

QCD lecture 8: jets

Gavin Salam, Oxford, February 2021 as part of Claire Gwenlan's QCD PhD course (http://www-pnp.physics.ox.ac.uk/~gwenlan/teaching/qcd.html)

(with extensive use of material by Matteo Cacciari and Gregory Soyez)

Find all papers by ATLAS and CMS 2252 records found

literature \vee (collaboration:ATLAS or collaboration:CMS) and reportnumber:CERN*									
	Literature	Authors	Jobs	Seminars	Conferences	More			
2,252 re	sults 📑 cite all					Most Recent ∨			
Emula sampl ATLAS e-Print:	Emulating the impact of additional proton-proton interactions in the ATLAS simulation by pre- #1 sampling sets of inelastic Monte Carlo events ATLAS Collaboration • Georges Aad (Marseille, CPPM) et al. (Feb 18, 2021) e-Print: 2102.09495 [hep-ex]								
🖟 pdf	i cite					➔ 0 citations			
Measu final s CMS Co e-Print:	urements of angular states in pp collisions ollaboration • Albert M Sir	distance and n S runyan (Yerevan Ph	nomentum ra	atio distributions (Feb 17, 2021)	in three-jet and Z	+ two-jet #2			
₿ pdf	[cite					➔ 0 citations			

Pull out those that refer to one widely used jet-alg 1403 records found

literature \lor	terature \vee (collaboration:ATLAS or collaboration:CMS) and reportnumber:CERN* and refersto:recid:779080								
	Literature	Authors	Jobs	Seminars	Conferences	More			
1,403 re:	sults [→ cite all					Most Recent \lor			
Measurements of angular distance and momentum ratio distributions in three-jet and Z + two-jet #1 final states in pp collisions CMS Collaboration • Albert M Sirunyan (Yerevan Phys. Inst.) et al. (Feb 17, 2021) e-Print: 2102.08816 [hep-ex]									
占 pdf	i cite					\bigcirc 0 citations			
Search for a heavy vector resonance decaying to a Z boson and a Higgs boson in proton-proton #2 collisions at $\sqrt{s} = 13$ TeV									
e-Print:	2102.08198 [hep-ex]	fullyali (Terevali Pli	ys. liist.) et al.	(Feb 10, 2021)					
占 pdf	[→ cite					➔ 0 citations			

> 60% of papers use jets!

why do quarks and gluons fragment into jets?

Soft & collinear gluon emission

- **soft limit**: low-energy gluon emission: $E_k \ll E_p$
- collinear limit: small-angle emission, $\theta \ll 1$
- amplitude: (leaving out colour factors)

$$\mathcal{M} \propto \mathcal{M}_{hard} \cdot g_s \frac{p \cdot \varepsilon}{p \cdot k} \simeq \mathcal{M}_{hard} \cdot g_s \frac{\sin \theta}{E_k (1 - \cos \theta)} \simeq \mathcal{M}_{hard} \cdot g_s \frac{2}{E_k \theta}$$

• phase space:

$$d\Phi \simeq d\Phi_{hard} \frac{E_k^2 dE_k}{(2\pi)^3 2E_k} d(\cos\theta) \, d\phi \simeq d\Phi_{hard} \cdot E_k dE_k \frac{\theta d\theta}{4\pi^2} \frac{d\phi}{2\pi}$$

Soft & collinear gluon emission

• Full result:

$$|\mathcal{M}|^2 d\Phi \simeq |\mathcal{M}_{hard}|^2 d\Phi_{hard} \cdot \frac{2C_F \alpha_s}{\pi} \frac{dE_k}{E_k} \frac{d\theta}{\theta}$$

 factorises into product of original hard matrix element and an additional soft-gluon emission probability

$$dP_{soft-gluon-emission} = \frac{2C_F \alpha_s}{\pi} \frac{dE_k}{E_k} \frac{d\theta}{\theta}$$

