

QCD lecture 8: jets

Gavin Salam, Oxford, February 2020 as part of Claire Gwenlan's QCD PhD course

(with extensive use of material by Matteo Cacciari and Gregory Soyez)

Find all papers by ATLAS and CMS 2106 records found

reportnumber:CERN and (collaboration:ATLAS or collaboration:CMS)				•	Search	Easy Search Advanced Searc	
find j "Phys.Rev.Lett.,105*" :: more			🗳 Search o	Search on INSPIRE beta			
Sort by:		Display results:					
latest first	▼ desc. ▼ - or rank by - ▼	25 results 💌 single list 💌					
HEP	2,106 records found 1	- 25 🕨 jump to record: 1					
1. Measur	rement of the cross se	ction for electroweak produc	ction of a Z boso	n, a ph	noton an	d two jets	
CMS Col CMS-SM e-Print: <u>a</u> Re AD Detailed r	laboration (Albert M Sirunya P-18-007, CERN-EP-2020-0 rXiv:2002.09902 [hep-ex] eferences BibTeX LaTeX(U DS Abstract Service record	n (Yerevan Phys. Inst.) <i>et al</i> .). Feb 23 007 <u>PDF</u> <u>S) LaTeX(EU) Harvmac EndNote</u>	3, 2020.				
2. Observ	ation of the associate	d production of a top quark a	and a Z boson in	pp co	ollisions	at $\sqrt{s} = 1$	
ATLAS C CERN-EI	ollaboration (Georges Aad (P-2019-273	Marseille, CPPM) et al.). Feb 18, 202	20. 44 pp.				
e-Print: a	rXiv:2002.07546 [hep-ex]	PDF					
Re CE	eferences <u>BibTeX</u> <u>LaTeX(U</u> ERN Document Server; ADS	S) LaTeX(EU) Harvmac EndNote Abstract Service; Link to ATLAS New	s article				
Detailed r	record						

3. A measurement of the Higgs boson mass in the diphoton decay channel

CMS Collaboration (Albert M Sirunyan (Yerevan Phys. Inst.) *et al.*). Feb 15, 2020. CMS-HIG-19-004, CERN-EP-2020-004 e-Print: <u>arXiv:2002.06398</u> [hep-ex] | <u>PDF</u>

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote CERN Document Server; ADS Abstract Service

Detailed record

Pull out those that refer to one widely used jet-alg 1289 records found

<u>References</u> | <u>BibTeX</u> | <u>LaTeX(US)</u> | <u>LaTeX(EU)</u> | <u>Harvmac</u> | <u>EndNote</u> CERN Document Server; <u>ADS</u> Abstract Service; <u>OSTLgov</u> Server

e jets?

tion

Projection to jets should be resilient to QCD effects

2 clear jets

2 clear jets

3 jets?

2 clear jets

3 jets? or 4 jets?

Make a choice: specify a jet definition

- Which particles do you put together into a same jet?
- How do you recombine their momenta (4-momentum sum is the obvious choice, right?)

"Jet [definitions] are legal contracts between theorists and experimentalists" -- MJ Tannenbaum

They're also a way of organising the information in an event 1000's of particles per events, up to 20.000,000 events per second

ety

Invalidates perturbation theory

hadron-collider kt algorithm

Two parameters, *R* and *p*_{*t*,*min*}

(These are the two parameters in essentially every widely used hadron-collider jet algorithm)

$$d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \qquad d_{iB} = p_{ti}^2, \qquad \Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

Sequential recombination algorithm

- 1. Find smallest of d_{ij} , d_{iB}
- 2. If *ij*, recombine them
- 3. If *iB*, call i a jet and remove from list of particles
- 4. repeat from step 1 until no particles left Only use jets with $p_t > p_{t,min}$

Inclusive kt algorithm S.D. Ellis & Soper, 1993

Catani, Dokshitzer, Seymour & Webber, 1993

hadron-collider kt algorithm

Two parameters, *R* and *p*_{*t*,*min*}

(These are the two parameters in essentially every widely used hadron-collider jet algorithm)

$$d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \qquad d_{iB} = p_{ti}^2, \qquad \Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

Sequential recombination algorithm

- 1. Find smallest of *d_{ij}*, *d_{iB}*
- 2. If *ij*, recombine them

3. If *iB*, call *i* a jet and remove from list of particles

If a particle *i* has no neighbours *j* within a distance $\Delta R_{ij} \leq R$, then $d_{iB} < \text{all } d_{ij}$, and *i* becomes a jet.

