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Summary. — The model universe proposed here is a Newtonian-Galilean system of
extreme simplicity. Surprisingly, it can be arranged in such a way as to present itself
to hypothetical model inhabitants as reality presents itself to us. It is argued, in fact,
that the inhabitants of a universe formed entirely by classical waves on a
macroscopically structureless medium will experience special relativity and quantum
mechanics if only the medium possesses a spectrum of internal resonances, called
‘masses’, in addition to finite rigidity, density and very large bulk modulus. These
‘masses’ are then explained as compressional standing waves reflected by the
spherical boundary of the universe which, thus, forms one multimode resonant
cavity. Microscopic wave centres, called ‘particles’, are due to migrating dislocations
in a simple molecular structure. The model replicates the existence of hadrons
(classified in mesons and baryons) and leptons (charge carriers and neutrinos) and
yields a naturally emerging explanation for electricity, including charge, the classical
electron radius and the Coulomb force. It implies analytical formulae, essentially
devoid of free parameters, for an approximate mass spectrum. The experimental
mass ratios of many light hadrons, including all quasi-stable ones from the pion to the
V2 , are represented with 1% rms accuracy, the charged-pion–to–muon mass ratio
within 2.531024 . The emerging electron mass is quantitatively consistent with the
classical radius and the Coulomb force.

PACS 03.30 – Special relativity.
PACS 03.65 – Quantum mechanics.

1. – Introduction

The ideas presented here are quite unorthodox. They take up elementary matters
which have been assumed settled for close to a century but may yet be considered very
unsatisfactory.

The dissent from accepted dogma is, however, limited to a specific if fundamental
point: the tentative claim that the basic elements (at least) of our reality, as described
by orthodox physics, can be understood in terms of a classical, visualizable and

(*) The author of this paper has agreed to not receive the proofs for correction.
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exceedingly simple model. As nothing is added to the body of accepted
physics—indeed, the necessity of any addition would be an indication of the model’s
failure—the discussion given here ends where the formalisms of established physics
begin and thus at a very elementary level.

Complete success of this admittedly unexpected model will depend on quantitative
agreement with all known facts, including more advanced results of modern physics
than those considered in this paper. It would appear, however, that the state of
agreement demonstrated here is already and enough striking to merit attention.

The basic idea is this:

Instead of attempting at all costs to cope with the two self-contradictions implied in
the statements that there are fields in “vacuum” and that “material” velocities are not
additive, the tentative conclusions are drawn from the outset that there must be a
universal medium where there are fields, but also that there cannot be any macroscopic
material motion where velocities are not additive but tend towards a universal upper
limit—a limit so strikingly low in fact as to be on a human-terrestrial scale.

Seen from outside, the model which will be built on these premises is governed by
the Newtonian-Galilean physics which we experience in the limits of low velocities and
large dimensions. The model will, however, be arranged in such a way as to present
itself to hypothetical model inhabitants as reality presents itself to us. A distinction
must, therefore, be made between the points of view of an external observer of the
model (its constructor at least) and of its imagined inhabitants, coinciding with our
reality as long as the attempt is successful. Surprisingly—and in violation of a
dogma—this turns out to be the case, conceptually as well as quantitatively and far
beyond the point where 19th-century physics was abandoned, albeit on a very
elementary level so far.

The external observer’s view will be taken unless stated or implied otherwise.
Single quotation marks will designate inhabitant’s terms, such as ‘particle’, ‘energy’,
‘momentum’. These quotation marks will always be used when they give a different
meaning to the same word, but may be omitted when no confusion is possible.
Unavoidably, the model contains ‘hidden’ variables. It turns out to be manifestly
non-local.

Although some of this model’s features are rooted deeply in the first half of the 19th
century, the decisive concepts—presented in sect. 3 and 6—appear to be new and no
attempt will be made to review history. Reference [1], first published in 1910, contains a
quantitative account and a copious source of original references. It is clear, on the other
hand, that this paper is related to an established minority dissatisfaction [2] with the
orthodox interpretation of quantum physics. However, the proposed model stems from
a fresh and direct look at elementary features of reality with little reference to ongoing
arguments of quantum philosophy.

2. – Assumptions

The basis of this model is special relativity. According to the orthodox view, the
manifest existence of a universal velocity limit is to be associated with macroscopic
material transport and with ballistic particles in particular. Although impenetrable by
human imagination this association is rendered acceptable by declaring it a
principle—a starting point not itself amenable to a model.
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There is, however, no a priori need for this sacrifice of intuitive logic. The existence
of a universal and insurmountable velocity limit is indeed to be expected in a system in
which all motion is restricted to the propagation of microscopic perturbations in a
macroscopically stationary medium and, thus, to group motion of propagating waves in
the most general sense.

Accordingly, the fundamental hypothesis made here is that all recognizable
structures of our universe, including ourselves and all objects available to us, can be
correctly described in terms of patterns of waves propagating in a unique,
macroscopically structureless medium. The name of ether imposes itself although it
differs from the 19th-century ether in being the only material existing, not an
extraneous substance pervading others. Seen from outside, the ether considered here
is a classical elastic medium subject to Hooke’s law for small mechanical displacements,
Newton’s dynamics (with invariable mass) and Galilean transformations of reference
frames. It will be assumed devoid of any motion other than propagating waves in every
context considered in this paper, although convection on a ‘cosmological’ scale need not
be excluded a priori.

The waves forming the inhabitants’ reality tend to be composed of single-pulse
perturbations possessing localized (and often permanent) centres which the
inhabitants call ‘particles’ and to which all dynamic interaction is confined. The
existence of such wave centres requires an explanation. An apparently successful one,
which establishes just as much particle behaviour as is required, will be offered in later
parts of this paper. However, the definition of a wave—propagating disturbance rather
than material transport—is supposed to be fulfilled at all times, each volume element of
the propagating medium deviating only a very small amount from its rest position, to
which it returns when the wave has passed.

