=0
$$

Use DGLAP equations to evolve to higher Q^{2}; compare with data.

Consider DIS data - $F_{2}\left(x, Q^{2}\right)$ - in a world where the proton just had quarks

Fit quark distributions to $F_{2}\left(x, Q_{0}^{2}\right)$, at initial scale $Q_{0}^{2}=12 \mathrm{GeV}^{2}$. $N B: Q_{0}$ often chosen lower
Assume there is no gluon at Q_{0}^{2} :

$$
g\left(x, Q_{0}^{2}\right)=0
$$

Use DGLAP equations to evolve to higher Q^{2}; compare with data.

Consider DIS data - $F_{2}\left(x, Q^{2}\right)$ - in a world where the proton just had quarks

Fit quark distributions to $F_{2}\left(x, Q_{0}^{2}\right)$, at initial scale $Q_{0}^{2}=12 \mathrm{GeV}^{2}$.

NB: Q_{0} often chosen lower
Assume there is no gluon at Q_{0}^{2} :

$$
g\left(x, Q_{0}^{2}\right)=0
$$

Use DGLAP equations to evolve to higher Q^{2}; compare with data.

COMPLETE FAILURE

to reproduce data evolution

Consider DIS data $-F_{2}\left(x, Q^{2}\right)$ - with specially tuned gluon

If gluon $\neq 0$, splitting

$$
g \rightarrow q \bar{q}
$$

generates extra quarks at large Q2 "

Global PDF fits (CT, MMHT, NNPDF, etc.) choose gluon distribution that leads to the correct Q2 evolution.

Consider DIS data $-F_{2}\left(x, Q^{2}\right)$ - with specially tuned gluon

If gluon $\neq 0$, splitting

$$
g \rightarrow q \bar{q}
$$

generates extra quarks at large Q2 " ${ }^{\prime \prime}$ faster rise of F2

Global PDF fits (CT, MMHT, NNPDF, etc.) choose gluon distribution that leads to the correct Q2 evolution.

Consider DIS data $-F_{2}\left(x, Q^{2}\right)$ - with specially tuned gluon

If gluon $\neq 0$, splitting

$$
g \rightarrow q \bar{q}
$$

generates extra quarks at large Q2 " ${ }^{\prime \prime}$ faster rise of F2

Global PDF fits (CT, MMHT, NNPDF, etc.) choose gluon distribution that leads to the correct Q2 evolution.

Consider DIS data $-F_{2}\left(x, Q^{2}\right)$ - with specially tuned gluon

If gluon $\neq 0$, splitting

$$
g \rightarrow q \bar{q}
$$

generates extra quarks at large Q2 " ${ }^{\prime \prime}$ faster rise of F2

Global PDF fits (CT, MMHT, NNPDF, etc.) choose gluon distribution that leads to the correct Q2 evolution.

Consider DIS data $-F_{2}\left(x, Q^{2}\right)$ - with specially tuned gluon

If gluon $\neq 0$, splitting

$$
g \rightarrow q \bar{q}
$$

generates extra quarks at large Q2 "

Global PDF fits (CT, MMHT, NNPDF, etc.) choose gluon distribution that leads to the correct Q2 evolution.

Consider DIS data $-F_{2}\left(x, Q^{2}\right)$ - with specially tuned gluon

If gluon $\neq 0$, splitting

$$
g \rightarrow q \bar{q}
$$

generates extra quarks at large Q2 " ${ }^{\prime \prime}$ faster rise of F2

Global PDF fits (CT, MMHT, NNPDF, etc.) choose gluon distribution that leads to the correct Q2 evolution.

SUCCESS

Resulting gluon distribution, compared to quarks

Resulting gluon distribution is HUGE!

Carries 47% of proton's
momentum
(at scale of 100 GeV)
Crucial in order to satisfy momentum sum rule.

Large value of gluon has big impact on phenomenology

TODAY'S PDF FITS

NNPDF3. 1 dataset

H1 and ZEUS

THREE GLOBAL PDF FITS: CT14, MMHT2014, NNPDF30/31

TODAY'S PDF FITS

Lepton charge asym. v. CT14 @ D0 \& CMS

TODAY'S PDF FITS

Lepton charge asym. v. CT14

ATLAS W-v. NNPDF31

TODAY'S PDF FITS

FINAL REMARKS ON PDFS

> In range $10^{-3}<x<0.1$, core PDFs (up, down, gluon) known to \sim few \% accuracy
> For many LHC applications, you can use PDF4LHC15 set, which merges CT14, MMHT2014, NNPDF30
> Situation is not full consensus: e.g. ABMP group claims substantially different gluon distribution

