Phenomenology

Gavin P. Salam
LPTHE, Universities of Paris VI and VII and CNRS

BUSSTEPP

Plymouth, August 2004

Phenomenology
Lecture 4
(QCD jets)

Understanding jets

Previous lecture

- Divergent matrix element for emission of soft and collinear gluons.
- 'Good’ observables are insensitive to this - infrared and collinear safe.
- But complex event structure is still present (and must be understood for many practical uses of QCD).

Understanding jets

Previous lecture

- Divergent matrix element for emission of soft and collinear gluons.
- 'Good’ observables are insensitive to this - infrared and collinear safe.
- But complex event structure is still present (and must be understood for many practical uses of QCD).

This lecture

- Try to see how event structure builds up.
- See when that information is relevant
'Technical' aim of this lecture is to introduce you to methods for calculations at arbitrarily high orders of perturbation theory.
'Technical' aim of this lecture is to introduce you to methods for calculations at arbitrarily high orders of perturbation theory.
- Can't be done exactly
'Technical' aim of this lecture is to introduce you to methods for calculations at arbitrarily high orders of perturbation theory.
- Can't be done exactly
\Leftrightarrow Perturbation theory too cumbersome, e.g. n! growth of number of diags.
- exploit presence of an addition small parameter over and above the
coupling
'Technical' aim of this lecture is to introduce you to methods for calculations at arbitrarily high orders of perturbation theory.
- Can't be done exactly
\Rightarrow Perturbation theory too cumbersome, e.g. n ! growth of number of diags.
\Rightarrow Current 'exact' state of the art is slowly evolving from NLO calculations to NNLO.
- exploit presence of an addition small parameter over and above the coupling
'Technical' aim of this lecture is to introduce you to methods for calculations at arbitrarily high orders of perturbation theory.
- Can't be done exactly
\Rightarrow Perturbation theory too cumbersome, e.g. n ! growth of number of diags.
\Rightarrow Current 'exact' state of the art is slowly evolving from NLO calculations to NNLO.
- exploit presence of an addition small parameter over and above the coupling
\Rightarrow softness of emissions
'Technical' aim of this lecture is to introduce you to methods for calculations at arbitrarily high orders of perturbation theory.
- Can't be done exactly
\Rightarrow Perturbation theory too cumbersome, e.g. n ! growth of number of diags.
\Rightarrow Current 'exact' state of the art is slowly evolving from NLO calculations to NNLO.
- exploit presence of an addition small parameter over and above the coupling
\Leftrightarrow softness of emissions

To understand jet structure need to consider multiple soft gluon emission. Before doing so, useful to examine some simple QED cases.

Soft photon radiated from $e^{+} e^{-}$pair

Divergent denominator: near on-shell propagator
This is the source of the enhancement of soft-photon radiation.

To understand jet structure need to consider multiple soft gluon emission. Before doing so, useful to examine some simple QED cases.

Soft photon radiated from $e^{+} e^{-}$pair

$$
M_{e^{+} e^{-} \gamma}=-M_{e^{+} e^{-}} g_{e}\left(\frac{p_{1} \cdot \epsilon}{p_{1} \cdot k}-\frac{p_{2} \cdot \epsilon}{p_{2} \cdot k}\right)
$$

Divergent denominator: near on-shell propagator
This is the source of the enhancement of soft-photon radiation.

Squared amplitude for photon emission:

To understand jet structure need to consider multiple soft gluon emission. Before doing so, useful to examine some simple QED cases.

Soft photon radiated from $e^{+} e^{-}$pair

$$
M_{e^{+} e^{-} \gamma}=-M_{e^{+} e^{-}} g_{e}\left(\frac{p_{1} \cdot \epsilon}{p_{1} \cdot k}-\frac{p_{2} \cdot \epsilon}{p_{2} \cdot k}\right)
$$

Divergent denominator: near on-shell propagator
This is the source of the enhancement of soft-photon radiation.
Same mechanism in QCD
Squared amplitude for photon emission:

To understand jet structure need to consider multiple soft gluon emission. Before doing so, useful to examine some simple QED cases.

Soft photon radiated from $e^{+} e^{-}$pair

$$
M_{e^{+} e^{-} \gamma}=-M_{e^{+} e^{-}} g_{e}\left(\frac{p_{1} \cdot \epsilon}{p_{1} \cdot k}-\frac{p_{2} \cdot \epsilon}{p_{2} \cdot k}\right)
$$

Divergent denominator: near on-shell propagator
This is the source of the enhancement of soft-photon radiation.
Same mechanism in QCD
Squared amplitude for photon emission:

$$
g_{e}^{2} \frac{2 p_{1} \cdot p_{2}}{p_{1} \cdot k p_{2} \cdot k}
$$

To understand jet structure need to consider multiple soft gluon emission. Before doing so, useful to examine some simple QED cases.

Soft photon radiated from $e^{+} e^{-}$pair

$$
M_{e^{+} e^{-} \gamma}=-M_{e^{+} e^{-}} g_{e}\left(\frac{p_{1} \cdot \epsilon}{p_{1} \cdot k}-\frac{p_{2} \cdot \epsilon}{p_{2} \cdot k}\right)
$$

Divergent denominator: near on-shell propagator
This is the source of the enhancement of soft-photon radiation.
Same mechanism in QCD
Squared amplitude for photon emission:

$$
g_{e}^{2} \frac{2 p_{1} \cdot p_{2}}{p_{1} \cdot k p_{2} \cdot k}
$$

Now consider two extensions of this.

Ordered two-photon emission

k_{a} harder than $k_{b}\left(k_{a} \cdot p_{1} \gg k_{b} \cdot p\right)$

Ordered two-photon emission

$\underline{k_{a}}$ harder than $k_{b}\left(k_{a} \cdot p_{1} \gg k_{b} \cdot p\right)$

$$
g_{e}^{2} \frac{p_{1} \cdot \epsilon_{a}}{p_{1} \cdot k_{a}} \frac{p_{1} \cdot \epsilon_{b}}{p_{1} \cdot k_{b}}
$$

Ordered two-photon emission

$\underline{k_{a}}$ harder than $k_{b}\left(k_{a} \cdot p_{1} \gg k_{b} \cdot p\right)$

$$
g_{e}^{2} \frac{p_{1} \cdot \epsilon_{a}}{p_{1} \cdot k_{a}} \frac{p_{1} \cdot \epsilon_{b}}{p_{1} \cdot k_{b}}
$$

$\underline{k_{a} \text { softer than } k_{b}\left(k_{a} \cdot p_{1} \ll k_{b} \cdot p\right)}$
$g_{e}^{2} \frac{p_{1} \cdot \epsilon_{a}}{p_{1} \cdot k_{b}} \frac{p_{1} \cdot \epsilon_{b}}{p_{1} \cdot k_{b}}$

$$
g_{e}^{2} \frac{p_{1} \cdot \epsilon_{b}}{p_{1} \cdot k_{b}} \frac{p_{1} \cdot \epsilon_{a}}{p_{1} \cdot k_{a}}
$$

Ordered two-photon emission

$\underline{k_{a}}$ harder than $k_{b}\left(k_{a} \cdot p_{1} \gg k_{b} \cdot p\right)$

$$
g_{e}^{2} \frac{p_{1} \cdot \epsilon_{a}}{p_{1} \cdot k_{a}} \frac{p_{1} \cdot \epsilon_{b}}{p_{1} \cdot k_{b}} \quad g_{e}^{2} \frac{p_{1} \cdot \epsilon_{b}}{p_{1} \cdot k_{a}} \frac{p_{1} \cdot \epsilon_{a}}{p_{1} \cdot k_{a}}
$$

$\underline{k_{a} \text { softer than } k_{b}\left(k_{a} \cdot p_{1} \ll k_{b} \cdot p\right)}$
$g_{e}^{2} \frac{p_{1} \cdot \epsilon_{a}}{p_{1} \cdot k_{b}} \frac{p_{1} \cdot \epsilon_{b}}{p_{1} \cdot k_{b}}$

$$
g_{e}^{2} \frac{p_{1} \cdot \epsilon_{b}}{p_{1} \cdot k_{b}} \frac{p_{1} \cdot \epsilon_{a}}{p_{1} \cdot k_{a}}
$$

Softer photon always emitted second (cannot be emitted from a more off-shell line). Result looks like independent emission of the two photons.

Ordered two-photon emission (cont.)