Clearly, then, what the inhabitants call ‘vacuum’ is undisturbed ether, all their
‘material’ objects—such as the inhabitants themselves, their rulers, clocks,
interferometers and particle detectors—are wave patterns, and group velocity is the
only manifestation of motion.

3. – Relativistic dynamics

The inhabitants of a world formed by nothing but waves in a structureless medium
find themselves in the situation of viewing a (silent black-and-white) film in a dark
theatre. They have to obtain all information accessible to them by comparative
observation of the topology and kinematics of patterns, the latter observation requiring
references. If steady-state modes of resonant oscillation exist in the medium, these will
supply references for Fourier analysis and give the inhabitants access to two—and only
two—quantitative entities. Both are rational numbers, namely the numbers of
consecutive extrema of a wave’s central Fourier component divided by the coincident
number of extrema of a reference wave, the division establishing itself by the formation
of a beat pattern.

If the observation is made ‘at a fixed location’, to be suitably defined, the reference
in the denominator forms a ‘clock’ and the number in the numerator is frequency vO2p .
This defines the inhabitants’ time. Similarly, the number of ‘simultaneous’ extrema
along a path, divided by a coincident reference number counted along the same path,
establishes a wave number k (2p over wavelength) and, therefore, a definition of
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distance. The meaning of ‘fixed location’ and ‘simultaneousness’ will depend on the
observer’s situation and may follow the usual definitions of special relativity.

The existence of reproducible reference waves is, thus, a necessary condition for the
formation of recognizable structures in time and distance. In a homogeneous medium,
reference waves can only be due to intrinsic modes of resonance. The inhabitants will
recognize them if—and only if—there are several such modes and beating one against
another gives reproducible results.

Strong support is lent to this model by the striking observation that the foundations
of our dynamics appear to be mere kinematic quantities in fact. Indeed, overwhelming
evidence suggests that what we call energy W (or mass WOc 2 ) behaves like a frequency
and what we call momentum P like a wave number, the scale factor, ˇ , with respect to
our customary units being the same in both cases. If, therefore, it is accepted that the
inhabitants’ ‘energy’ is a frequency v and their ‘momentum’ a wave number k, their
fundamental law of ‘relativistic’ dynamics, relating ‘energy’ and ‘momentum’, is the
dispersion relation (or Brillouin diagram) of the propagating medium. The question
arises, therefore, whether a classical medium can be constructed whose dispersion
relation equals the Lorentz-invariant law of dynamics

v 24v 2
01k 2 c 2(3.1)

actually observed.
The answer is affirmative and strikingly simple. In essence, the ether must consist

of a three-dimensional array of identical coupled harmonic oscillators. There are the
following perfectly plausible corollaries: they will all turn out to be part of one simple
model.

– Each oscillator possesses an entire spectrum of modes with resonant
frequencies v 0 i including zero. They may be called rest frequencies, the terms rest
‘energies’ ˇv 0 i or (rest) ‘masses’ ˇv 0 i Oc 2 being more familiar.

– The coupling constant, connecting each oscillator to its neighbour, is
frequency-independent and the same for all modes v oi . The coupling changes each
resonance to the cut-off of a high-pass filter. In the mode with v 040 (called
‘electromagnetic’) the restoring force is supplied by the coupling alone.

– Any graininess the ether may possess fails to make itself noticed in the
observed dispersion diagram.

– The coupling force is perpendicular to wave propagation and expressed by
c 24mOr—the propagation velocity of shear waves—where m is the shear modulus
(rigidity) of the medium and r its mass density.

The origin of the resonances v 0 i requires explanation (an explanation not offered
by orthodox physics), but their multitude is perfectly plausible at once; a single
resonance would be equivalent to the artifact of a massless spring resonating with a
rigid body.

If the ether were made of spatially discrete oscillators, located a distance lp from
each other, the dispersion relation for each mode would be of the form

v 24v 2
01v 2

0 sin2 klp ,(3.2)

where v c is a measure of the coupling. At v o all oscillators are in phase (0-mode). A
finite oscillator-to-oscillator phase klp leads to vDv 0 . At klp4p an upper cut-off
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(p-mode) would occur. As no sign of this is observed at the highest particle energies
obtainable, lp must be assumed vanishingly small. The product v c lp then becomes a
universal propagation velocity c and eq. (3.1) results, in perfect agreement with our
reality if c is taken as the velocity of light.

In summary, it can be said that the actual Lorentz-invariant dynamics described by
eq. (3.1) is perfectly modelled by classical mechanical waves in a dissipation-free,
homogeneous, (nearly) incompressible but deformable medium of mass density r and
rigidity m4c 2 r , provided the medium also possesses a spectrum of internal
resonances, namely the rest frequencies v 0 i4W0 i Oˇ . This presence of internal
resonances and the absence of any other material in the universe are the only
differences with respect to the 19th-century ether.

The resonances will later be attributed to the combination of a waveguide-like
boundary condition with non-vanishing compressibility and this will furnish an
immediate and quantitative explanation for the absence of observable graininess and,
thus, for the exact validity of (3.1) rather than (3.2).

Familiar alternative forms of eq. (3.1)—clearly expressing relativistic dynamics as
well as wave propagation in the classical medium just constructed—are

b4
ck

v
,(3.3)

g 24 g v

v 0
h2

4
1

12b 2
,(3.4)

vg vp4c 2 ,(3.5)

where vp4vOk is the phase velocity of a single-frequency continuous wave and the
group velocity

vg4bc4
¯v

¯k
(3.6)

is seen as ‘material velocity’ by the inhabitants, since it is at this velocity that patterns
propagate. The inhabitants’ concept of ‘force’ is expressed by dk/dt along the path of a
perturbation moving with the group velocity (3.6). In a free wave v and k are constant.
Finite derivatives will be generated by refraction—local variation of frequency due to
interaction between wave centres.