• **diverges** in soft $(E_k \rightarrow 0)$ and collinear $(\theta \rightarrow 0)$ limits

total probability of gluon emission

Total probability of gluon emission:

$$\langle N_{gluon} \rangle \simeq P_{gluon-emission} = \int dP = \frac{2\alpha_s C_F}{\pi} \int_{\Lambda_{QCD}/E_p}^{1} \frac{d\theta}{\theta} \int_{\Lambda_{QCD}/\theta}^{E_p} \frac{dE_k}{E_k} = \frac{\alpha_s C_F}{\pi} \ln^2 \frac{E_p}{\Lambda_{QCD}}$$

Suppose (~wrongly!) that scale of the coupling is given by E_p , i.e. use $\alpha_s(E_p) = (2b_0 \ln E_p / \Lambda_{QCD})^{-1}$, then

$$\langle N_{gluon} \rangle \simeq P_{gluon-emission} \simeq \frac{C_F}{\pi b_0} \ln \frac{E_p}{\Lambda_{QCD}} \sim \frac{1}{\alpha_s} \gg 1$$

i.e. gluon emission is bound to happen and the average number of gluons is large

Gavin Salam (Oxford)

emission of gluon from gluon?

Emission of gluon 1 from gluon 2 also **factorises**, with colour factor $C_A = 3$, instead of $C_F = 4/3$:

$$dP_{gluon-2-from-gluon-1} = \frac{2C_A \alpha_s}{\pi} \frac{dE_2}{E_2} \frac{d\theta_2}{\theta_2}$$

Additional gluon radiation due to emission from gluon 1 is confined within a cone of angle $\theta_2 \leq \theta_1$ (a.k.a. **Angular Ordering**) and will have energy $E_2 \leq E_1$

Total extra number of gluons emitted from gluon 1:

$$\frac{\alpha_s C_A}{\pi} \ln^2 \frac{E_1 \theta_1}{\Lambda_{OCD}}$$

e jets?

Starting from energetic quark, emit a cascade of many low-energy (soft) and smallangle (collinear) gluons

 $\frac{\alpha_{s}C_{F/A}}{\pi}\frac{dE}{E}\frac{d\theta}{\theta}$

giving a collimated jet of partons

e jets?

Starting from energetic quark, emit a cascade of many low-energy (soft) and smallangle (collinear) gluons

 $\alpha_{s}C_{F/A} dE d\theta$ $E \theta$ π

giving a collimated jet of partons

When the partons become separated by a distance $\sim 1/\Lambda_{QCD}$ they **confine** into hadrons.

The hadrons go in similar directions to the partons

core ideas in jet reconstruction

tion

Projection to jets should be resilient to QCD effects

2 clear jets

2 clear jets

3 jets?

2 clear jets

3 jets? or 4 jets?

Make a choice: specify a jet definition

- Which particles do you put together into a same jet?
- How do you recombine their momenta (4-momentum sum is the obvious choice, right?)

"Jet [definitions] are legal contracts between theorists and experimentalists" -- MJ Tannenbaum

They're also a way of organising the information in an event 1000's of particles per events, up to 40.000,000 events per second

ety

Invalidates perturbation theory

hadron collider jet algorithms

Two parameters, *R* (jet opening angle) and *p*_{t,min} (These are the two parameters in essentially every widely used hadron-collider jet algorithm)

Sequential recombination algorithm

 $d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2},$

$$d_{iB} = p_{ti}^2$$
, $\Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$

Define d_{ij} distance between every pair of particles as squared transverse momentum (k_t) of softer of *i* and *j* relative to harder one.

It will be small when particles are collinear ($\Delta R_{ij} \ll 1$) or if one of the particles is soft (p_{ti} or $p_{tj} \ll$ hard scale).