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0

kt alg.: Find smallest of

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0 ϕ assumed 0 for all towers

kt alg.: Find smallest of

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0 ϕ assumed 0 for all towers

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0 ϕ assumed 0 for all towers

kt alg.: Find smallest of

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0 ϕ assumed 0 for all towers

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ► If *d_{ij}* recombine
- ▶ if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0 ϕ assumed 0 for all towers

kt alg.: Find smallest of

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0 ϕ assumed 0 for all towers

kt alg.: Find smallest of

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0 ϕ assumed 0 for all towers

kt alg.: Find smallest of

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0 ϕ assumed 0 for all towers

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0 ϕ assumed 0 for all towers

kt alg.: Find smallest of

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0

kt alg.: Find smallest of

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ► If *d_{ij}* recombine
- ► if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0

kt alg.: Find smallest of

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0

kt alg.: Find smallest of

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0

kt alg.: Find smallest of

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0

kt alg.: Find smallest of

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0
k_t in action

kt alg.: Find smallest of

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0 ϕ assumed 0 for all towers

kt alg.: Find smallest of

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ► If *d_{ij}* recombine
- ► if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0 ϕ assumed 0 for all towers

k_t in action

kt alg.: Find smallest of

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ► If *d_{ij}* recombine
- ▶ if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0 ϕ assumed 0 for all towers

kt alg.: Find smallest of

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ► If *d_{ij}* recombine
- ► if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0 ϕ assumed 0 for all towers

k_t in action

kt alg.: Find smallest of

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0

 ϕ assumed 0 for all towers

Cambridge/Aachen: the simplest of hadron-collider algorithms

- Recombine pair of objects closest in ΔR_{ij}
- Repeat until all $\Delta R_{ij} > R$ remaining objects are jets

Dokshitzer, Leder, Moretti, Webber '97 (Cambridge): more involved e+e- form Wobisch & Wengler '99 (Aachen): simple inclusive hadron-collider form One still applies a p_{t,min} cut to the jets, as for inclusive k_t

> C/A privileges the collinear divergence of QCD; it 'ignores' the soft one

anti-kt

Anti-k_t: formulated similarly to inclusive k_t, but with

$$d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_{ti}^2}$$

Cacciari, GPS & Soyez '08 [+Delsart unpublished]

Anti-kt privileges the collinear divergence of QCD and disfavours clustering between pairs of soft particles

Most pairwise clusterings involve at least one hard particle

Clustering grows around hard cores $d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_{ti}^2}$

Gavin Salam (Oxford)

Clustering grows around hard cores

$$_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_{ti}^2}$$

Anti-kt gives circular jets ("cone-like") in a way that's infrared safe

p_t/GeV kt clustering, R=1 -3 y

p_t/GeV kt clustering, R=1 Т -3 y

http://fastjet.fr/

// specify a jet definition double R = 0.4 JetDefinition jet def(antikt algorithm, R);

jet_algorithm can be any one of the four IRC safe pp-collider algorithms, or also a variety of e+e- algorithms, both native and plugins

// specify the input particles
vector<PseudoJet> input_particles = . . .;

http://fastjet.fr/

```
// specify a jet definition
double R = 0.4
JetDefinition jet def(antikt algorithm, R);
```

jet_algorithm can be any one of the four IRC safe pp-collider algorithms, or also a variety of e+e- algorithms, both native and plugins

```
// specify the input particles
vector<PseudoJet> input_particles = . . .;
```

```
// extract the jets
vector<PseudoJet> jets = jet_def(input_particles);
// pt of hardest jet
double pt_hardest = jets[0].pt();
// constituents of hardest jet
vector<PseudoJet> constituents = jets[0].constituents();
```


single parton @ LO: jet radius irrelevant

Small jet radius Large jet radius

perturbative fragmentation: large jet radius better (it captures more)

Small jet radius Ύк, non-perturbative hadronisation

Large jet radius

non-perturbative fragmentation: large jet radius better (it captures more)

Pileup

Pileup

Pileup

Gavin Salam (Oxford)

underlying ev. & pileup "noise": **small jet radius better** (it captures less)

Small jet radius

Large jet radius

multi-hard-parton events: **small jet radius better** (it resolves partons more effectively)

Can we capture all quarks and gluons?