Squared amplitude for double soft photon emission

$$
\begin{align*}
\left|M_{e^{+} e^{-} \gamma \gamma}\right|^{2} & =\left|M_{e^{+} e^{-}}\right|^{2} g_{e}^{4} \frac{2 p_{1} \cdot p_{2}}{p_{1} \cdot k_{a} p_{2} \cdot k_{a}} \frac{2 p_{1} \cdot p_{2}}{p_{1} \cdot k_{b} p_{2} \cdot k_{b}} \tag{1}\\
& =\left|M_{e^{+} e^{-}}\right|^{2} g_{e}^{2} \frac{2 p_{1} \cdot p_{2}}{p_{1} \cdot k_{b} p_{2} \cdot k_{b}} \tag{2}
\end{align*}
$$

Independent emission, eq.(1), holds if both are soft.
\square

Ordered two-photon emission (cont.)

Squared amplitude for double soft photon emission

$$
\begin{align*}
\left|M_{e^{+} e^{-} \gamma \gamma}\right|^{2} & =\left|M_{e^{+} e^{-}}\right|^{2} g_{e}^{4} \frac{2 p_{1} \cdot p_{2}}{p_{1} \cdot k_{a} p_{2} \cdot k_{a}} \frac{2 p_{1} \cdot p_{2}}{p_{1} \cdot k_{b} p_{2} \cdot k_{b}} \tag{1}\\
& =\left|M_{e^{+} e^{-}}\right|^{2} g_{e}^{2} \frac{2 p_{1} \cdot p_{2}}{p_{1} \cdot k_{b} p_{2} \cdot k_{b}} \tag{2}
\end{align*}
$$

Independent emission, eq.(1), holds if both are soft.
Now suppose k_{a} is hard, k_{b} soft

Ordered two-photon emission (cont.)

Squared amplitude for double soft photon emission

$$
\begin{align*}
\left|M_{e^{+} e^{-} \gamma \gamma}\right|^{2} & =\left|M_{e^{+} e^{-}}\right|^{2} g_{e}^{4} \frac{2 p_{1} \cdot p_{2}}{p_{1} \cdot k_{a} p_{2} \cdot k_{a}} \frac{2 p_{1} \cdot p_{2}}{p_{1} \cdot k_{b} p_{2} \cdot k_{b}} \tag{1}\\
& =\left|M_{e^{+} e^{-}}\right|^{2} g_{e}^{2} \frac{2 p_{1} \cdot p_{2}}{p_{1} \cdot k_{b} p_{2} \cdot k_{b}} \tag{2}
\end{align*}
$$

Independent emission, eq.(1), holds if both are soft.
Now suppose k_{a} is hard, k_{b} soft

- No divergent propagators for k_{a}
- k_{b} radiated 'after' k_{a}
- factorisation, eq.(2), still holds
- as long as p_{1}, p_{2} are the $e^{+} e^{-}$ momenta after emission of k_{a}.

Ordered two-photon emission (cont.)

Squared amplitude for double soft photon emission

$$
\begin{align*}
\left|M_{e^{+} e^{-} \gamma \gamma}\right|^{2} & =\left|M_{e^{+} e^{-}}\right|^{2} g_{e}^{4} \frac{2 p_{1} \cdot p_{2}}{p_{1} \cdot k_{a} p_{2} \cdot k_{a}} \frac{2 p_{1} \cdot p_{2}}{p_{1} \cdot k_{b} p_{2} \cdot k_{b}} \tag{1}\\
& =\left|M_{e^{+} e^{-}}\right|^{2} g_{e}^{2} \frac{2 p_{1} \cdot p_{2}}{p_{1} \cdot k_{b} p_{2} \cdot k_{b}} \tag{2}
\end{align*}
$$

Independent emission, eq.(1), holds if both are soft.
Now suppose k_{a} is hard, k_{b} soft

- No divergent propagators for k_{a}
- k_{b} radiated 'after' k_{a}
- factorisation, eq.(2), still holds
- as long as p_{1}, p_{2} are the $e^{+} e^{-}$ momenta after emission of k_{a}.
[\& must use full $\left|M_{e^{+} e^{-} \gamma_{a}}\right|^{2}$]

QED Coherence

Consider rare situation in QED (instructive for later QCD case)
Hard photon p_{3}, \& outgoing $e^{+} e^{-}$ pair close in angle, $\theta_{12} \ll 1$.

What is radiation pattern of soft photon k ?

QED Coherence

Consider rare situation in QED (instructive for later QCD case)
Hard photon p_{3}, \& outgoing $e^{+} e^{-}$ pair close in angle, $\theta_{12} \ll 1$.

What is radiation pattern of soft photon k ?

$$
g_{e}^{2} \frac{2 p_{1} \cdot p_{2}}{p_{1} \cdot k p_{2} \cdot k}=\frac{g_{e}^{2}}{\omega_{k}^{2}} \frac{2\left(1-\cos \theta_{12}\right)}{\left(1-\cos \theta_{k 1}\right)\left(1-\cos \theta_{k 2}\right)}
$$

QED Coherence

Consider rare situation in QED (instructive for later QCD case)
Hard photon p_{3}, \& outgoing $e^{+} e^{-}$ pair close in angle, $\theta_{12} \ll 1$.

What is radiation pattern of soft photon k ?

$$
g_{e}^{2} \frac{2 p_{1} \cdot p_{2}}{p_{1} \cdot k p_{2} \cdot k}=\frac{g_{e}^{2}}{\omega_{k}^{2}} \frac{2\left(1-\cos \theta_{12}\right)}{\left(1-\cos \theta_{k 1}\right)\left(1-\cos \theta_{k 2}\right)}
$$

Two 'ordered' cases:

QED Coherence

Consider rare situation in QED (instructive for later QCD case)
Hard photon p_{3}, \& outgoing $e^{+} e^{-}$ pair close in angle, $\theta_{12} \ll 1$.

What is radiation pattern of soft photon k ?

$$
g_{e}^{2} \frac{2 p_{1} \cdot p_{2}}{p_{1} \cdot k p_{2} \cdot k}=\frac{g_{e}^{2}}{\omega_{k}^{2}} \frac{2\left(1-\cos \theta_{12}\right)}{\left(1-\cos \theta_{k 1}\right)\left(1-\cos \theta_{k 2}\right)}
$$

Two 'ordered' cases:

$$
\theta_{k 1}<\theta_{k 2} \simeq \theta_{12} \rightarrow \frac{4 g_{e}^{2}}{\omega_{k}^{2}} \frac{1}{\theta_{k 1}^{2}} \quad \begin{aligned}
& \text { Close to } e^{-} \text {or } e^{+}, \text {usual } 1 / \theta^{2} \text { radi- } \\
& \text { ation pattern. }
\end{aligned}
$$

QED Coherence

Consider rare situation in QED (instructive for later QCD case)
Hard photon p_{3}, \& outgoing $e^{+} e^{-}$ pair close in angle, $\theta_{12} \ll 1$.

What is radiation pattern of soft photon k ?

$$
g_{e}^{2} \frac{2 p_{1} \cdot p_{2}}{p_{1} \cdot k p_{2} \cdot k}=\frac{g_{e}^{2}}{\omega_{k}^{2}} \frac{2\left(1-\cos \theta_{12}\right)}{\left(1-\cos \theta_{k 1}\right)\left(1-\cos \theta_{k 2}\right)}
$$

Two 'ordered' cases:

$$
\theta_{k 2}<\theta_{k 1} \simeq \theta_{12} \rightarrow \frac{4 g_{e}^{2}}{\omega_{k}^{2}} \frac{1}{\theta_{k 2}^{2}} \quad \begin{aligned}
& \text { Close to } e^{-} \text {or } e^{+}, \text {usual } 1 / \theta^{2} \text { radi- } \\
& \text { ation pattern. }
\end{aligned}
$$

QED Coherence

Consider rare situation in QED (instructive for later QCD case)
Hard photon p_{3}, \& outgoing $e^{+} e^{-}$ pair close in angle, $\theta_{12} \ll 1$.

What is radiation pattern of soft photon k ?

$$
g_{e}^{2} \frac{2 p_{1} \cdot p_{2}}{p_{1} \cdot k p_{2} \cdot k}=\frac{g_{e}^{2}}{\omega_{k}^{2}} \frac{2\left(1-\cos \theta_{12}\right)}{\left(1-\cos \theta_{k 1}\right)\left(1-\cos \theta_{k 2}\right)}
$$

Two 'ordered' cases:

QED Coherence

Consider rare situation in QED (instructive for later QCD case)
Hard photon p_{3}, \& outgoing $e^{+} e^{-}$ pair close in angle, $\theta_{12} \ll 1$.