Two parameters, *R* (jet opening angle) and *p*_{t,min} (These are the two parameters in essentially every widely used hadron-collider jet algorithm)

Sequential recombination algorithm

$$d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \qquad d_{iB} = p_{ti}^2, \qquad \Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

1. Find smallest of d_{ij} , d_{iB}

2. If *ij*, recombine particles i and j

- 3. If *iB*, call i a jet and remove from list of particles
- 4. repeat from step 1 until no particles left Only use jets with $p_t > p_{t,min}$

Inclusive kt algorithm

Pt,min S.D. Ellis & Soper, 1993 Catani, Dokshitzer, Seymour & Webber, 1993

Two parameters, *R* (jet opening angle) and *p*_{t,min} (These are the two parameters in essentially every widely used hadron-collider jet algorithm)

Sequential recombination algorithm

$$d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \qquad d_{iB} = p_{ti}^2, \qquad \Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

1. Find smallest of *d_{ij}*, *d_{iB}*

2. If *ij*, recombine particles i and j

- 3. If *iB*, call i a jet and remove from list of particles
- 4. repeat from step 1 until no particles left Only use jets with $p_t > p_{t,min}$

Inclusive kt algorithm S.D. Ellis & Soper, 1993

Catani, Dokshitzer, Seymour & Webber, 1993

Two parameters, *R* (jet opening angle) and *p*_{t,min} (These are the two parameters in essentially every widely used hadron-collider jet algorithm)

Sequential recombination algorithm

$$d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \qquad d_{iB} = p_{ti}^2, \qquad \Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

- 1. Find smallest of d_{ij} , d_{iB}
- 2. If *ij*, recombine particles i and j
- 3. If *iB*, call i a jet and remove from list of particles
- 4. repeat from step 1 until no particles left
 - Only use jets with $p_t > p_{t,min}$

Inclusive kt algorithm

S.D. Ellis & Soper, 1993

Catani, Dokshitzer, Seymour & Webber, 1993

Two parameters, *R* and *p*_{*t*,*min*}

(These are the two parameters in essentially every widely used hadron-collider jet algorithm)

Sequential recombination algorithm

$$d_{ij} = \min(p_{ti}^2, p_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \qquad d_{iB} = p_{ti}^2, \qquad \Delta R_{ij}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$

- 1. Find smallest of d_{ij} , d_{iB}
- 2. If *ij*, recombine particles i and j

3. If *iB*, call *i* a jet and remove from list of particles

If a particle *i* has no neighbours *j* within a distance $\Delta R_{ij} \leq R$, then $d_{iB} < \text{all } d_{ij}$, and *i* becomes a jet.

kt alg.: Find smallest of

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0

 ϕ assumed 0 for all towers

k_t in action

kt alg.: Find smallest of

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0 ϕ assumed 0 for all towers

k_t in action

kt alg.: Find smallest of

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0 ϕ assumed 0 for all towers

kt alg.: Find smallest of

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0 ϕ assumed 0 for all towers

k_t in action

kt alg.: Find smallest of

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0 ϕ assumed 0 for all towers

kt alg.: Find smallest of

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0 ϕ assumed 0 for all towers

k_t in action

kt alg.: Find smallest of

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0 ϕ assumed 0 for all towers

kt alg.: Find smallest of

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0 ϕ assumed 0 for all towers

kt alg.: Find smallest of

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0 ϕ assumed 0 for all towers

kt alg.: Find smallest of

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0 ϕ assumed 0 for all towers

kt alg.: Find smallest of

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0

kt alg.: Find smallest of

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ► If *d_{ij}* recombine
- ► if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0

kt alg.: Find smallest of

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0

kt alg.: Find smallest of

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0

kt alg.: Find smallest of

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0

kt alg.: Find smallest of

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0

kt alg.: Find smallest of

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0

kt alg.: Find smallest of

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ► If *d_{ij}* recombine
- ► if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0

kt alg.: Find smallest of

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0 ϕ assumed 0 for all towers

kt alg.: Find smallest of

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ► If *d_{ij}* recombine
- ► if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0 ϕ assumed 0 for all towers

kt alg.: Find smallest of

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ► If *d_{ij}* recombine
- ▶ if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0 ϕ assumed 0 for all towers

kt alg.: Find smallest of

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$$

- ► If *d_{ij}* recombine
- ► if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0 ϕ assumed 0 for all towers

kt alg.: Find smallest of

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = k_{ti}^2$

- ► If *d_{ij}* recombine
- if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 1.0

Cambridge/Aachen: the simplest of hadron-collider algorithms

- Recombine pair of objects closest in ΔR_{ij}
- Repeat until all $\Delta R_{ij} > R$ remaining objects are jets