Quantitatively, and in three dimensions, a classical wave packet at position xi in a
dispersive and refractive but dissipation-free medium obeys [3]

dki

dt
42

¯v

¯xi

,(3.7)

dxi

dt
41

¯v

¯ki

.(3.8)
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The first equation (1) describes refraction which, in this model, is restricted to the
vicinity of wave centres and must be made to represent one of the ‘four forces of
nature’. The second equation (vg in three dimensions) describes dispersion—
specifically the one of (3.1). The identity with Hamilton’s equations applied to position,
momentum and energy of a ballistic particle is textbook knowledge, as well as the
association of particle velocity with the group velocity of de Broglie waves.
Surprisingly, the inference that this might permit the construction of a Newtonian
universe devoid of macroscopic motion does not seem to have been followed beyond the
initial attempts by de Broglie and Schrödinger.

4. – The Lorentz transformations

It will now be argued that the inhabitants of the Newtonian-Galilean model just
constructed will indeed experience the Lorentz transformations of their time and space
with respect to reference frames moving through structureless ether at different group
velocities.

The central point here is the existence of references for time and distance. If the
ether carries no landmarks, such references can only stem from an internal resonance
structure. The spectrum of rest frequencies v 0 i and the universal propagation constant
c do form a conspicuous resonance structure and it will be assumed that there are no
others. Note that this assumption, which makes the mass spectrum the fundamental
reference of time, implies the absence of additional ad hoc constructions.

In fact, anyone of the rest frequencies forms a clock, their ratios being found
invariable. The wavelength of one mode excited at the rest frequency of a higher one
defines distance (for instance the wavelength of light at the electron rest
frequency—the Compton wavelength). It seems noteworthy that modern standards
are in fact formed by the velocity of light and an atomic transition frequency.

A straightforward demonstration of the Lorentz transformations’ validity under
these assumptions is presented in appendix A. Familiar ingredients of elementary
special relativity are being invoked, but the essence is the observation that moving
‘clocks’ do in fact slow down and moving ‘rulers’ shrink in this Newtonian-Galilean
model because clocks, rulers and co-moving observers are immaterial wave patterns
propagating at common group velocity through a dispersive medium whose Brillouin
diagram is given by eq. (3.1). And moving observers consisting of waves cannot know
the rate at which they encounter fresh volume elements of structureless medium. They
cannot, therefore, experience any “ether wind”.

Accordingly, this Newtonian-Galilean model of coupled harmonic oscillators yields:
relativistic mechanics (as well as classical electrodynamics, as will be shown later), the
Lorentz transformations and the undistinguishable equivalence of inertial frames, in
that order of deducible results not requiring any ad hoc principle. Contrary to orthodox
dogma the model does contain a preferred reference frame but one which is
fundamentally out of reach of the inhabitants’ recognition.

(1) Explicitly written time derivatives are employed for wave motion—total derivatives when the
group motion is to be followed. Dots will be reserved for microscopic material motion in an ether
frame. No distinction between partial and total derivatives is required therein, since the basic
assumption of an elastic solid, rather than a hydrodynamic fluid, makes convection terms negligible.
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5. – Elements of quantum mechanics

The illumination of a picture cannot be deduced from a contemplation of its contents
as long as these remain recognizable at all. Similarly, the wave amplitudes of this model
remain fundamentally inaccessible to direct observation by the inhabitants whose
‘reality’, including their own identity, consists of wave patterns alone.

An amplitude will make itself noticed, however, if it becomes so small as to make the
recognizable coherence of a pattern disappear in competition with others or with
statistical noise. This suggests the association of a suitably chosen (scalar) amplitude
with the inhabitants’ ‘wave function’ and, hence, of this amplitude squared with the
‘probability density’ of finding a certain configuration. In sect. 12 the (nonrelativistic)
Schrödinger equation will be derived from the model of ‘mass’ developed in sect. 6 and
beyond. In this derivation, the ‘wave function’ will be identified with dynamic ether
pressure.

On the other hand, it will turn out (sect. 9) that a field of quasistatic ether
displacements from rest position offers itself as a most natural explanation of the
‘electric’ field, accessible to only indirect recognition by enlightened inhabitants.

If it is true, then, that oscillating-wave amplitudes are inaccessible to inhabitants’
direct observation, this must be even more true for intermediate values within a period
of oscillation. Since, apart from the scale factor ˇ , the integrals of ‘energy’ (v) over time
and of ‘momentum’ (k) over distance are identical with the phase advance of an
oscillation, it follows that these integrals have to be integers, namely the numbers of
(half) periods counted over the integration time or path. This quantization of phase—or
‘action’—merely states that a universe formed by patterns is fundamentally digital. It
also identifies a ‘particle’ that carries one ‘quantum of action’ as a single-pulse wave.

According to the arguments of sect. 3, the inhabitants may describe a small
‘structure’—a wave packet as seen from outside—by its rms duration Dt or length Dxi .
They may also describe it by the width Dv or Dki of its Fourier transform and use both
aspects for measurement. However, the product of rms pulse length and spectral width
cannot be smaller than one-half, a mathematical fact [4] that is given the name of
bandwidth theorem in communications engineering and of uncertainty principle in
quantum physics, the minimum product being reached for Gaussian pulses. The
bandwidth theorem designates a fundamental limitation for the transmission of
intelligence by modulated waves. Its universal validity for conjugate variables of our
world—those whose product is a phase in wave mechanics—forms a very strong
suggestion that there is nothing but waves. Again, the identity of Heisenberg’s
principle with the bandwidth theorem is introductory textbook matter but the massive
hint of a reality devoid of material transport is not followed in orthodox physics.

Particle-like behaviour and concomitant ‘duality’ must be explained by the existence
of wave centres to which any interaction of waves is confined. Waves travelling with a
freely moving centre extend into the surrounding space where they can be split and
recombined to form an interference pattern. The wave can only manifest itself,
however, by (nonlinear) intermodulation with the waves forming the ‘measuring
apparatus’.