What is radiation pattern of soft photon k ?

$$
g_{e}^{2} \frac{2 p_{1} \cdot p_{2}}{p_{1} \cdot k p_{2} \cdot k}=\frac{g_{e}^{2}}{\omega_{k}^{2}} \frac{2\left(1-\cos \theta_{12}\right)}{\left(1-\cos \theta_{k 1}\right)\left(1-\cos \theta_{k 2}\right)}
$$

Two 'ordered' cases:
$\theta_{k 2} \ll \theta_{k 1} \simeq \theta_{12} \quad \rightarrow \quad \frac{4 g_{e}^{2}}{\omega_{k}^{2}} \frac{1}{\theta_{k 2}^{2}}$
$\theta_{12} \ll \theta_{k 1} \simeq \theta_{k 2} \quad \rightarrow \quad \frac{4 g_{e}^{2}}{\omega_{k}^{2}} \frac{\theta_{12}^{2}}{\theta_{k 1}^{4}}$

Close to e^{-}or e^{+}, usual $1 / \theta^{2}$ radiation pattern.
At large angles from $e^{+} e^{-}$pair, do not see their charge (overall neutral) - photon radiation suppressed. This is COHERENCE

QED Coherence (cont.)

Photon emission from $e^{+} e^{-}$pair behaves, approximately, as if it is restricted to two cones of radiation:

$$
\frac{g_{e}^{2}}{\omega_{k}^{2}} \frac{2\left(1-\cos \theta_{12}\right)}{\left(1-\cos \theta_{k 1}\right)\left(1-\cos \theta_{k 2}\right)} \simeq
$$

$$
\frac{4 g_{e}^{2}}{\omega_{k}^{2}} \frac{1}{\theta_{k 1}^{2}} \Theta\left(\theta_{12}-\theta_{k 1}\right)+\frac{4 g_{e}^{2}}{\omega_{k}^{2}} \frac{1}{\theta_{k 2}^{2}} \Theta\left(\theta_{12}-\theta_{k 2}\right)
$$

Called angular ordering. Relation is exact after integration over angles.
\square

QED Coherence (cont.)

Photon emission from $e^{+} e^{-}$pair behaves, approximately, as if it is restricted to two cones of radiation:

$$
\frac{g_{e}^{2}}{\omega_{k}^{2}} \frac{2\left(1-\cos \theta_{12}\right)}{\left(1-\cos \theta_{k 1}\right)\left(1-\cos \theta_{k 2}\right)} \simeq
$$

$$
\frac{4 g_{e}^{2}}{\omega_{k}^{2}} \frac{1}{\theta_{k 1}^{2}} \Theta\left(\theta_{12}-\theta_{k 1}\right)+\frac{4 g_{e}^{2}}{\omega_{k}^{2}} \frac{1}{\theta_{k 2}^{2}} \Theta\left(\theta_{12}-\theta_{k 2}\right)
$$

Called angular ordering. Relation is exact after integration over angles.
\square

QED Coherence (cont.)

Photon emission from $e^{+} e^{-}$pair behaves, approximately, as if it is restricted to two cones of radiation:

$$
\frac{g_{e}^{2}}{\omega_{k}^{2}} \frac{2\left(1-\cos \theta_{12}\right)}{\left(1-\cos \theta_{k 1}\right)\left(1-\cos \theta_{k 2}\right)} \simeq
$$

$$
\frac{4 g_{e}^{2}}{\omega_{k}^{2}} \frac{1}{\theta_{k 1}^{2}} \Theta\left(\theta_{12}-\theta_{k 1}\right)+\frac{4 g_{e}^{2}}{\omega_{k}^{2}} \frac{1}{\theta_{k 2}^{2}} \Theta\left(\theta_{12}-\theta_{k 2}\right)
$$

Called angular ordering. Relation is exact after integration over angles.
Coherent sum of radiation reduces to incoherent sum (over cones)

Extension to QCD

Ideas of multiple soft emission and coherence apply also to QCD.
'Novel' aspects come from $\operatorname{SU}(3)$ (colour), in particular gluon's charge.
$k_{b} \ll k_{a} \ll p_{1}, p_{2}$ (just maximally divergent diags; 'a' radiated off p_{2})

Extension to QCD

Ideas of multiple soft emission and coherence apply also to QCD.
'Novel' aspects come from $\operatorname{SU}(3)$ (colour), in particular gluon's charge.

Extension to QCD

Ideas of multiple soft emission and coherence apply also to QCD.
'Novel' aspects come from $\operatorname{SU}(3)$ (colour), in particular gluon's charge.
$k_{b} \ll k_{a} \ll p_{1}, p_{2}$ (just maximally divergent diags; 'a' radiated off p_{2})

[Take $\left.M_{q \bar{q}}=\bar{u}\left(p_{1}\right) \times v\left(p_{2}\right)\right]$

$$
\begin{aligned}
M_{q \bar{q} a b}=-g_{s}^{2} \frac{p_{2} \cdot \epsilon_{a}}{p_{2} \cdot k_{a}} \bar{u}\left(p_{1}\right) \times(& -t^{A} t^{B} \frac{p_{2} \cdot \epsilon_{b}}{p_{2} \cdot k_{b}} \\
& \left.+i f^{A B C} t^{C} \frac{k_{a} \cdot \epsilon_{b}}{k_{a} \cdot k_{b}}+t^{B} t^{A} \frac{p_{1} \cdot \epsilon_{b}}{p_{1} \cdot k_{b}}\right) v\left(p_{2}\right)
\end{aligned}
$$

Square the amplitude

Use '(a1)' to mean $p_{a} \cdot p_{1}$ etc.

$$
\begin{aligned}
\left|M_{q \bar{q} a b}\right|^{2}=\frac{\left|M_{q \bar{q}}\right|^{2}}{N_{c}} 2 g_{s}^{4} & \frac{(12)}{(1 a)(a 2)}\left(\frac{(12)}{(1 b)(b 2)} 2 \operatorname{Tr}\left(t^{A} t^{B} t^{A} t^{B}\right)\right. \\
& +\frac{(a 2)}{(a b)(b 2)} i f^{A B C} \operatorname{Tr}\left(t^{C} t^{B} t^{A}-t^{A} t^{B} t^{C}\right) \\
& \left.-\frac{(a 1)}{(a b)(b 1)} i f^{A B C} \operatorname{Tr}\left(t^{C} t^{A} t^{B}-t^{B} t^{A} t^{C}\right)\right)
\end{aligned}
$$

Square the amplitude

Use '(a1)' to mean $p_{a} \cdot p_{1}$ etc.

$$
\begin{aligned}
\left|M_{q \bar{q} a b}\right|^{2}=\frac{\left|M_{q \bar{q}}\right|^{2}}{N_{c}} 2 g_{s}^{4} & \frac{(12)}{(1 a)(a 2)}\left(\frac{(12)}{(1 b)(b 2)} 2 \operatorname{Tr}\left(t^{A} t^{B} t^{A} t^{B}\right)\right. \\
& +\frac{(a 2)}{(a b)(b 2)} i f^{A B C} \operatorname{Tr}\left(t^{C} t^{B} t^{A}-t^{A} t^{B} t^{C}\right) \\
& \left.-\frac{(a 1)}{(a b)(b 1)} i f^{A B C} \operatorname{Tr}\left(t^{C} t^{A} t^{B}-t^{B} t^{A} t^{C}\right)\right)
\end{aligned}
$$

Use

- $t^{A} t^{B} t^{A}=-\frac{1}{2 N_{c}} t^{B} \rightarrow \operatorname{Tr}\left(t^{A} t^{B} t^{A} t^{B}\right)=-\operatorname{Tr}\left(t^{B} t^{B}\right) / 2 N_{c}=-C_{F} / 2$

Square the amplitude

Use '(a1)' to mean $p_{a} \cdot p_{1}$ etc.

$$
\begin{aligned}
\left|M_{q \bar{q} a b}\right|^{2}=\frac{\left|M_{q \bar{q}}\right|^{2}}{N_{c}} 2 g_{s}^{4} & \frac{(12)}{(1 a)(a 2)}\left(\frac{(12)}{(1 b)(b 2)} 2 \operatorname{Tr}\left(t^{A} t^{B} t^{A} t^{B}\right)\right. \\
& +\frac{(a 2)}{(a b)(b 2)} i f^{A B C} \operatorname{Tr}\left(t^{C} t^{B} t^{A}-t^{A} t^{B} t^{C}\right) \\
& \left.-\frac{(a 1)}{(a b)(b 1)} i f^{A B C} \operatorname{Tr}\left(t^{C} t^{A} t^{B}-t^{B} t^{A} t^{C}\right)\right)
\end{aligned}
$$