Dokshitzer, Leder, Moretti, Webber '97 (Cambridge): more involved e+e- form Wobisch & Wengler '99 (Aachen): simple inclusive hadron-collider form One still applies a p_{t,min} cut to the jets, as for inclusive k_t

C/A privileges the collinear divergence of QCD; it 'ignores' the soft one

anti-kt

Anti-kt: formulated similarly to inclusive kt, but with

$$d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_{ti}^2}$$

Cacciari, GPS & Soyez '08 [+Delsart unpublished]

Anti-kt privileges the collinear divergence of QCD and disfavours clustering between pairs of soft particles

Most pairwise clusterings involve at least one hard particle

Clustering grows around hard cores $d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_{ti}^2}$

Clustering grows around hard cores $d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_{ti}^2}$

Clustering grows around hard cores $d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_{ti}^2}$

Clustering grows around hard cores $d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_{ti}^2}$

Clustering grows around hard cores $d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_{ti}^2}$

Clustering grows around hard cores $d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_{ti}^2}$

Clustering grows around hard cores $d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_{ti}^2}$

Clustering grows around hard cores $d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_{ti}^2}$

Clustering grows around hard cores

$$d_{ij} = \frac{1}{\max(p_{ti}^2, p_{tj}^2)} \frac{\Delta R_{ij}^2}{R^2}, \quad d_{iB} = \frac{1}{p_{ti}^2}$$

Anti-kt gives circular jets ("cone-like") in a way that's infrared safe

Linearity: k_t v. anti- k_t

p_t/GeV kt clustering, R=1 -3 y

p_t/GeV kt clustering, R=1 Т -3 y

http://fastjet.fr/

// specify a jet definition double R = 0.4 JetDefinition jet def(antikt algorithm, R);

jet_algorithm can be any one of the four IRC safe pp-collider algorithms, or also a variety of e+e- algorithms, both native and plugins

// specify the input particles
vector<PseudoJet> input_particles = . . .;

http://fastjet.fr/

```
// specify a jet definition
double R = 0.4
JetDefinition jet def(antikt algorithm, R);
```

jet_algorithm can be any one of the four IRC safe pp-collider algorithms, or also a variety of e+e- algorithms, both native and plugins

```
// specify the input particles
vector<PseudoJet> input_particles = . . .;
```

```
// extract the jets
vector<PseudoJet> jets = jet_def(input_particles);
// pt of hardest jet
double pt_hardest = jets[0].pt();
// constituents of hardest jet
vector<PseudoJet> constituents = jets[0].constituents();
```

hadron collider jet reconstruction parameters

single parton @ LO: jet radius irrelevant

Small jet radius Large jet radius

perturbative fragmentation: large jet radius better (it captures more)

Small jet radius Ύк, non-perturbative hadronisation

Large jet radius

non-perturbative fragmentation: large jet radius better (it captures more)

Pileup

Pileup

Pileup

Gavin Salam (Oxford)

underlying ev. & pileup "noise": **small jet radius better** (it captures less)

Small jet radius

Large jet radius

multi-hard-parton events: **small jet radius better** (it resolves partons more effectively)

Can we capture all quarks and gluons?

Should we capture all quarks and gluons?

$pp ightarrow t \overline{t}$ simulated with Pythia, displayed with Delphes

Alpgen pp $\rightarrow t\bar{t} \rightarrow 6q$ fraction of pp \rightarrow tt \rightarrow 6q events with all R_{qq} > R 1 require all $p_{tq} > 10 \text{ GeV}$ 0.8 0.6 0.4 0.2 pp, 7 TeV Alpgen partons 0 0.5 1.5 0 R

Alpgen pp $\rightarrow t\bar{t} \rightarrow 6q$ fraction of pp \rightarrow tt \rightarrow 6q events with all R_{qq} > R 1 require all $p_{tq} > 20 \text{ GeV}$ 0.8 0.6 0.4 0.2 pp, 7 TeV Alpgen partons 0 0.5 1.5 0 R