If the measuring apparatus is a ‘particle detector’, the interaction may be assumed
unstable, leading to the formation of new wave centres. It seems plausible that this
avalanching nature of new-wave-centre formation makes its occurrence stochastic but
subject to a probability proportional to the amplitude squared of the original wave. This
seems to explain why a large number of randomly occurring localizations of the original
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waves into new centres—seen as impacts of ‘particles’—can print out an interference
pattern although self-interference pertaining to the original wave can no longer be
observed once this has transformed itself into new wave centres by ‘particle detection’.

While the last remarks are insufficient at this point to clear up one of the deepest
mysteries of our reality, the following statements appear in order here. Orthodox
contemporary physics overcomes the oxymoron of fields in ‘vacuum’ (or else of action at
a distance) by describing all interactions in terms of mediating particles—‘virtual’ ones,
defying eq. (3.1) under cover of uncertainty if necessary. The notion of phase cannot be
dispensed with, however, and the uncertainty relation takes on an ambiguous meaning.
It retains its status of an ad hoc postulate concerning ballistic particles while it is also
identical with the deducible fact of the bandwidth theorem—which requires a medium.

In this theory the opposite view is taken. It is claimed that once a universal
propagating medium is accepted, there is no difficulty with the existence of continuous
fields therein, provided the parallel existence of ballistic particles is abandoned. The
19th-century problems with such a medium disappear with the notion of particles. The
Lorentz transformations as well as the uncertainty relations become deducible
consequences of their absence. It may also be said that this model (seen from outside)
assigns reality to the inhabitants’ ‘abstract’ notion of quantum wave mechanics while
their ‘reality’—consisting of ballistic particles and material structures in general—is
declared an illusion.

Thus far, the model, to which ‘particles’ and their interaction have to be added yet,
replicates nature’s wave-like features alone. It is argued, however, that the evidence
for the absence of anything else is so overwhelming—an insurmountable velocity limit,
a simple Brillouin diagram describing apparent ‘dynamics’, an all-encompassing
bandwidth theorem—and the traditional attempts at reconciliation of manifest wave
properties with ballistic objects are so desperate that an explanation of these objects’
appearance in terms of waves, rather than the inverse, seems inevitable. What remains
to be accomplished, therefore, is a credible demonstration that ‘particles’, as distinct
from diffusing wave packets, can be described in terms of propagating wave centres.
The remainder of this paper—while stopping far short of the frontiers of contemporary
physics—appears to go a long way in that direction.

6. – A concept for the rest masses

The presence of resonances v 0 i in a seemingly continuous medium asks for an
explanation in terms of classical mechanics if the basic concept followed here is not to
be abandoned.

A differential equation yielding the correct dispersion relation of ‘free space’ has
the form of

rs
n n

4m˜2 s2di s ,(6.1)

where s is the displacement from rest position or ‘vacuum’.
With di40 in an incompressible medium of rigidity m , (6.1) yields dispersionless

transverse waves. Dispersion with v and k related by eq. (3.1) is created by the spring
constants di—per unit volume and with respect to absolute space!—which have to be
made equal to v 2

0 i r so as to make a volume element of density r resonate at v 0 i for
˜2 s40. A free wave s0 exp [i(vt2k Qr) ], where r stands for xi , satisfies (6.1) with v(k)
as given by (3.1).
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The first model which comes to mind is a local one in which finite ether constituents
exhibit internal resonances although they are too small to reveal their presence by an
observable p-mode cut-off. Finite constituents will in fact be introduced below. It is
difficult, however, to explain the presence of internal resonances at v 0 i in objects too
small to be observable at wave velocity c and frequencies far above v 0 i . Moreover, the
presence of a zero-frequency mode and the reference to absolute space would have to
be accounted for. Short of returning to 19th-century-style contrived constructions a
purely local model for the rest resonance cannot, therefore, be maintained.

This leaves no alternative, however, but an explanation in terms of macroscopic
standing waves reflected by non-absorbing boundaries. A striking one-dimensional
example is the (electromagnetic) waveguide. Standing waves, set up between the guide
walls (in x , y direction say), form an intricate spectrum of 0-modes, reminiscent of a
‘mass spectrum’ even for simple geometric shapes—for instance the interlaced multiple
roots and orders of the ordinary Bessel function for a circular guide. The infinite
extension in z-direction converts each 0-mode to the cut-off for high-pass wave
propagation. Higher modes are notoriously unstable via mode conversion to lower
cut-off frequencies. The dispersion relation v(k) of the uniform waveguide is the
Lorentz-invariant law of dynamics, eq. (3.1). It may be viewed indiscriminately as
resulting from the mutual coupling of an infinity of harmonic oscillators of vanishing
spacing (as argued above) or from the interference of plane waves propagating at
free-space velocity along zig-zag trajectories between the reflecting walls.

A straightforward extension to three dimensions—albeit an emotionally shocking
one—can be made by taking the closed boundary of the entire universe as the
reflecting wall for compressional (irrotational) waves. The ether’s bulk modulus k
must then be assumed so ‘enormous’ as to explain the rest resonances by standing
waves within this boundary, the universe being taken as one cavity-like multimode
resonator. Indeed, a standing compressional wave at right angles to the propagation of
a free shear wave will satisfy eq. (6.1). Pressure gradient takes the place of the
restoring force di s , the reflecting boundary supplying the necessary reference to
‘absolute space’. This is shown by the grad (k div s) term in eq. (7.1)—the general
equation of motion in an elastic medium—at the start of the next section, where a
specific spectrum of eigenfrequencies v 0 i will be calculated and compared with actual
particle masses.