Use

- $t^{A} t^{B} t^{A}=-\frac{1}{2 N_{c}} t^{B} \rightarrow \operatorname{Tr}\left(t^{A} t^{B} t^{A} t^{B}\right)=-\operatorname{Tr}\left(t^{B} t^{B}\right) / 2 N_{c}=-C_{F} / 2$
- $\left[t^{A}, t^{B}\right]=i f^{A B C} \rightarrow$ if ${ }^{A B C} \operatorname{Tr}\left(t^{C} t^{B} t^{A}-t^{A} t^{B} t^{C}\right)=$

$$
f^{A B C} f^{A B D} \operatorname{Tr}\left(t^{C} t^{D}\right)=C_{A} \operatorname{Tr}\left(t^{C} t^{C}\right)=C_{A}^{2} C_{F}
$$

$$
\text { (recall } C_{A}=N_{c} \text {) }
$$

Square the amplitude

Use '(a1)' to mean $p_{a} \cdot p_{1}$ etc.

$$
\begin{aligned}
\left|M_{q \bar{q} a b}\right|^{2}=\frac{\left|M_{q \bar{q}}\right|^{2}}{N_{c}} 2 g_{s}^{4} & \frac{(12)}{(1 a)(a 2)}\left(\frac{(12)}{(1 b)(b 2)} 2 \operatorname{Tr}\left(t^{A} t^{B} t^{A} t^{B}\right)\right. \\
& +\frac{(a 2)}{(a b)(b 2)} i f^{A B C} \operatorname{Tr}\left(t^{C} t^{B} t^{A}-t^{A} t^{B} t^{C}\right) \\
& \left.-\frac{(a 1)}{(a b)(b 1)} i f^{A B C} \operatorname{Tr}\left(t^{C} t^{A} t^{B}-t^{B} t^{A} t^{C}\right)\right)
\end{aligned}
$$

Use

- $t^{A} t^{B} t^{A}=-\frac{1}{2 N_{c}} t^{B} \rightarrow \operatorname{Tr}\left(t^{A} t^{B} t^{A} t^{B}\right)=-\operatorname{Tr}\left(t^{B} t^{B}\right) / 2 N_{c}=-C_{F} / 2$
- $\left[t^{A}, t^{B}\right]=i f^{A B C} \rightarrow$ if ${ }^{A B C} \operatorname{Tr}\left(t^{C} t^{B} t^{A}-t^{A} t^{B} t^{C}\right)=$

$$
f^{A B C} f^{A B D} \operatorname{Tr}\left(t^{C} t^{D}\right)=C_{A} \operatorname{Tr}\left(t^{C} t^{C}\right)=C_{A}^{2} C_{F}
$$

$$
\text { (recall } C_{A}=N_{c} \text {) }
$$

Squared amplitude

Write as $\left|M_{q \bar{q} a}^{2}\right| \times($ emission of $b)$

$$
\begin{aligned}
&\left|M_{q \bar{q} a b}\right|^{2}=\left|M_{q \bar{q} a}\right|^{2} 2 g_{s}^{2}\left(-\frac{1}{2 N_{c}} \frac{(12)}{(1 b)(b 2)}\right. \\
&\left.+\frac{N_{c}}{2} \frac{(a 1)}{(a b)(b 1)}+\frac{N_{c}}{2} \frac{(a 2)}{(a b)(b 2)}\right)
\end{aligned}
$$

Note structure as incoherent sum over dipoles

Squared amplitude

Write as $\left|M_{q \bar{q} a}^{2}\right| \times($ emission of $b)$

$$
\begin{aligned}
& \left|M_{q \bar{q} a b}\right|^{2}=\left|M_{q \bar{q} a}\right|^{2} 2 g_{s}^{2}\left(-\frac{1}{2 N_{c}} \frac{(12)}{(1 b)(b 2)}\right. \\
& \\
& \left.\quad+\frac{N_{c}}{2} \frac{(a 1)}{(a b)(b 1)}+\frac{N_{c}}{2} \frac{(a 2)}{(a b)(b 2)}\right)
\end{aligned}
$$

Note structure as incoherent sum over dipoles

Squared amplitude

Write as $\left|M_{q \bar{q} a}^{2}\right| \times($ emission of $b)$

$$
\begin{aligned}
&\left|M_{q \bar{q} a b}\right|^{2}=\left|M_{q \bar{q} a}\right|^{2} 2 g_{s}^{2}\left(-\frac{1}{2 N_{c}} \frac{(12)}{(1 b)(b 2)}\right. \\
&\left.\quad+\frac{N_{c}}{2} \frac{(a 1)}{(a b)(b 1)}+\frac{N_{c}}{2} \frac{(a 2)}{(a b)(b 2)}\right)
\end{aligned}
$$

Note structure as incoherent sum over dipoles

Consistency: off each quark we have
$-\frac{1}{2 N_{c}}+\frac{1}{2 N_{c}}=-\frac{1}{2 N_{c}}+\frac{1}{2 N_{c}}=C_{F}$

Squared amplitude

Write as $\left|M_{q \bar{q} a}^{2}\right| \times($ emission of $b)$

$$
\begin{aligned}
& \left|M_{q \bar{q} a b}\right|^{2}=\left|M_{q \bar{q} a}\right|^{2} 2 g_{s}^{2}\left(-\frac{1}{2 N_{c}} \frac{(12)}{(1 b)(b 2)}\right. \\
& \\
& \left.\quad+\frac{N_{c}}{2} \frac{(a 1)}{(a b)(b 1)}+\frac{N_{c}}{2} \frac{(a 2)}{(a b)(b 2)}\right)
\end{aligned}
$$

Note structure as incoherent sum over dipoles

Consistency: off each quark we have
$-\frac{1}{2 N_{c}}+\frac{1}{2 N_{c}}=-\frac{1}{2 N_{c}}+\frac{1}{2 N_{c}}=C_{F}$

For gluon

$$
\frac{1}{2 N_{c}}+\frac{1}{2 N_{c}}=C_{A}
$$

Organizing squared amplitude

We have already assumed coupling is small and that gluon energies are strongly ordered $\left(\omega_{b} \ll \omega_{a}\right)$.

To proceed towards simple all-orders 'incoherent' results, approach so far still has too complicated a colour algebra.

Need to organize it better - introduce an extra 'small' parameter:

- EITHER: Assume that their angles are also strongly ordered

Then exploit coherence to simplify colour

Organizing squared amplitude

We have already assumed coupling is small and that gluon energies are strongly ordered $\left(\omega_{b} \ll \omega_{a}\right)$.

To proceed towards simple all-orders 'incoherent' results, approach so far still has too complicated a colour algebra.

Need to organize it better - introduce an extra ‘small' parameter:

- EITHER: Assume that their angles are also strongly ordered. Then exploit coherence to simplify colour

Organizing squared amplitude

We have already assumed coupling is small and that gluon energies are strongly ordered ($\omega_{b} \ll \omega_{a}$).

To proceed towards simple all-orders 'incoherent' results, approach so far still has too complicated a colour algebra.

Need to organize it better - introduce an extra 'small' parameter:

- EITHER: Assume that their angles are also strongly ordered.

$$
\text { e.g. for } \omega_{a} \gg \omega_{b}: \theta_{a 1} \gg \theta_{b 1} \text {, or } \theta_{a 1} \ll \theta_{b 1}
$$

Then exploit coherence to simplify colour.

- OR: Assume that $1 / N_{c}^{2}$ is small (large N_{c} limit). Then drop all terms with $1 / N_{c}^{2}$ suppression.

Organizing squared amplitude

We have already assumed coupling is small and that gluon energies are strongly ordered ($\omega_{b} \ll \omega_{a}$).

To proceed towards simple all-orders 'incoherent' results, approach so far still has too complicated a colour algebra.

Need to organize it better - introduce an extra 'small' parameter:

- EITHER: Assume that their angles are also strongly ordered.

$$
\text { e.g. for } \omega_{a} \gg \omega_{b}: \theta_{a 1} \gg \theta_{b 1} \text {, or } \theta_{a 1} \ll \theta_{b 1}
$$

Then exploit coherence to simplify colour.