For visualisations of PDFs and related quantities, a good place to start is
http://apfel.mi.infn.it/ (ApfelWeb)

SO FAR

> We discussed the "Master" formula

$$
\begin{aligned}
\sigma\left(h_{1} h_{2} \rightarrow W+X\right) & =\sum_{n=0}^{\infty} \alpha_{s}^{n}\left(\mu_{R}^{2}\right) \sum_{i, j} \int d x_{1} d x_{2} f_{i / h_{1}}\left(x_{1}, \mu_{F}^{2}\right) f_{j / h_{2}}\left(x_{2}, \mu_{F}^{2}\right) \\
& \times \hat{\sigma}_{i j \rightarrow W+X}^{(n)}\left(x_{1} x_{2} s, \mu_{R}^{2}, \mu_{F}^{2}\right)+\mathcal{O}\left(\frac{\Lambda^{2}}{M_{W}^{4}}\right),
\end{aligned}
$$

> and its main inputs
> the strong coupling a_{s}

- Parton Distribution Functions (PDFs)
> Next: we discuss the actual scattering cross section

SO FAR

- We discussed the "Master" formula

$$
\begin{aligned}
\sigma\left(h_{1} h_{2} \rightarrow W+X\right) & =\sum_{n=0}^{\infty} \alpha_{s}^{n}\left(\mu_{R}^{2}\right) \sum_{i, j} \int d x_{1} d x_{2} f_{i / h_{1}}\left(x_{1}, \mu_{F}^{2}\right) f_{j / h_{2}}\left(x_{2}, \mu_{F}^{2}\right) \\
& \times \hat{\sigma}_{i j \rightarrow W+X}^{(n)}\left(x_{1} x_{2} s, \mu_{R}^{2}, \mu_{F}^{2}\right)+\mathcal{O}\left(\frac{\Lambda^{2}}{M_{W}^{4}}\right)
\end{aligned}
$$

> and its main inputs
> the strong coupling a_{s}

- Parton Distribution Functions (PDFs)
> Next: we discuss the actual scattering cross section

SO FAR

- We discussed the "Master" formula

$$
\begin{aligned}
\sigma\left(h_{1} h_{2} \rightarrow W+X\right) & =\sum_{n=0}^{\infty} \alpha_{s}^{n}\left(\mu_{R}^{2}\right) \sum_{i, j} \int d x_{1} d x_{2} f_{i / h_{1}}\left(x_{1}, \mu_{F}^{2}\right) f_{j / h_{2}}\left(x_{2}, \mu_{F}^{2}\right) \\
& \times \hat{\sigma}_{i j \rightarrow W+X}^{(n)}\left(x_{1} x_{2} s, \mu_{R}^{2}, \mu_{F}^{2}\right)+\mathcal{O}\left(\frac{\Lambda^{2}}{M_{W}^{4}}\right),
\end{aligned}
$$

> and its main inputs
> the strong coupling a_{s}

- Parton Distribution Functions (PDFs)
> Next: we discuss the actual scattering cross section

SO FAR

- We discussed the "Master" formula

$$
\begin{aligned}
\sigma\left(h_{1} h_{2} \rightarrow W+X\right) & =\sum_{n=0}^{\infty} \alpha_{s}^{n}\left(\mu_{R}^{2}\right) \sum_{i, j} \int d x_{1} d x_{2} f_{i / h_{1}}\left(x_{1}, \mu_{F}^{2}\right) f_{j / h_{2}}\left(x_{2}, \mu_{F}^{2}\right) \\
& \times \hat{\sigma}_{i j \rightarrow W+X}^{(n)}\left(x_{1} x_{2} s, \mu_{R}^{2}, \mu_{F}^{2}\right)+\mathcal{O}\left(\frac{\Lambda^{2}}{M_{W}^{4}}\right),
\end{aligned}
$$

> and its main inputs
$>$ the strong coupling a_{s}

- Parton Distribution Functions (PDFs)

> Next: we discuss the actual scattering cross section

the hard cross section

$\sigma \sim \sigma_{2} \alpha_{s}^{2}+\sigma_{3} \alpha_{s}^{3}+\sigma_{4} \alpha_{s}^{4}+\sigma_{5} \alpha_{s}^{5}+\cdots$
LO NLO NNLO N3LO

INGREDIENTS FOR A CALCULATION (generic $2 \rightarrow 2$ process)