Should we capture all quarks and gluons?

$pp ightarrow t \overline{t}$ simulated with Pythia, displayed with Delphes

Alpgen pp $\rightarrow t\bar{t} \rightarrow 6q$ fraction of pp \rightarrow tt \rightarrow 6q events with all R_{qq} > R 1 require all $p_{tq} > 10 \text{ GeV}$ 0.8 0.6 0.4 0.2 pp, 7 TeV Alpgen partons 0 0.5 1.5 0 R

Alpgen pp $\rightarrow t\bar{t} \rightarrow 6q$ fraction of pp \rightarrow tt \rightarrow 6q events with all R_{qq} > R 1 require all $p_{tq} > 20 \text{ GeV}$ 0.8 0.6 0.4 0.2 pp, 7 TeV Alpgen partons 0 0.5 1.5 0 R

Two things that make jets@LHC special

The large hierarchy of scales

 $\sqrt{s} \gg M_{EW}$

The huge pileup

$n_{pileup} \sim 20 - 40 (\rightarrow 140 \text{ at HL-LHC})$

[These involve two opposite extremes: low p_t and high p_t , which nevertheless talk to each other]

RS KK resonances $\rightarrow t\bar{t}$, from Frederix & Maltoni, 0712.2355

NB: QCD dijet spectrum is $\sim 10^3$ times $t\overline{t}$

Boosted EW scale objects

Normal analyses: two quarks from $X \rightarrow q\bar{q}$ reconstructed as two jets

High- p_t regime: EW object X is boosted, decay is collimated, $q\bar{q}$ both in same jet

Happens for $p_t \gtrsim 2m/R$ $p_t \gtrsim 320$ GeV for $m = m_W$, R = 0.5

Tagging & Grooming

Two widely used terms though there's not a consensus about what they mean

Tagging

- reduces the background, leaves much of signal
- you can tag with underlying hard n-prong structure and based on radiation pattern

Grooming

 improves signal mass resolution (removing pileup, etc.), without significantly changing background & signal event numbers

One core idea for tagging

QCD jet mass distribution has the approximate

$$\frac{dN}{d\ln m} \sim \alpha_{\rm s} \ln \frac{p_t R}{m} \times {\rm Sudakov}$$

Work from '80s and '90s + Almeida et al '08

approximate

$$\frac{dN}{d\ln m} \sim \alpha_{\rm s} \ln \frac{p_t R}{m} \times {\rm Sudakov}$$

Work from '80s and '90s + Almeida et al '08

The logarithm comes from integral over soft divergence of QCD:

approximate

$$rac{dN}{d\ln m}\sim lpha_{
m s}\lnrac{p_tR}{m} imes$$
Sudakov

Work from '80s and '90s + Almeida et al '08

The logarithm comes from integral over soft divergence of QCD:

$$\int_{\frac{m^2}{p_t^2 R^2}}^{\frac{1}{2}} \frac{dz}{z}$$

A hard cut on z reduces QCD background & simplifies its shape

Inside the jet mass

81

Inside the jet mass

Gavin Salam (Oxford)

Jets PhD lecture, Oxford February 2020

Signal + bkgd after cut on z

One core idea for grooming

[see blackboard]

mass

"Grooming"

How do the tools work in practice?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

This is crucial for identifying the kinematic variables of the partons in the jet (e.g. z).