This universe, therefore, may be viewed as a vibrating lump of clear jelly—a
homogeneous substance possessing an exceedingly low but finite ratio of rigidity to
bulk modulus. Compressional waves shuttle between opposite boundaries of the
universe in times commensurate with ˇ over rest energy. Shear wave propagation at
velocity c is slower by several tens of orders of magnitude so that it finds essentially
infinite space. This is also what the inhabitants find since everything they recognize
consists entirely of shear waves.

Isotropy suggests a (near) spherical geometry and, therefore, radial pressure
distributions governed by spherical Bessel and Neumann functions jl and nl given by

jl4 (2u)lg 1

u

d

u
hl sin u

u
,(6.2)

2nl4 (2u)lg 1

u

d

du
hl cos u

u
.(6.3)
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In a homogeneous medium u4Kr , where K 24v 2 rOk and r is the radius from the
centre. The two functions jl , nl differ by no more than p in the central phaseshift
between the outgoing and incoming travelling spherical waves of which they are
composed, but their behaviour near the centre is radically different. The
singularity-free function jl (u) describes the response of the elastic sphere to an
external excitation, while nl (u) with its central singularity describes the situation
around an internal driving point.

It is customary to exclude the nl-functions from the analysis of (empty) spherical
cavities on the face of the argument that they are unphysical. In this model, their
inclusion offers the unique opportunity to create particle-like wave centres. Physical
reality then requires that the divergence of pressure and displacement—proportional
to u 2(l11) and u 2(l12) , respectively, at vanishing radius—be interrupted by a break in
ether continuity. Moreover, a discrete physical oscillator is required at the wave centre
which, obviously, cannot be assumed to coincide exactly with the mathematical centre
of an ideal sphere.

In the absence of foreign matter, both requirements can only be fulfilled if the ether
possesses molecular structure, however small and simple. Nothing specific has to be
assumed about these molecules, but that they are nearly incompressible—so as to
produce the bulk modulus k—and held together by central forces. The existence of
wave centres then finds its natural explanation in the existence of dislocations,
non-linear disturbances of molecular order, migrating by rearrangement of
neighbouring molecules without macroscopic transport of material.

An explicit molecular structure need not necessarily be invoked here but a most
elementary one may, nevertheless, be imagined. It consists of hard frictionless spheres,
pressed into nearly dense packing by a coherence pressure but kept from locking into
complete 12-connection by the presence of dislocations. In spite of its simplicity, this
structure appears to possess all required properties so that no further constructions
are required from here on: the tendency to approach dense packing implies a (weak)
rigidity m which is unrelated to the modulus of compression k (cf. the end of
appendix B). This rigidity is subject to the possibility of reversible disruption, as
required in sect. 10 and beyond. Within microscopic regions of large dynamic
displacements a dislocation can jump ‘instantly’, by translation at compressional wave
velocity, but macroscopic propagation will be free of local compression; it cannot,
therefore, exceed the shear-wave velocity c.

Each propagating dislocation represents the central driving point of an n-mode
configuration of standing compressional waves filling the universe. These driving
points are slightly off-centre (cf. sect. 8) and propagate at group velocity bc via
superimposed shear waves. The resonance conditions derived in the next two
sections—eqs. (7.11) and (8.9)—are with respect to an excitation centred at a molecular
dislocation and respecting the angular dependence of a surface harmonic Y m

l (u , W) of
given degree and order. From the circular-section waveguide invoked above, this
model differs by the replacement of the ordinary (cylindrical) Bessel function by the
two spherical ones; it differs from the ordinary spherical cavity by the inclusion of the
linearly independent function nl .

The small-argument asymptote of nlPu 2(l11) and the fact that the displacement is
proportional to the pressure gradient make the ratio of dynamic pressure to
displacement vanish linearly with radius. Therefore the maximum pressure—large but
finite at the finite molecular radius—can be assumed to be cushioned by central
intermolecular forces. An analysis of these elastic forces remains outside the scope of
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this paper. Their systematic absence from the lepton model presented in sect. 10
suggests an association with the ‘strong force’.

The molecular radius need not be assumed to be exceedingly small since it does not
form a cut-off wavelength like lp in eq. (3.2). In unperturbed propagation, the
dislocation shifts gradually from one cluster of molecules to the next. The resonators,
as well as the coupling rigidity m , are formed by continua consisting of a very large
number of molecules.

The combination of a ‘particle’ trajectory with a wave filling the universe is
reminiscent of the pilot wave concept of de Broglie-Bohm—more precisely of de
Broglie’s théorie de la double solution with its singularity wave (onde à singularité) [2]
since the propagating dislocation is a genuine part of the wave, not a ballistic particle
being guided.

The ether model constructed here will not be accepted easily. It turns out, however,
to be strikingly successful in representing seemingly unrelated facts and it does this
without further constructions, albeit via a sequence of inferences. This will be the
subject of the balance of this paper.

Without violating the fundamental assumption of there being nothing but waves,
propagating molecular perturbations go as close as necessary to defining ‘particles’.
Interactions between them will be restricted to the neighbourhood of the n-mode wave
centres with their near divergence of displacement, pressure and stress where, on the
other hand, such interaction becomes very likely. In the process of interaction new
dislocations may form at the expense of original ones although this is unlikely to occur
outside the range of high original wave amplitude. Note that such molecular relocation
will occur ‘instantly’ (at compressional wave velocity) and that it is bound to happen at
‘particle detection’.

The propagating dislocations may be purely dynamic defects—molecules being
pulled apart or pushed towards each other in small-argument n-mode motion. (At the
positive peak of a vertical dipole n-mode, for instance, molecules are radially pulled
away from the polar axis above the centre and pushed towards the axis below.) In
addition, the near divergent motion may create permanent dislocations in the form of
excess or deficit molecules. Creating a pair of such trapped dislocations without static
pressure at large distance will create a conjugate pair of centres for permanent radial
displacement and associated shear stress, as a lump of excess material leaves behind a
collapsed cavity elsewhere. In sect. 9 these source points of radial displacement will
emerge as perfect and perfectly natural models for the ‘electric charge’. The existence
of stress-free voids cannot be excluded and only such voids can support isolated
monopole (breathing) modes associated with l40. Therefore, if the association of
stress centres with electric charge is correct, ‘particles’ associated with l40 must be
electrically neutral.