INGREDIENTS FOR A CALCULATION (generic $2 \rightarrow 2$ process)

$$
\begin{aligned}
& \text { Tree } \\
& 2 \rightarrow 3
\end{aligned}
$$

NLO

$$
\begin{aligned}
& \text { 1-loop } \\
& 2 \rightarrow 2
\end{aligned}
$$

INGREDIENTS FOR A CALCULATION (generic $2 \rightarrow 2$ process)

$$
\begin{aligned}
& \operatorname{Tree}_{2 \rightarrow 4}^{\text {Tree }}|\square|^{2} \\
& \text { 1-loop } \\
& 2 \rightarrow 3 \\
& \text { 1-loop } \\
& 2 \rightarrow 2
\end{aligned}
$$

NNLO

EXAMPLE SERIES \#1

$$
\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}=
$$

$$
\left[\alpha_{s} \equiv \alpha_{s}\left(\sqrt{s_{e^{+} e^{-}}}\right)\right]
$$

$$
=R_{0}\left(1+0.32 \alpha_{s}+0.14 \alpha_{s}^{2}-0.47 \alpha_{s}^{3}-0.59316 \alpha_{s}^{4}+\cdots\right)
$$

Baikov et al., 1206.1288 (numbers for γ-exchange only)

This is one of the few quantities calculated to N4LO Good convergence of the series at every order (at least for $\alpha_{s}(M z)=0.118$)

EXAMPLE SERIES \#2

$$
\begin{array}{r}
\sigma(p p \rightarrow H)=(961 \mathrm{pb}) \times\left(\alpha_{s}^{2}+10.4 \alpha_{s}^{3}+38 \alpha_{s}^{4}+48 \alpha_{s}^{5}+\cdots\right) \\
\alpha_{s} \equiv \alpha_{s}\left(M_{H} / 2\right) \\
\sqrt{s_{p p}}=13 \mathrm{TeV} \\
\text { Anastasiou et al., 1602.00695 (ggF, hEFT) }
\end{array}
$$

$\mathrm{pp} \rightarrow \mathrm{H}$ (via gluon fusion) is one of only two hadron-collider processes known at N3LO (the other is $\mathrm{pp} \rightarrow \mathrm{H}$ via weak-boson fusion)

The series does not converge well (explanations for why are only moderately convincing)

SCALE DEPENDENCE

- On previous page, we wrote the series in terms of powers of $\mathrm{a}_{\mathrm{s}}\left(\mathrm{M}_{\mathrm{H}} / 2\right)$
- But we are free to rewrite it in terms of $a_{s}(\mu)$ for any choice of "renormalisation scale" μ.

Higgs cross section

$$
\sigma(p p \rightarrow H)=\sigma_{0} \times \alpha_{s}^{2}(\mu)
$$

SCALE DEPENDENCE

> On previous page, we wrote the series in terms of powers of $\mathrm{a}_{\mathrm{s}}\left(\mathrm{M}_{\mathrm{H}} / 2\right)$

- But we are free to rewrite it in terms of $a_{s}(\mu)$ for any choice of "renormalisation scale" μ.

Higgs cross section

$$
\begin{array}{r}
\sigma(p p \rightarrow H)=\sigma_{0} \times\left(\alpha_{s}^{2}(\mu)\right. \\
\left.+\left(10.4+2 b_{0} \ln \frac{\mu^{2}}{\mu_{0}^{2}}\right) \alpha_{s}^{3}(\mu)\right)
\end{array}
$$

SCALE DEPENDENCE

> On previous page, we wrote the series in terms of powers of $\mathrm{a}_{\mathrm{s}}\left(\mathrm{M}_{\mathrm{H}} / 2\right)$

- But we are free to rewrite it in terms of $a_{s}(\mu)$ for any choice of "renormalisation scale" μ.

Higgs cross section

NNLO

$$
\begin{aligned}
& \sigma(p p \rightarrow H)=\sigma_{0} \times\left(\alpha_{s}^{2}(\mu)\right. \\
& +\left(10.4+2 b_{0} \ln \frac{\mu^{2}}{\mu_{0}^{2}}\right) \alpha_{s}^{3}(\mu) \\
& \left.+c_{4}(\mu) \alpha_{s}^{4}(\mu)\right)
\end{aligned}
$$

SCALE DEPENDENCE

> On previous page, we wrote the series in terms of powers of $\mathrm{a}_{\mathrm{s}}\left(\mathrm{M}_{\mathrm{H}} / 2\right)$
> But we are free to rewrite it in terms of $a_{s}(\mu)$ for any choice of "renormalisation scale" μ.