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

C/A identifies two hard blobs with limited soft contamination

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

C/A identifies two hard blobs with limited soft contamination, joins them

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

C/A identifies two hard blobs with limited soft contamination, joins them

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

C/A identifies two hard blobs with limited soft contamination, joins them, and then adds in remaining soft junk

The interesting substructure is buried inside the clustering sequence — it's less contamined by soft junk, but needs to be pulled out with special techniques

Butterworth, Davison, Rubin & GPS '08 Kaplan, Schwartz, Reherman & Tweedie '08 Butterworth, Ellis, Rubin & GPS '09 Ellis, Vermilion & Walsh '09

$pp \rightarrow ZH \rightarrow \nu \bar{\nu} b \bar{b}$, @14 TeV, $m_H = 115 \,\text{GeV}$

SIGNAL

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Zbb BACKGROUND

Cluster event, C/A, R=1.2

Butterworth, Davison, Rubin & GPS '08

arbitrary norm.
SIGNAL

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Zbb BACKGROUND

Fill it in, \rightarrow show jets more clearly

Butterworth, Davison, Rubin & GPS '08

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

 $200 < p_{tZ} < 250 \text{ GeV}$ 0.15 Hardest jet, pt=246.211 m=150.465 p_t [GeV] 0.1 90[.] 80 70 0.05 60 50 0 40 100 120 140 80 160 30 m_H [GeV] 20 Zbb BACKGROUND 10 $200 < p_{tZ} < 250 \text{ GeV}$ 0 6 0.008 5 0.006 0.004 -2 0.002 Consider hardest jet, m = 150 GeV 0 80 100 120 140 160 m_H [GeV] Butterworth, Davison, Rubin & GPS '08

arbitrary norm.

SIGNAL

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

SIGNAL

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

SIGNAL

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

SIGNAL

Herwig 6.510 + Jimmy 4.31 + FastJet 2.3

Boosted Higgs analysis

 $pp \rightarrow ZH \rightarrow vvbb$

Cluster with a large R

Undo the clustering into subjets, until a large mass drop is observed Re-cluster with smaller R, and keep only 3 hardest jets

Seeing W's and tops in a single jet

W's in a single jet

tops in a single jet

- **SoftDrop:** uses the same key ideas of C/A declustering, but with better theoretical properties and more flexibility in phasespace
- Subjettiness / energy-energy-correlations / energy-flow polynomials / Lund Plane structure: all try to measure the energy flow around the core nprong structure of a jet (e.g. 2-prong for Higgs decay)
- Machine learning: jet substructure is one of the most dynamic playgrounds for ML, with large gains to be had in pulling out all info from jets

intrajet energy flow for QCD jets & W jets

using intra-jet energy flow for W tagging

QCD rejection with use energy-flow within the jet (beyond just hard prongs) 5–10x better

(and newer ML can do even better)

Gavin Salam (Oxford)

Jets PhD lecture, Oxford February 2020

- There are myriad approaches to jet finding
- For applications with a single moderately hard scale (e.g. ttbar), anti-kt, R=0.4, with a pt cut of a few tens of GeV is often a good default
- For problems with multiple hard scales (e.g. highly boosted top / W / H / etc.) one needs to look at events on multiple angular scales: jet substructure

EXTRAS

Time to cluster N particles in FastJet

FJContrib packages

Version 1.043 of FastJet Contrib is distributed with the following packages

Package	Version	Release date	Information
ClusteringVetoPlugin	1.0.0	2015-05-04	README NEWS
ConstituentSubtractor	1.4.5	2020-02-23	README NEWS
EnergyCorrelator	1.3.1	20 18-02- 10	README NEWS
FlavorCone	1.0.0	2017-09-07	README NEWS
GenericSubtractor	1.3.1	2016-03-30	README NEWS
JetCleanser	1.0.1	20 14-0 8-16	README NEWS
JetFFMoments	1.0.0	2013-02-07	README NEWS
JetsWithoutJets	1.0.0	2014-02-22	README NEWS
LundPlane	1.0.3	2020-02-23	README NEWS
Nsubjettiness	2.2.5	2018-06-06	README NEWS
QCDAwarePlugin	1.0.0	2015-10-08	README NEWS
RecursiveTools	2.0.0-beta2	2018-05-29	README NEWS
ScJet	1.1.0	2013-06-03	README NEWS
SoftKiller	1.0.0	2014-08-17	README NEWS
SubjetCounting	1.0.1	2013-09-03	README NEWS
ValenciaPlugin	2.0.2	2018-12-22	README NEWS
VariableR	1.2.1	2016-06-01	README NEWS