An exact analysis of the quasi-spherical modes postulated here will be seriously
complicated by the wave centres’ excentricity. Also, graded or stratified distributions
of r and k may have to be taken into account and the spherical surface might be loaded
with any reactive acoustic impedance—from a free surface to a rigid wall. Moreover,
the finite rigidity may gain influence near the wave centre, in spite of the enormous
assumed ratio of k/m . In the next two sections, resonant modes will nevertheless be
calculated under the simplest possible assumptions of a homogeneous elastic sphere of
vanishing rigidity, possessing a near central driving point and a free surface (or else be
contained within a rigid wall). The result, while necessarily approximate and
incomplete, lends quantitative support to this theory.
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7. – An approximation to the hadron mass spectrum

In an isotropic elastic medium with constant m , k , r everywhere the combination of
Newton’s and Hooke’s laws (Cauchy 1828 [1]) takes the equivalent forms of

rs
n n

4m˜2 s1 gk1 1

3
mh ˜(˜ Qs) ,(7.1)

rs
n n

42m˜3 (˜3s)1 gk1 4

3
mh ˜(˜ Qs) .(7.2)

The first (solenoidal) term describes the propagation of shear waves. The second
(irrotational) term yields (after forming the divergence on both sides and assuming
kcm) the differential equation for pressure waves in a liquid

p
n n

4
k

r
˜2 p ,(7.3)

where p42k div s is the amplitude of hydrodynamic pressure. Below,
eigenfrequencies for stationary solutions of (7.3) are derived. With these, (7.3) can be
written as 2rv 2

oi div s4k div grad div s ; thus 2rv 2
oi s42k˜(˜ Qs). Substitution into

(7.1) with mbk confirms (6.1) with di4rv 2
oi .

Indeed, the presence of a spherical boundary and a central molecular wave centre
leads to harmonic solutions of (7.3) with spatial amplitude distributions

p4Y m
l (u , W)[ajl (Kr)1bnl (Kr) ] ,(7.4)

v 2 rsr4Y m
l (u , W) K[aj 8l (Kr)1bn 8l (Kr) ] .(7.5)

The radial displacement sr equals the radial pressure gradient over v 2 r , the dash
means differentiation with respect to the argument, r , u , W are spherical coordinates,
Yl

m is a surface harmonic of degree and order l , m and K 2
fv 2 rOk as before.

At a free surface the pressure must vanish so that

[ajl1bnl ]KR40(7.6)

if R is the radius of the sphere. The constants a, b can be eliminated by observing that
the oscillations are excited (by shear waves) at the centre of the n-mode. The j-mode is
an idler which exchanges energy with the primary n-mode at the surface only.
Therefore, the radial displacements pertaining to jl and nl must be equal there. This
yields

[aj 8l 2bn 8l ]KR40(7.7)

and, therefore, the resonance condition

k jl

j 8l
1

nl

n 8l
l

KR

40(7.8)
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stating that the acoustic impedances (pressure over radial velocity) of the two linearly
independent modes, jl and nl , of same angular distribution Y m

l must cancel each other
at the free surface. It may be noted in passing that a rigid spherical wall would have
given the same result, at least thus far. Strikingly, the almost self-evident equation
(7.8) already yields most of the coincidences with experimental particle-masses listed in
table I.

Barycentre motion introduces a complication for odd-order zonal modes. If the
resonance were excited from outside the sphere only the pressure balance (7.6) would
guarantee zero axial momentum and eq. (7.8) would remain the only resonance
condition. The excitation by coupling to another vibrating system inside the sphere

TABLE I. – Roots of [ jn 81Nnj 8 ]KR40—eq. (7.11)—compared with experimental mass values,
normalized for (1012)8 h (547.45 MeV); n j and n n are the orders of neighbouring zeros of jl
and nl .

Equation (7.11) Reality Error

configuration n N l n j n n root mass particle (7 .11)

reality
21

monopole 1
2
3
4

1
1
1
1

0
0
0
0

1
1
2
2

1
2
2
3

2.1374
3.7983
5.4063
6.9976

—
3.7983
5.4253
7.0728

—
h
v(783)
f(1020)

—
reference
20.35%
21.1%

dipole 1

0

1
2
3

1

2

2
2
2

1

1

1
1
1

1

0

1
1
2

1

1

1
2
2

3.4865

0.9735

3.3011
5.3826
6.6744

3.4250
3.4529
0.9683
0.9365

—
5.3292
6.6450

K6

K0

p6

p 0
—
r(770)
h 8 (958)

21.8%
10.97%
10.53%
23.95%
—
11.0%
10.44%

quadrupole 1
2

3

4
5

1
1

1

1
1

2
2

2

2
2

1
1

2

2
3

1
2

2

3
3

4.7292
6.5213

8.2077

9.8519
11.4740

—
6.5098
6.5188
8.2520
8.2740
8.3079
9.99

11.6035

—
p
n
S1

S0

S2

N(1440)
V2

—
10.18%
10.04%
20.54%
20.80%
21.2%
21.4%
21.1%

sextupole 1
2

1
1

3
3

1
1

1
2

5.9224
7.7841

—
7.7404

—
L

—
10.56%

octupole 1
2

1
1

4
4

1
1

1
2

7.0859
9.0126

—
9.1229
9.1675

—
J0

J2

—
21.2%
21.7%
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permits, however, the balancing of a finite axial momentum of the resonator against the
opposite momentum of the exciting system (from which ‘resonance’ is observed) via an
exchange of surface forces. Since such forces cannot impart the necessary momentum
to the n-mode directly, they will excite an intermediate j-mode—ab j(Kr), say—whose
axial momentum equals that of the primary n-mode and is, thus, given by ab j(KR)4
bn(KR). This must be added to the pressure balance (7.6), introducing a factor 2 in
front of the second term of the resonance condition (7.8).