- OR: Assume that $1 / N_{c}^{2}$ is small (large N_{c} limit). Then drop all terms with $1 / N_{c}^{2}$ suppression.

Will talk about this only if there is time

Angular ordering

Take all angles small. Require strong ordering between angles.

$$
\begin{aligned}
&\left|M_{q \bar{q} a b}\right|^{2}=\left|M_{q \bar{q} a}\right|^{2} \frac{4 g_{s}^{2}}{\omega_{b}^{2}}\left(C_{F} \frac{\Theta\left(\theta_{a 2}-\theta_{b 2}\right)}{\theta_{b 2}^{2}}+\right. \\
&+C_{A} \frac{\boldsymbol{N}_{c} \mathbf{2}}{\left.\frac{\Theta\left(\theta_{a 2}-\theta_{a b}\right)}{\theta_{a b}^{2}}+C_{F} \frac{\Theta\left(\theta_{b 2}-\theta_{a 2}\right)}{\theta_{b 2}^{2}}\right)}
\end{aligned}
$$

Angular ordering

Take all angles small. Require strong ordering between angles.

- $\theta_{b 2} \ll \theta_{a 2}$

$$
\begin{aligned}
\left|M_{q \bar{q} a b}\right|^{2}=\left|M_{q \bar{q} a}\right|^{2} \frac{4 g_{s}^{2}}{\omega_{b}^{2}}\left(C_{F}\right. & \frac{\Theta\left(\theta_{a 2}-\theta_{b 2}\right)}{\theta_{b 2}^{2}}+ \\
& \left.+C_{A} \frac{\Theta\left(\theta_{a 2}-\theta_{a b}\right)}{\theta_{a b}^{2}}+C_{F} \frac{\Theta\left(\theta_{b 2}-\theta_{a 2}\right)}{\theta_{b 2}^{2}}\right)
\end{aligned}
$$

Angular ordering

Take all angles small. Require strong ordering between angles.

- $\theta_{b 2} \ll \theta_{a 2}$
- $\theta_{b a} \ll \theta_{a 2}$

$$
\begin{aligned}
\left|M_{q \bar{q} a b}\right|^{2}=\left|M_{q \bar{q} a}\right|^{2} \frac{4 g_{s}^{2}}{\omega_{b}^{2}}\left(C_{F}\right. & \frac{\Theta\left(\theta_{a 2}-\theta_{b 2}\right)}{\theta_{b 2}^{2}}+ \\
& \left.+C_{A} \frac{\Theta\left(\theta_{a 2}-\theta_{a b}\right)}{\theta_{a b}^{2}}+C_{F} \frac{\Theta\left(\theta_{b 2}-\theta_{a 2}\right)}{\theta_{b 2}^{2}}\right)
\end{aligned}
$$

Angular ordering

Take all angles small. Require strong ordering between angles.

- $\theta_{b 2} \ll \theta_{a 2}$
- $\theta_{b a} \ll \theta_{a 2}$
- $\theta_{b a} \sim \theta_{b 2} \gg \theta_{a 2}$

$$
\begin{aligned}
\left|M_{q \bar{q} a b}\right|^{2}=\left|M_{q \bar{q} a}\right|^{2} \frac{4 g_{s}^{2}}{\omega_{b}^{2}}\left(C_{F}\right. & \frac{\Theta\left(\theta_{a 2}-\theta_{b 2}\right)}{\theta_{b 2}^{2}}+ \\
& \left.+C_{A} \frac{\Theta\left(\theta_{a 2}-\theta_{a b}\right)}{\theta_{a b}^{2}}+C_{F} \frac{\Theta\left(\theta_{b 2}-\theta_{a 2}\right)}{\theta_{b 2}^{2}}\right)
\end{aligned}
$$

Angular ordering

Take all angles small. Require strong ordering between angles.

- $\theta_{b 2} \ll \theta_{a 2}$
- $\theta_{b a} \ll \theta_{a 2}$
- $\theta_{b a} \sim \theta_{b 2} \gg \theta_{a 2}$

$$
\begin{aligned}
\left|M_{q \bar{q} a b}\right|^{2}=\left|M_{q \bar{q} a}\right|^{2} \frac{4 g_{s}^{2}}{\omega_{b}^{2}}\left(C_{F}\right. & \frac{\Theta\left(\theta_{a 2}-\theta_{b 2}\right)}{\theta_{b 2}^{2}}+ \\
& \left.+C_{A} \frac{\Theta\left(\theta_{a 2}-\theta_{a b}\right)}{\theta_{a b}^{2}}+C_{F} \frac{\Theta\left(\theta_{b 2}-\theta_{a 2}\right)}{\theta_{b 2}^{2}}\right)
\end{aligned}
$$

- Gluon b at large angle wrt a2 does not resolve a2 structure.
- It only sees overall colour charge of gluon+quark.

Angular ordering

Take all angles small. Require strong ordering between angles.

- $\theta_{b 2} \ll \theta_{a 2}$
- $\theta_{b a} \ll \theta_{a 2}$
- $\theta_{b a} \sim \theta_{b 2} \gg \theta_{a 2}$

$$
\begin{aligned}
\left|M_{q \bar{q} a b}\right|^{2}=\left|M_{q \bar{q} a}\right|^{2} \frac{4 g_{s}^{2}}{\omega_{b}^{2}}\left(C_{F}\right. & \frac{\Theta\left(\theta_{a 2}-\theta_{b 2}\right)}{\theta_{b 2}^{2}}+ \\
& \left.+C_{A} \frac{\Theta\left(\theta_{a 2}-\theta_{a b}\right)}{\theta_{a b}^{2}}+C_{F} \frac{\Theta\left(\theta_{b 2}-\theta_{a 2}\right)}{\theta_{b 2}^{2}}\right)
\end{aligned}
$$

- Gluon b at large angle wrt $a 2$ does not resolve a2 structure.
- It only sees overall colour charge of gluon+quark.
- By colour conservation this is just quark charge

Angular ordering

Take all angles small. Require strong ordering between angles.

- $\theta_{b 2} \ll \theta_{a 2}$
- $\theta_{b a} \ll \theta_{a 2}$
- $\theta_{b a} \sim \theta_{b 2} \gg \theta_{a 2}$

$$
\begin{aligned}
\left|M_{q \bar{q} a b}\right|^{2}=\left|M_{q \bar{q} a}\right|^{2} \frac{4 g_{s}^{2}}{\omega_{b}^{2}}\left(C_{F}\right. & \frac{\Theta\left(\theta_{a 2}-\theta_{b 2}\right)}{\theta_{b 2}^{2}}+ \\
& \left.+C_{A} \frac{\Theta\left(\theta_{a 2}-\theta_{a b}\right)}{\theta_{a b}^{2}}+C_{F} \frac{\Theta\left(\theta_{b 2}-\theta_{a 2}\right)}{\theta_{b 2}^{2}}\right)
\end{aligned}
$$

- Gluon b at large angle wrt a2 does not resolve a2 structure.
- It only sees overall colour charge of gluon+quark.
- By colour conservation this is just quark charge

Angular ordering

Take all angles small. Require strong ordering between angles.

- $\theta_{b 2} \ll \theta_{a 2}$
- $\theta_{b a} \ll \theta_{a 2}$
- $\theta_{b a} \sim \theta_{b 2} \gg \theta_{a 2}$

$$
\begin{aligned}
\left|M_{q \bar{q} a b}\right|^{2}=\left|M_{q \bar{q} a}\right|^{2} \frac{4 g_{s}^{2}}{\omega_{b}^{2}}\left(C_{F}\right. & \frac{\Theta\left(\theta_{a 2}-\theta_{b 2}\right)}{\theta_{b 2}^{2}}+ \\
& \left.+C_{A} \frac{\Theta\left(\theta_{a 2}-\theta_{a b}\right)}{\theta_{a b}^{2}}+C_{F} \frac{\Theta\left(\theta_{b 2}-\theta_{a 2}\right)}{\theta_{b 2}^{2}}\right)
\end{aligned}
$$

- Gluon b at large angle wrt a2 does not resolve a2 structure.
- It only sees overall colour charge of gluon+quark.
- By colour conservation this is just quark charge - COHERENCE

Angular ordering @ all orders

Coherence:

- large-angle radiation doesn't resolve what happens at small angles.
- small-angle radiation doesn't care what is going on at larger angles.
- gluons on widely disparate angular scales do not 'talk to each other.'