- Uses the anti-k_t algorithm
- Uses a jet radius R=0.4
- Uses a transverse momentum threshold that is typically at least 20 GeV (exact value depends on the analysis)

Radius and p_T threshold choices give a good compromise between

- ability to resolve multi-jet physics
- loss of radiation from jets
- additional spurious jets
- contamination from pileup

boosted object reconstruction
Boosted EW scale objects

Normal analyses: two quarks from $X \rightarrow q\bar{q}$ reconstructed as two jets

High- p_t regime: EW object X is boosted, decay is collimated, $q\bar{q}$ both in same jet

Boosted EW scale objects

The two prongs end up in a single jet if

$$\Delta R \simeq \frac{m}{p_t} \frac{1}{\sqrt{z(1-z)}} \sim \frac{2m}{p_t} < R \text{ or } p_t \gtrsim \frac{2m}{R}$$

E.g. W-boson with $p_t > 400 \,\text{GeV}$ ends up collimated in a single jet.

Tagging & Grooming

Two widely used terms though there's not a consensus about what they mean

Tagging

- reduces the background, leaves much of signal
- you can tag with underlying hard n-prong structure and based on radiation pattern

Grooming

 improves signal mass resolution (removing pileup, etc.), without significantly changing background & signal event numbers

One core idea for tagging

QCD jet mass distribution has the approximate

$$\frac{dN}{d\ln m} \sim \alpha_{\rm s} \ln \frac{p_t R}{m} \times {\rm Sudakov}$$

Work from '80s and '90s

approximate

$$\frac{dN}{d\ln m} \sim \alpha_{\rm s} \ln \frac{p_t R}{m} \times {\rm Sudakov}$$

Work from '80s and '90s

The logarithm comes from integral over soft divergence of QCD:

approximate

$$\frac{dN}{d\ln m} \sim \alpha_{\rm s} \ln \frac{p_t R}{m} \times {\rm Sudakov}$$

Work from '80s and '90s

The logarithm comes from integral over soft divergence of QCD:

$$\int_{\frac{m^2}{p_t^2 R^2}}^{\frac{1}{2}} \frac{dz}{z}$$

A hard cut on z reduces QCD background & simplifies its shape

Inside the jet mass

Gavin Salam (Oxford)

Jets PhD lecture, Oxford February 2021

94

Inside the jet mass

Gavin Salam (Oxford)

Signal + bkgd after cut on z

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

C/A identifies two hard blobs with limited soft contamination

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

C/A identifies two hard blobs with limited soft contamination, joins them

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

C/A identifies two hard blobs with limited soft contamination, joins them

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

How well can an algorithm identify the "blobs" of energy inside a jet that come from different partons?

C/A identifies two hard blobs with limited soft contamination, joins them, and then adds in remaining soft junk

The interesting substructure is buried inside the clustering sequence — it's less contamined by soft junk, but needs to be pulled out with special techniques

Butterworth, Davison, Rubin & GPS '08 Kaplan, Schwartz, Reherman & Tweedie '08 Butterworth, Ellis, Rubin & GPS '09 Ellis, Vermilion & Walsh '09

Seeing W's and tops in a single jet

W's in a single jet

tops in a single jet

- **SoftDrop:** uses the same key ideas of C/A declustering, but with better theoretical properties and more flexibility in phasespace
- Subjettiness / energy-energy-correlations / energy-flow polynomials / Lund Plane structure: all try to measure the energy flow around the core nprong structure of a jet (e.g. 2-prong for Higgs decay)
- Machine learning: jet substructure is one of the most dynamic playgrounds for ML, with large gains to be had in pulling out all info from jets

density of intrajet emissions in QCD jets

Dreyer, GPS & Soyez, <u>1807.04758</u>; Lifson, GPS & Soyez, <u>2007.06578</u>

ATLAS measurement of Lund jet plane

ATLAS 2004.03540 NB: vertical axis is $\ln z$ rather than $\ln k_t$

intrajet energy flow for QCD jets & W jets

using full jet/event information for H/W/Z-boson

F. Dreyer & H. Qu, <u>2012.08526</u>

Gavin Salam (Oxford)