More precisely, it may be argued that ‘resonance’ as seen from inside means
vanishing boundary pressure including the apparent inertial forces experienced in a
frame oscillating with the primary n-mode, since it is in this frame that the
compensating j-mode idler is excited. In a local frame oscillating with the local n-mode
amplitude an inertial body force appears. The force component parallel to the (vertical)
polar axis f i

z (per unit normal area) is given by

¯f i
z

¯z
42rs

n n

zn4v 2 rszn4
¯

¯z
pn (r , u) ,(7.9)

where szn is the peak vertical displacement and pn the n-mode pressure amplitude.
(Note that the area density of apparent force f i

z is a vector component; the elastic
pressure p42k div s is a scalar.) Integration parallel to the polar axis gives the total
inertial force on a unit-area column intersecting the surface at u and p2u as

f i
z (u)4pn (R , u)2pn (R , p2u) .(7.10)

For even l this force is zero; for odd-order zonal modes it is equivalent to a
surface-normal force density given by pn4bnl (KR) Pl ( cos u) at each end of the column
(Pl ( cos u) being a Legendre polynomial) and, hence, to an apparent inertial surface
pressure equal and supplementary to the elastic n-mode pressure just inside the
surface (2). Again, a factor 2 in front of the second term of eq. (7.8) is the result.

In conclusion, a general resonance condition can be written in the form of

k jl

j 8l
1N

nl

n 8l
l

KR

40 , N41 or 2(7.11)

(or in any of numerous equivalent forms such as (11N)(KR)2 nj 81140) with N41
for all even orders and all sectorial modes and optionally N42 for odd-order zonal
modes. Independent tesseral configurations (they only exist for lF3) have not been
investigated.

Replacing N41 by N42 for given l creates an additional non-vanishing root
(henceforth labelled n40) below all others. For l41 this forms the lowest of all
compressional resonances. The influence of the factor N on higher roots amounts to a
few per cent at most, jOj 8 and nOn 8 being steep functions of KR near these roots.

(2) Note that in a dipole n-mode with KRE2.7 the motion perpendicular to the axis makes the
peak upward shift of the spherical envelope coincide with peak negative pressure in the upper
hemisphere, thus with peaks of upward acceleration and downward apparent inertial force felt in a
barycentre frame.
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An objection to this model will be its limitation to inhabitants living near the centre
of their universe and the concomitant reminiscence of pre-Copernican geocentricity.
The objection is attenuated by the observation, based on symmetry, that deviations
from eq. (7.11) cannot be of lower order than second in relative excentricity. This will
be confirmed in the next section where a first-order model for an excentric wave centre
will be presented.

With all due caveats, then, the roots of eq. (7.11) may be compared with
experimental particle masses. This is done in table I, more extensive, albeit more
tentative, associations being given in sect. 8 and fig. 1. The fourth column of table I
lists short series of roots of (7.11) for lG4. The first two columns give the mode
configuration and the root order n (n40 being reserved for the extra root appearing
with N42). The third column gives the barycentre factor N (1 or 2), the
Bessel-function order l and the orders n j , n n of neighbouring zeros of jl , nl .
Henceforth the four numbers Nln j n n will be used to designate a mode.

The fifth column lists experimental masses [5] of light mesons and baryons,
including all quasi-stable hadrons up to the V2 . The masses are normalized to make
the h-meson (547.45 MeV, the lowest-mass singlet) coincide with (1012), this being the
lowest purely radial mode possessing an internal node. As can be seen, the picture
would not change significantly if the reference were changed to the proton or the
charged pion (their mass ratio of 6.723 is replicated with 0.36% accuracy) or if an
average had been fitted.

The agreement of the spectrum defined by the roots of eq. (7.11) with the actual
mass spectrum of the lightest mesons and stable baryons is striking and hard to
dismiss as fortuitous (cf. fig. 1). The errors are of the same order as typical
charge-state splits which the model does not pretend to address. Moreover, beyond
numerical agreement at percent level, a rudimentary but distinct order emerges:

– Consistent with the model, modes with l40 do correspond to chargeless
mesons (and the extended tables of the next section will show no exception to this).

– Among the stable baryons the sum l1n j1n n appears to take on an order-
ing function: it amounts to 5 for the p/n, 6 for the S and L , 7 for the J and 8
for the V2 .

– All mesons listed correspond to radial or zonal modes, thus configurations of
one or two dimensions. All baryons listed are consistent with sectorial or
tesseral—thus three-dimensional—modes. It is tempting, therefore, to think of an
association of quarks with one-dimensional mode components. The association remains,
however, obscure; what corresponds to the simplest mode of this model, the h , is an
intricate mixture of uu–, dd

–
, and ss– states in the quark model, while the simple ud

–
, du–

states of the p6 require the additional argument about barycentre motion here.

– With the exception of (1111), the modes with n j4n n41, that is those devoid of
a radial node, fail systematically to correspond to real particles. An explanation may be
sought in connection with barycentre stability for an excentric wave centre.

It may be objected that there are low-mass particles not covered by (7.11) and
low-order roots not corresponding to any known particle. Up to about 1.3 GeV, the first
defect will be essentially remedied by the inclusion of additional resonances due to
finite excentricity (sect. 8) although this will aggravate the second (more acceptable)
defect. It would appear, however, that the left-hand side of fig. 1 alone, containing all
established particles to the f(1020), does constitute conspicuous evidence. Moreover,
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even at higher energies, where the close relative spacing tends to devalidate any 1%
correlation, closer inspection reveals that the clustering of roots with common l1n j1n n)
—a mathematical fact—is indeed validated, albeit at increased spread within clusters
of actual masses. A qualitative explanation for this spread is attempted in sect. 8.
Finally, strong collateral support is lent to this hadron model by the success of the
concomitant lepton model presented in sect. 10. It implies an unambiguous prescription
for the charged-pion–to–muon mass ratio under the assumption that the association of
the pion with the lowest root of (7.11) is indeed correct, and the prescription agrees
with reality to within 0.025%.