Matrix element for n-gluon emission (strong θ and ω ordering)

Angular ordering @ all orders

Coherence:

- large-angle radiation doesn't resolve what happens at small angles.
- small-angle radiation doesn't care what is going on at larger angles.
- gluons on widely disparate angular scales do not 'talk to each other.'

Matrix element for n-gluon emission (strong θ and ω ordering)

$$
\left|M_{q \bar{q} g_{1} \ldots g_{n}}\right|^{2} \simeq\left|M_{q \bar{q}}\right|^{2} \prod_{i=1}^{n} \frac{4 g_{s}^{2}}{\omega_{i}^{2}} \frac{C_{S} \Theta\left(\omega_{i-1}-\omega_{i}\right)}{\min \left(\theta_{q g_{i}}, \theta_{\bar{q} g_{i}}, \theta_{g_{1} g_{i}}, \ldots, \theta_{g_{i-1} g_{i}}\right)^{2}}
$$

This is simplified version of
a classic QCD result.
[Can be cast in many ways]
C_{S} : find the 'harder' (q, \bar{q} or $j<i$) parton j that gives the minimum angle in the denominator. Find the set S consisting of j and of all other partons $k(q, \bar{q}$ or $k<i)$, that satisfy $\theta_{k j}<\theta_{i j}$. C_{S} is the overall colour charge $\left(C_{F}, C_{A}\right)$ of that set.

Angular ordering @ all orders

Coherence:

- large-angle radiation doesn't resolve what happens at small angles.
- small-angle radiation doesn't care what is going on at larger angles.
- gluons on widely disparate angular scales do not 'talk to each other.'

Matrix element for n-gluon emission (strong θ and ω ordering)

$$
\left|M_{q \bar{q} g_{1} \ldots g_{n}}\right|^{2} \simeq\left|M_{q \bar{q}}\right|^{2} \prod_{i=1}^{n} \frac{4 g_{s}^{2}}{\omega_{i}^{2}} \frac{C_{S} \Theta\left(\omega_{i-1}-\omega_{i}\right)}{\min \left(\theta_{q g_{i}}, \theta_{\bar{q} g_{i}}, \theta_{g_{1} g_{i}}, \ldots, \theta_{g_{i-1} g_{i}}\right)^{2}}
$$

This is simplified version of a classic QCD result.
[Can be cast in many ways]
C_{S} : find the 'harder' $(q, \bar{q}$ or $j<i)$ parton j that gives the minimum angle in the denominator. Find the set S consisting of j and of all other partons $k(q, \bar{q}$ or $k<i)$, that satisfy $\theta_{k j}<\theta_{i j}$. C_{S} is the overall colour charge $\left(C_{F}, C_{A}\right)$ of that set.

Angular ordering as a cascade

Angular ordering can be expressed in many ways. Most powerful (perhaps) is in form of a cascade.

This is basis for simulations of QCD multi-gluon emission.

Angular ordering as a cascade

Angular ordering can be expressed in many ways. Most powerful (perhaps) is in form of a cascade.

This is basis for simulations of QCD multi-gluon emission.

1. Start with a quark as the 'emitter'.
2. 'Scan' towards small angles.

Angular ordering as a cascade

Angular ordering can be expressed in many ways. Most powerful (perhaps) is in form of a cascade.

This is basis for simulations of QCD multi-gluon emission.

1. Start with a quark as the 'emitter'.
2. 'Scan' towards small angles.
3. At 'some point' (based on $C_{S} \alpha_{s} \frac{d \theta}{\theta} \frac{d \omega}{\omega}$ structure) radiate a gluon.

Angular ordering as a cascade

Angular ordering can be expressed in many ways. Most powerful (perhaps) is in form of a cascade.

This is basis for simulations of QCD multi-gluon emission.

1. Start with a quark as the 'emitter'.
2. 'Scan' towards small angles.
3. At 'some point' (based on $C_{S} \alpha_{s} \frac{d \theta}{\theta} \frac{d \omega}{\omega}$ structure) radiate a gluon.
and the newly radiated gluon.

Angular ordering as a cascade

Angular ordering can be expressed in many ways. Most powerful (perhaps) is in form of a cascade.

This is basis for simulations of QCD multi-gluon emission.

1. Start with a quark as the 'emitter'.
2. 'Scan' towards small angles.
3. At 'some point' (based on $C_{S} \alpha_{s} \frac{d \theta}{\theta} \frac{d \omega}{\omega}$ structure) radiate a gluon.
4. Go to step 2, but with two independent emitters - the original one and the newly radiated gluon.
allowed angle $\theta \sim \Lambda / E_{\text {emitter }}$.

Angular ordering as a cascade

Angular ordering can be expressed in many ways. Most powerful (perhaps) is in form of a cascade.

This is basis for simulations of QCD multi-gluon emission.

1. Start with a quark as the 'emitter'.
2. 'Scan' towards small angles.
3. At 'some point' (based on $C_{S} \alpha_{s} \frac{d \theta}{\theta} \frac{d \omega}{\omega}$ structure) radiate a gluon.
4. Go to step 2, but with two independent emitters - the original one and the newly radiated gluon.
5. Stop on a given emitter when you reach the smallest perturbatively allowed angle $\theta \sim \Lambda / E_{\text {emitter }}$.

Highly successful Monte Carlo 'event generators' etc.) use such principles.

Angular ordering as a cascade

Angular ordering can be expressed in many ways. Most powerful (perhaps) is in form of a cascade.

This is basis for simulations of QCD multi-gluon emission.

1. Start with a quark as the 'emitter'.
2. 'Scan' towards small angles.
3. At 'some point' (based on $C_{S} \alpha_{s} \frac{d \theta}{\theta} \frac{d \omega}{\omega}$ structure) radiate a gluon.
4. Go to step 2, but with two independent emitters - the original one and the newly radiated gluon.
5. Stop on a given emitter when you reach the smallest perturbatively allowed angle $\theta \sim \Lambda / E_{\text {emitter }}$.

Highly successful Monte Carlo 'event generators' (PYTHIA, HERWIG, etc.) use such principles.

Phenomenology: lecture $4(89 / 101)$
LUnderstanding jets
Hadronisation
ᄂevent generators

[fig. from B.R. Webber]

3rd 'problem' (not on problem sheet)

Lattice QCD can today calculate non-perturbative effects for the Υ system (a $b \bar{b}$ bound state), where the ratio of hard to soft scales is about 10 (the typical momentum scales are not m_{b} but $\alpha_{s} m_{b}$).

Make a guess as to how the difficulty of lattice calculations depends on the ratio of hard to soft scales. Assuming the continued validity of Moore's law (computing power doubles every 18 months), how long will it be before lattice can give a direct calculation of hadronisation effects in high-energy (100 GeV) collisions?

1-Thrust

It's easier, but is it justified?!
Answer: it depends on what you look at.
Use 'bootstrap' arguments. Calculate with 1-gluon soft-collinear approx:
$\checkmark=$ dominated by soft-collinear region $X=$ dominated by hard region $(\rightarrow$ NLO $)$

It's easier, but is it justified?!
Answer: it depends on what you look at.
Use 'bootstrap' arguments. Calculate with 1-gluon soft-collinear approx:
$\checkmark=$ dominated by soft-collinear region
$X=$ dominated by hard region $(\rightarrow$ NLO $)$
Results

* number of events with 3 hard jets
x mean value of 1 -Thrust

It's easier, but is it justified?!
Answer: it depends on what you look at.
Use 'bootstrap' arguments. Calculate with 1-gluon soft-collinear approx:
$\checkmark=$ dominated by soft-collinear region $X=$ dominated by hard region $(\rightarrow$ NLO)

Results

x number of events with 3 hard jets
OPERATION BOOTSTRAP

x mean value of 1 -Thrust

It's easier, but is it justified?!
Answer: it depends on what you look at. Use 'bootstrap' arguments. Calculate with 1-gluon soft-collinear approx:
$\checkmark=$ dominated by soft-collinear region
$x=$ dominated by hard region $(\rightarrow$ NLO $)$
Results
X number of events with 3 hard jets

$$
\sigma_{3-j e t} \sim \alpha_{s} \int \frac{d \omega}{\omega} \frac{d \theta}{\theta} \Theta\left(\frac{\omega}{Q}-\epsilon\right) \Theta(\theta-\delta)
$$

x mean value of 1 -Thrust

$$
\langle 1-T\rangle \sim \alpha_{s} \int \frac{d \omega}{\omega} \frac{d \theta}{\theta} \frac{\omega \theta^{2}}{2 Q}
$$