Higgs cross section

N3LO

$$
\begin{aligned}
& \sigma(p p \rightarrow H)=\sigma_{0} \times\left(\alpha_{s}^{2}(\mu)\right. \\
& +\left(10.4+2 b_{0} \ln \frac{\mu^{2}}{\mu_{0}^{2}}\right) \alpha_{s}^{3}(\mu) \\
& \left.+c_{4}(\mu) \alpha_{s}^{4}(\mu)+c_{5}(\mu) \alpha_{s}^{5}(\mu)\right)
\end{aligned}
$$

SCALE DEPENDENCE

> On previous page, we wrote the series in terms of powers of $\mathrm{a}_{\mathrm{s}}\left(\mathrm{M}_{\mathrm{H}} / 2\right)$
> But we are free to rewrite it in terms of $a_{s}(\mu)$ for any choice of "renormalisation scale" μ.

Higgs cross section

N3LO

$$
\begin{aligned}
& \sigma(p p \rightarrow H)=\sigma_{0} \times\left(\alpha_{s}^{2}(\mu)\right. \\
& +\left(10.4+2 b_{0} \ln \frac{\mu^{2}}{\mu_{0}^{2}}\right) \alpha_{s}^{3}(\mu)
\end{aligned}
$$

scale dependence (an intrinsic uncertainty) gets reduced as you go to higher order

Scale dependence as the "THEORY UNCERTAINTY"

Convention: "theory uncertainty" (i.e. from missing higher orders) is estimated by change of cross section when varying μ in range $1 / 2 \rightarrow 2$ around central value

Scale dependence as the "THEORY UNCERTAINTY"

Convention: "theory uncertainty" (i.e. from missing higher orders) is estimated by change of cross section when varying μ in range $1 / 2 \rightarrow 2$ around central value

WHAT DO WE KNOW?

> LO: almost any process
> NLO: most processes (with MCFM, NLOJet + +, MG5_aMC@NLO, POWHEG, OpenLoops/Blackhat/NJet/Gosam/etc. + Sherpa)
> NNLO: all $2 \rightarrow 1$ and most $2 \rightarrow$ (top ++, DY/HNNLO, FEWZ, MATRIX, MCFM, NNLOJet, etc.)
> N3LO: pp \rightarrow Higgs via gluon fusion and weak-boson fusion both in approximations ($E F T, Q C D_{1} \times Q C D_{2}$)
$>$ NLO EW corrections, i.e. relative $a_{E W}$ rather than a_{s} : most $2 \rightarrow 1,2 \rightarrow 2$ and $2 \rightarrow 3$

EXTRA SLIDES

Higgs cross sections

Figure 178: The SM Higgs boson production cross sections as a function of the LHC centre of mass energy.

how close are scale variations to being 10 uncertainty? Bagnaschi, Cacciari, Guffanti, Jenniches (1409.5036)

Hadronic observables Observable			
$p p \rightarrow H$	2		
$p p \rightarrow b \bar{b} \rightarrow H$	0	4	HIGLU [27, 28]
$p p \rightarrow t \bar{t}$	2	2	bbh@nnlo [29]
$p p \rightarrow Z \rightarrow e^{+} e^{-}$	0	4	top++ [30]
$p p \rightarrow W^{+} \rightarrow e^{+} \bar{\nu}_{e}$	0	2	DYNNLO [31]
$p p \rightarrow W^{-} \rightarrow e^{-} \nu_{e}$	0	2	DYNNLO
$p p \rightarrow Z^{*} \rightarrow Z H$	0	2	DYNNLO
$p p \rightarrow W^{ \pm *} \rightarrow W^{ \pm} H$	0	2	vh@nnlo [32]
$p p \rightarrow b \bar{b}$	2	2	vh@ nnlo
$p p \rightarrow Z+\mathrm{j}$	1	3	MCFM [33, 34]
$p p \rightarrow Z+2 \mathrm{j}$	2	2	MCFM
$p p \rightarrow W^{ \pm}+\mathrm{j}$	1	3	MCFM
$p p \rightarrow W^{ \pm}+2 \mathrm{j}$	2	2	MCFM
$p p \rightarrow Z Z$	0	3	MCFM
$p p \rightarrow W W$	0	1	MCFM

Table 2: List of hadronic observables used in the global survey.

Figure 3.2: Fraction of observables whose known higher order is found to be contained within the uncertainty interval given by renormalisation and factorisation scale variation between $\mu_{r, f}=Q / r$ and $\mu_{r, f}=r Q$ with the constraint $1 / r \leq \mu_{r} / \mu_{f} \leq r$. Only the seven points at the extremes and at the centre of the scale-variation interval are used.

NNLO-evolved PDFs are used with all perturbative orders.

WHAT PRECISION AT NNLO?

For many processes NNLO scale band is $\sim \pm 2 \%$
But only in $3 / 17$ cases is NNLO (central) within NLO scale band...