Jets PhD lecture, Oxford February 2021

using full jet/event information for H/W/Z-boson

F. Dreyer & H. Qu, <u>2012.08526</u>

Gavin Salam (Oxford)

- Jets are a consequences of the soft & collinear enhancements of gluon emission (even at small coupling), followed by hadronisation
- There are myriad approaches to jet finding
- For applications with a single moderately hard scale (e.g. ttbar), anti-kt, R=0.4, with a pt cut of a few tens of GeV is often a good default
- For problems with multiple hard scales (e.g. highly boosted top / W / H / etc.) one needs to look at events on multiple angular scales: jet substructure
- Towards Jetography, GPS, 0906.1833
- Jet Substructure at the Large Hadron Collider: A Review of Recent Advances in Theory and Machine Learning, *Larkoski, Moult and Nachman*, <u>1709.04464</u>
- Jet Substructure at the Large Hadron Collider: Experimental Review, *L. Asquith et al.*, <u>1803.06991</u>
- Looking inside jets: an introduction to jet substructure and boosted-object phenomenology, Marzani, Soyez and Spannowsky, <u>1901.10342</u>

EXTRAS

Time to cluster N particles in FastJet

FJContrib packages

Version 1.045 of FastJet Contrib is distributed with the following packages

Package	Version	Release date	Information
Centauro	1.0.0	2020-08-04	README NEWS
ClusteringVetoPlugin	1.0.0	2015-05-04	README NEWS
ConstituentSubtractor	1.4.5	2020-02-23	README NEWS
EnergyCorrelator	1.3.1	2018-02-10	README NEWS
FlavorCone	1.0.0	2017-09-07	README NEWS
GenericSubtractor	1.3.1	2016-03-30	README NEWS
JetCleanser	1.0.1	2014-08-16	README NEWS
JetFFMoments	1.0.0	2013-02-07	README NEWS
JetsWithoutJets	1.0.0	2014-02-22	README NEWS
LundPlane	1.0.3	2020-02-23	README NEWS
Nsubjettiness	2.2.5	2018-06-06	README NEWS
QCDAwarePlugin	1.0.0	2015-10-08	README NEWS
RecursiveTools	2.0.0	2020-03-03	README NEWS
ScJet	1.1.0	2013-06-03	README NEWS
SoftKiller	1.0.0	2014-08-17	README NEWS
SubjetCounting	1.0.1	2013-09-03	README NEWS
ValenciaPlugin	2.0.2	2018-12-22	README NEWS
VariableR	1.2.1	2016-06-01	README NEWS

Gavin Salam (Oxford)

more details on soft emission

Quick guide to colour algebra

$$Tr(t^{A}t^{B}) = T_{R}\delta^{AB}, \quad T_{R} = \frac{1}{2}$$

$$\sum_{A} t^{A}_{ab} t^{A}_{bc} = C_{F}\delta_{ac}, \quad C_{F} = \frac{N^{2}_{c} - 1}{2N_{c}} = \frac{4}{3}$$

$$\sum_{C,D} f^{ACD} f^{BCD} = C_{A}\delta^{AB}, \quad C_{A} = N_{c} = 3$$

$$t^{A}_{ab} t^{A}_{cd} = \frac{1}{2}\delta_{bc}\delta_{ad} - \frac{1}{2N_{c}}\delta_{ab}\delta_{cd} \text{ (Fierz)}$$

$$\frac{b}{c} = \frac{1}{2} \int_{C} \frac{-1}{2N_{c}} \int_{C} \frac{-1}{2N_{c}}$$

 $N_c \equiv$ number of colours = 3 for QCD

QCD lecture 1 (p. 24) $e^+e^- \rightarrow q\bar{q}$ Soft-collinear emission

Soft gluon amplitude

Start with
$$\gamma^* \rightarrow q\bar{q}$$
:

$$\mathcal{M}_{q\bar{q}} = -\bar{u}(p_1)ie_q\gamma_\mu v(p_2)$$

Emit a gluon:

$$\mathcal{M}_{q\bar{q}g} = \bar{u}(p_1)ig_s \not\in t^A \frac{i}{\not p_1' + \not k}ie_q \gamma_\mu v(p_2) \qquad \underbrace{-ie_{\gamma_\mu}}_{p_2'} \bigvee \begin{array}{c} p_1 \\ -ie_{\gamma_\mu} & & \\ -ie_{\gamma_\mu} & & \\ -ie_{\gamma_\mu} & & \\ p_2' & & \\ p_1' & &$$