OPERATION BOOTSTRAP

number of 'subjets
inside a jet

It's easier, but is it justified?!
Answer: it depends on what you look at.
Use 'bootstrap' arguments. Calculate with 1-gluon soft-collinear approx:
$\checkmark=$ dominated by soft-collinear region
$X=$ dominated by hard region $(\rightarrow$ NLO $)$
Results
X number of events with 3 hard jets

$$
\sigma_{3-j e t} \sim \alpha_{s} \int \frac{d \omega}{\omega} \frac{d \theta}{\theta} \Theta\left(\frac{\omega}{Q}-\epsilon\right) \Theta(\theta-\delta)
$$

x mean value of 1 -Thrust

$$
\langle 1-T\rangle \sim \alpha_{s} \int \frac{d \omega}{\omega} \frac{d \theta}{\theta} \frac{\omega \theta^{2}}{2 Q}
$$

OPERATION BOOTSTRAP

\checkmark number of 'subjets' inside a jet
\checkmark typical value of
1 -Thrust

Thrust - a QCD ‘guinea pig'

First discussion goes back to 1964. Serious work got going in late '70s. Thrust is one of many continous measures of the event 'shape':

$$
T=\max _{\vec{n}_{T}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}_{T}\right|}{\sum_{i}\left|\vec{p}_{i}\right|}
$$

Thrust - a QCD ‘guinea pig'

First discussion goes back to 1964. Serious work got going in late '70s. Thrust is one of many continous measures of the event 'shape':

$$
T=\max _{\vec{n}_{T}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}_{T}\right|}{\sum_{i}\left|\vec{p}_{i}\right|},
$$

2-jet event: $\quad T \simeq 1$

Thrust - a QCD ‘guinea pig'

First discussion goes back to 1964. Serious work got going in late '70s. Thrust is one of many continous measures of the event 'shape':

$$
T=\max _{\vec{n}_{T}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}_{T}\right|}{\sum_{i}\left|\vec{p}_{i}\right|},
$$

2-jet event: $\quad T \simeq 1$
3-jet event: $\quad T \simeq 2 / 3$
There exist many other measures of aspects of the shape: Thrust-Major, C-parameter, broadening, heavy-jet mass, jet-resolution parameters,

Thrust — a QCD ‘guinea pig'

First discussion goes back to 1964. Serious work got going in late '70s.
Thrust is one of many continous measures of the event 'shape':

$$
T=\max _{\vec{n}_{T}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}_{T}\right|}{\sum_{i}\left|\vec{p}_{i}\right|},
$$

2-jet event: $\quad T \simeq 1$

3-jet event: $\quad T \simeq 2 / 3$
There exist many other measures of aspects of the shape: Thrust-Major, C-parameter, broadening, heavy-jet mass, jet-resolution parameters,...

Thrust mean

Thrust in soft \& collinear (SC) limit: actually discuss $1-T$ since this measures deviation from $q \bar{q}$ case:

$$
1-T \simeq \sum_{i \in \mathrm{soft}} \frac{\omega_{i} \theta_{i}^{2}}{2 Q}
$$

θ_{i} should be wrt thrust axis, but can replace it with angle wrt quark axis
Hence SC approx. for mean value is poor since dominated by large ω, θ :

Need full hard corrections both to matrix element and to thrust value.

Thrust in soft \& collinear (SC) limit: actually discuss $1-T$ since this measures deviation from $q \bar{q}$ case:

$$
1-T \simeq \sum_{i \in \mathrm{soft}} \frac{\omega_{i} \theta_{i}^{2}}{2 Q}
$$

θ_{i} should be wrt thrust axis, but can replace it with angle wrt quark axis
Hence SC approx. for mean value is poor since dominated by large ω, θ :

$$
\langle 1-T\rangle \sim \frac{2 \alpha_{s} C_{F}}{\pi} \int \frac{d \omega}{\omega} \frac{d \theta}{\theta} \cdot \frac{\omega \theta^{2}}{2 Q}
$$

Need full hard corrections both to matrix element and to thrust value.

Find value τ of $1-T$ such that $\sigma(1-T>\tau)=\frac{1}{2} \sigma_{\text {tot }}$. Solve

$$
\frac{4 \alpha_{s} C_{F}}{\pi} \int^{\pi / 2} \frac{d \theta}{\theta} \int^{Q} \frac{d \omega}{\omega} \Theta\left(\frac{\omega \theta^{2}}{2 Q}-\tau\right)=\frac{1}{2}
$$

Two logarithmic integrals. To establish whether soft \& collinear part dominates, consider solution for τ :

Find value τ of $1-T$ such that $\sigma(1-T>\tau)=\frac{1}{2} \sigma_{\text {tot }}$. Solve

$$
\frac{4 \alpha_{s} C_{F}}{\pi} \int^{\pi / 2} \frac{d \theta}{\theta} \int^{Q} \frac{d \omega}{\omega} \Theta\left(\frac{\omega \theta^{2}}{2 Q}-\tau\right)=\frac{1}{2}
$$

Two logarithmic integrals. To establish whether soft \& collinear part dominates, consider solution for τ :

$$
\frac{\alpha_{s} C_{F}}{\pi} \ln ^{2} \tau+\mathcal{O}\left(\alpha_{s} \ln \tau\right)=\frac{1}{2} \quad \rightarrow \quad \ln \frac{1}{\tau} \simeq \sqrt{\frac{\pi}{\alpha_{s} C_{F}}} \quad \rightarrow \quad \tau \sim e^{-\sqrt{\frac{\pi}{\alpha_{s} C_{F}}}}
$$

Find value τ of $1-T$ such that $\sigma(1-T>\tau)=\frac{1}{2} \sigma_{\text {tot }}$. Solve

$$
\frac{4 \alpha_{s} C_{F}}{\pi} \int^{\pi / 2} \frac{d \theta}{\theta} \int^{Q} \frac{d \omega}{\omega} \Theta\left(\frac{\omega \theta^{2}}{2 Q}-\tau\right)=\frac{1}{2}
$$

Two logarithmic integrals. To establish whether soft \& collinear part dominates, consider solution for τ :

$$
\frac{\alpha_{s} C_{F}}{\pi} \ln ^{2} \tau+\mathcal{O}\left(\alpha_{s} \ln \tau\right)=\frac{1}{2} \quad \rightarrow \quad \ln \frac{1}{\tau} \simeq \sqrt{\frac{\pi}{\alpha_{s} C_{F}}} \quad \rightarrow \quad \tau \sim e^{-\sqrt{\frac{\pi}{\alpha_{s} C_{F}}}}
$$

- $\tau \ll 1$, so soft-collinear approximation was valid ('bootstrap' OK)
- α_{s} still small despite $\tau \ll 1$, since $\frac{\alpha_{s}}{1-\alpha_{s} b \ln \tau}$

Find value τ of $1-T$ such that $\sigma(1-T>\tau)=\frac{1}{2} \sigma_{\text {tot }}$. Solve

$$
\frac{4 \alpha_{S} C_{F}}{\pi} \int^{\pi / 2} \frac{d \theta}{\theta} \int^{Q} \frac{d \omega}{\omega} \Theta\left(\frac{\omega \theta^{2}}{2 Q}-\tau\right)=\frac{1}{2}
$$

Two logarithmic integrals. To establish whether soft \& collinear part dominates, consider solution for τ :

$$
\frac{\alpha_{s} C_{F}}{\pi} \ln ^{2} \tau+\mathcal{O}\left(\alpha_{s} \ln \tau\right)=\frac{1}{2} \quad \rightarrow \quad \ln \frac{1}{\tau} \simeq \sqrt{\frac{\pi}{\alpha_{s} C_{F}}} \quad \rightarrow \quad \tau \sim e^{-\sqrt{\frac{\pi}{\alpha_{s} C_{F}}}}
$$

- $\tau \ll 1$, so soft-collinear approximation was valid ('bootstrap' OK)
- α_{s} still small despite $\tau \ll 1$, since $\frac{\alpha_{s}}{1-\alpha_{s} b \ln \tau} \sim \frac{\alpha_{s}}{1-b \sqrt{\pi \alpha_{s} / C_{F}}}$ - Double logarithmic structure $\left(\alpha_{s} \ln ^{2} \tau\right)$ is typical of QCD (and QED)