Make gluon *soft* $\equiv k \ll p_{1,2}$; ignore terms suppressed by powers of k:

$$\mathcal{M}_{q\bar{q}g} \simeq \bar{u}(p_1)ie_q\gamma_\mu t^A v(p_2) g_s \left(rac{p_1.\epsilon}{p_1.k} - rac{p_2.\epsilon}{p_2.k}
ight)$$

Soft gluon amplitude

Start with $\gamma^* \rightarrow a\bar{a}$.

$$\bar{u}(p_{1})ig_{s} \notin t^{A} \frac{i}{\not p_{1} + \not k} ie_{q} \gamma_{\mu} v(p_{2}) = -ig_{s} \bar{u}(p_{1}) \notin \frac{\not p_{1} + \not k}{(p_{1} + k)^{2}} e_{q} \gamma_{\mu} t^{A} v(p_{2})$$

$$Use \not A \not B = 2A.B - \not B \not A:$$

$$= -ig_{s} \bar{u}(p_{1})[2\epsilon.(p_{1} + k) - (\not p_{1} + \not k) \not \epsilon] \frac{1}{(p_{1} + k)^{2}} e_{q} \gamma_{\mu} t^{A} v(p_{2})$$

$$Use \ \bar{u}(p_{1}) \not p_{1} = 0 \text{ and } k \ll p_{1} (p_{1}, k \text{ massless})$$

$$\approx -ig_{s} \bar{u}(p_{1})[2\epsilon.p_{1}] \frac{1}{(p_{1} + k)^{2}} e_{q} \gamma_{\mu} t^{A} v(p_{2})$$

$$= -ig_{s} \frac{p_{1}.\epsilon}{p_{1}.k} \underbrace{\bar{u}(p_{1})e_{q} \gamma_{\mu} t^{A} v(p_{2})}_{\text{pure QED spinor structure}}$$

E

QCD lecture 1 (p. 25) $e^+e^- \rightarrow q\bar{q}$ Soft-collinear emission

Squared amplitude

$$|M_{q\bar{q}g}^{2}| \simeq \sum_{A,\text{pol}} \left| \bar{u}(p_{1})ie_{q}\gamma_{\mu}t^{A}v(p_{2}) g_{s} \left(\frac{p_{1}.\epsilon}{p_{1}.k} - \frac{p_{2}.\epsilon}{p_{2}.k} \right) \right|^{2}$$
$$= -|M_{q\bar{q}}^{2}|C_{F}g_{s}^{2} \left(\frac{p_{1}}{p_{1}.k} - \frac{p_{2}}{p_{2}.k} \right)^{2} = |M_{q\bar{q}}^{2}|C_{F}g_{s}^{2} \frac{2p_{1}.p_{2}}{(p_{1}.k)(p_{2}.k)}$$

Include phase space:

$$d\Phi_{q\bar{q}g}|M_{q\bar{q}g}^2| \simeq (d\Phi_{q\bar{q}}|M_{q\bar{q}}^2|) \frac{d^3\vec{k}}{2E(2\pi)^3} C_F g_s^2 \frac{2p_1.p_2}{(p_1.k)(p_2.k)}$$

Note property of factorisation into hard $q\bar{q}$ piece and soft-gluon emission piece, dS.

$$dS = EdE \, d\cos\theta \, \frac{d\phi}{2\pi} \cdot \frac{2\alpha_{s}C_{F}}{\pi} \frac{2p_{1}.p_{2}}{(2p_{1}.k)(2p_{2}.k)} \qquad \begin{array}{l} \theta \equiv \theta_{p_{1}k} \\ \phi = \text{azimuth} \end{array}$$