Find value τ of $1-T$ such that $\sigma(1-T>\tau)=\frac{1}{2} \sigma_{\text {tot }}$. Solve

$$
\frac{4 \alpha_{s} C_{F}}{\pi} \int^{\pi / 2} \frac{d \theta}{\theta} \int^{Q} \frac{d \omega}{\omega} \Theta\left(\frac{\omega \theta^{2}}{2 Q}-\tau\right)=\frac{1}{2}
$$

Two logarithmic integrals. To establish whether soft \& collinear part dominates, consider solution for τ :

$$
\frac{\alpha_{s} C_{F}}{\pi} \ln ^{2} \tau+\mathcal{O}\left(\alpha_{s} \ln \tau\right)=\frac{1}{2} \quad \rightarrow \quad \ln \frac{1}{\tau} \simeq \sqrt{\frac{\pi}{\alpha_{s} C_{F}}} \quad \rightarrow \quad \tau \sim e^{-\sqrt{\frac{\pi}{\alpha_{s} C_{F}}}}
$$

- $\tau \ll 1$, so soft-collinear approximation was valid ('bootstrap' OK)
- α_{s} still small despite $\tau \ll 1$, since $\frac{\alpha_{s}}{1-\alpha_{s} b \ln \tau} \sim \frac{\alpha_{s}}{1-b \sqrt{\pi \alpha_{s} / C_{F}}}$
- Double logarithmic structure $\left(\alpha_{s} \ln ^{2} \tau\right)$ is typical of QCD (and QED)

'Typical' versus 'hard' events

Results like those of previous pages are a regular occurrence:

- weighting with 'hardness' (e.g. $\langle 1-T\rangle$) selects events with hard radiation: rare - suppressed by power of α_{s}
- typical events, by definition, not suppressed by α_{s}. from divergent soft-collinear phase space
- soft-collinear $\log ^{2}$ accompanies each power of α_{s} Perturbative series $\sim \sum_{n}\left(\alpha_{s} \ln ^{2} \tau\right)^{n}$ Since $\ln ^{2} \tau \sim 1 / \alpha_{s}$, this series must not be truncated.

‘Typical' versus 'hard' events

Results like those of previous pages are a regular occurrence:

- weighting with 'hardness' (e.g. $\langle 1-T\rangle$) selects events with hard radiation: rare - suppressed by power of α_{s}
- typical events, by definition, not suppressed by α_{s}.
$\Leftrightarrow \alpha_{s}$ from radiation is compensated by $\log ^{2}$ from divergent soft-collinear phase space
- soft-collinear $\log ^{2}$ accompanies each power of α_{s} : Perturbative series $\sim \sum_{n}\left(\alpha_{s} \ln ^{2} \tau\right)^{n}$ Since $\ln ^{2} \tau \sim 1 / \alpha_{s}$, this series must not be truncated branching not only 'interesting', but essential

‘Typical' versus 'hard' events

Results like those of previous pages are a regular occurrence:

- weighting with 'hardness' (e.g. $\langle 1-T\rangle$) selects events with hard radiation: rare - suppressed by power of α_{s}
- typical events, by definition, not suppressed by α_{s}.
$\Leftrightarrow \alpha_{s}$ from radiation is compensated by $\log ^{2}$ from divergent soft-collinear phase space
- soft-collinear $\log ^{2}$ accompanies each power of α_{s} :

$$
\text { Perturbative series } \sim \sum_{n}\left(\alpha_{s} \ln ^{2} \tau\right)^{n}
$$

Since $\ln ^{2} \tau \sim 1 / \alpha_{\text {s }}$, this series must not be truncated.

- Understanding of all-order properties of divergent soft \& collinear branching not only 'interesting', but essential.
$\underline{\text { Results like those of previous pages are a regular occurrence: }}$
- weighting with 'hardness' (e.g. $\langle 1-T\rangle$) selects events with hard radiation: rare - suppressed by power of α_{s}
- typical events, by definition, not suppressed by α_{s}.
$\Leftrightarrow \alpha_{s}$ from radiation is compensated by $\log ^{2}$ from divergent soft-collinear phase space
- soft-collinear $\log ^{2}$ accompanies each power of α_{s} :

$$
\text { Perturbative series } \sim \sum_{n}\left(\alpha_{s} \ln ^{2} \tau\right)^{n}
$$

Since $\ln ^{2} \tau \sim 1 / \alpha_{s}$, this series must not be truncated.

- Understanding of all-order properties of divergent soft \& collinear branching not only 'interesting', but essential.

‘Typical' versus 'hard' events

Results like those of previous pages are a regular occurrence:

- weighting with 'hardness' (e.g. $\langle 1-T\rangle$) selects events with hard radiation: rare - suppressed by power of α_{s}
- typical events, by definition, not suppressed by α_{s}.
$\Rightarrow \alpha_{s}$ from radiation is compensated by $\log ^{2}$ from divergent soft-collinear phase space
- soft-collinear $\log ^{2}$ accompanies each power of α_{s} :

$$
\text { Perturbative series } \sim \sum_{n}\left(\alpha_{s} \ln ^{2} \tau\right)^{n}
$$

Since $\ln ^{2} \tau \sim 1 / \alpha_{s}$, this series must not be truncated.

- Understanding of all-order properties of divergent soft \& collinear branching not only 'interesting', but essential.

This is called resummation

Sort of a summary

Range of QCD tools:

- Fixed-order calculations (LO, NLO, ...)
- Calculations based on multiple soft-collinear radiation
- Monte Carlo 'cascade' event generators
- analytical resummations $\sum\left(\alpha_{s} \ln ^{2} \tau\right)^{n}$
- Well-defined non-perturbative inputs (structure functions, fragmentation functions).

Sort of a summary

$\underline{\text { Range of QCD tools: }}$

- Fixed-order calculations (LO, NLO, ...)
- Calculations based on multiple soft-collinear radiation
- Monte Carlo 'cascade' event generators
- analytical resummations $\sum\left(\alpha_{s} \ln ^{2} \tau\right)^{n}$
- Well-defined non-perturbative inputs (structure functions, fragmentation functions).
- III-defined non-perturbative inputs (hadronisation)
- Monte Carlo hadronisation models (many parameters, good fits)
- Analytical models (1 parameter, sometimes good fits!)

Sort of a summary

Range of QCD tools:

- Fixed-order calculations (LO, NLO, ...)
- Calculations based on multiple soft-collinear radiation
- Monte Carlo 'cascade' event generators
- analytical resummations $\sum\left(\alpha_{s} \ln ^{2} \tau\right)^{n}$
- Well-defined non-perturbative inputs (structure functions, fragmentation functions).
- III-defined non-perturbative inputs (hadronisation)
- Monte Carlo hadronisation models (many parameters, good fits)
- Analytical models (1 parameter, sometimes good fits!)

Sort of a summary

$\underline{\text { Range of QCD tools: }}$

- Fixed-order calculations (LO, NLO, ...)
- Calculations based on multiple soft-collinear radiation
- Monte Carlo 'cascade' event generators
- analytical resummations $\sum\left(\alpha_{s} \ln ^{2} \tau\right)^{n}$
- Well-defined non-perturbative inputs (structure functions, fragmentation functions).
- III-defined non-perturbative inputs (hadronisation)
- Monte Carlo hadronisation models (many parameters, good fits)
- Analytical models (1 parameter, sometimes good fits!)

Sort of a summary

$\underline{\text { Range of QCD tools: }}$

- Fixed-order calculations (LO, NLO, ...)
- Calculations based on multiple soft-collinear radiation
- Monte Carlo 'cascade' event generators
- analytical resummations $\sum\left(\alpha_{s} \ln ^{2} \tau\right)^{n}$
- Well-defined non-perturbative inputs (structure functions, fragmentation functions).
- III-defined non-perturbative inputs (hadronisation)
- Monte Carlo hadronisation models (many parameters, good fits)
- Analytical models (1 parameter, sometimes good fits!)

EXTRA SLIDES

1. Define a distance measure for every pair of (pseudo)particles i and j

$$
y_{i j}=\min \left(E_{i}^{2}, E_{j}^{2}\right)(1-\cos \theta) \quad \text { 'Durham' or ' } k_{t} \text { ' measure }
$$

2. Find the pair of (pseudo)particles with the smallest $y_{i j}$. If this $y_{i j}$ is larger than some threshold $y_{\text {cut }}$, then stop.
3. Otherwise recombine i and j into a single 'pseudo-particle' and go to step 1.