If, therefore, and in spite of many open questions, the listed associations of hadron
masses with roots of jn 81Nnj 840 are accepted, a universal hadron scale length

rs4
cKi R

v oi

4Ro m

k
B1.37310215 m(7.12)

emerges. If R were taken as 1026 m the ratio kkOm of longitudinal to transverse
propagation velocity would be of the order of 1041 .

8. – Finite excentricity

The apparent success of spherical symmetry—for low masses and at one-percent
level—justifies pursuing the model in spite of its limitation to inhabitants living near
the centre of their universe. However, propagating wave centres do entail finite, if
small, excentricity and concomitant mathematical complication. Short of computational
analysis, the concept proposed below permits at least a first-order consideration.

The resonant standing waves of radial dependence ajl (Kr)1bnl (Kr) discussed in
the last section are composed of travelling spherical waves whose pressure and radial
displacement are given (apart from a scale factor and e ivt ) by

p(r , u , W)4Y m
l (u , W)[nl (u)6 ijl (u) ] ,(8.1)

sr (r , u , W)4Y m
l (u , W)

K

v 2 r
[n 8l (u)6 ij 8l (u) ] ,(8.2)

where u4Kr . The upper signs refer to radially outgoing waves for which (8.1) is
negative real and (8.2) positive real near the centre. The wave impedance pOs

n

r is
complex in general but real at the surface at resonance for N41. A j-mode standing
wave is formed if the phase between outgoing and incoming waves is p at the centre, an
n-mode if it is zero.

The n-mode centre will now be assumed to have a position eeR with respect to the
sphere’s centre where e is a unit vector of arbitrary direction and eb1. The model
adopted for analysing this situation is one of bifocal reflection, apparently justified for
first-order analysis since pathlength differences depend on e 2 . Spherical waves
travelling outward from the molecular dislocation—called the main focus—are
reflected at the surface towards a phantom focus at 2ee from where they travel back to
the main focus via a second surface reflection. Since the phantom focus cannot be
assumed to contain a molecular dislocation, it must be singularity-free and this forms
another boundary condition.
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The minimum solution is a superposition of two systems of travelling displacement
waves in quadrature, one with scale factor one, say (thus of radial dependence n 8 (u)1
ij 8 (u) for an outgoing wave), the other with scale factor ia1 , both centred in the main
focus. They will be named reference wave and a1-wave, respectively, for convenience.
The composite wave leaving the centre with phase c 04arctan a1 with respect to the
reference has the phase c 012c R at the phantom focus if

c R4arctan [ j 8 On 8 ]KR(8.3)

is the phase advance per radius R. The condition of freedom from singularity at the
phantom focus is c 012c R46pO2 and therefore

tan 2 g2c R6
p

2
h4a1 ,(8.4)

since only in this way is reflection by p , there, compatible with the symmetry required
for cyclic closure of phase, namely a main-focus return-phase of zero for the reference
wave and of p for the a1-wave. Equations (8.3) and (8.4) combined are equivalent to

a14
1

2
k n 8

j 8
2

j 8

n 8
l

KR

.(8.5)

The global result is the superposition of three systems of standing pressure waves,
an n-mode and a j-mode centred at the main focus and another j-mode centred at the
phantom focus, with scale factors 1, a1 and a2 , respectively. Continuity of power flow
requires that

a 2
2 4a 2

1 11 .(8.6)

But this, together with (8.5), is consistent with

[ (a11a2 ) j 82n 8 ]KR40(8.7)

and therefore with (7.7) if a4a11a2 is taken as the total j-mode amplitude (and bf1
for convenience). Together with the surface pressure balance ajl1Nnl40, the
resonance condition (7.11) comes out unchanged for this bifocal model, as was to be
expected.

It appears, however, that a second set of solutions can be generated by the addition
of yet another j-mode, of scale factor a3 , say, which is centred in the sphere and, hence,
linearly independent of the bifocal modes. The surface excitation of this is described by

[a3 j 8l 2n 8l 2 (a11a2 ) j 8l ]KR40 ,(8.8)

while (8.7) remains valid for the bifocal waves (suffering slightly skew reflection at the
surface). Together with the surface pressure balance (a11a21a3 ) j1n40 this gives
a new resonance condition, namely

[3 jn 81nj 8 ]KR40 .(8.9)

The roots, which are not far from those of (7.11), can also be characterized by the
orders of neighbouring zeros of jl and nl . They will be designated by the symbol
]1 ln j n n( and identified with particles as well.
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Fig. 1. – The hadron mass spectrum below 1 GeV (a) and moderately above (b), mesons to the left,
baryons to the right. The middle columns show roots (Nln j n n ) of eq. (7.11) and ]1 ln j n n( of
eq. (8.9), all multiplied with the same scale factor of 144.47 MeV which makes the (1012) root
coincide with the h-meson of 547.45 MeV.

Tables II and III give lists of associations of actual mesons and baryons,
respectively, with this model. The same information is shown in the form of line spectra
in fig. 1. Compared with table I in sect. 7, the lists have been enlarged by the
inclusion of roots of eq. (8.9) and a few higher ones of (7.11), now all given in MeV rest
energy, still with the h at 547.45 MeV as unique reference. The most convincing
evidence still lies with the lightest (and most stable) particles. Above 1 GeV the
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TABLE II. – Mesons. (Nln j n n ): root of jn 81Nnj 840; ]1 ln j n n(: root of 3 jn 81nj 840.

Nln j n n mth OMeV Particle mex OMeV (mth2mex )Omex

strangeness 0

(2101)

(1012)
(2112)
(1022)
(2122)
]1023(
(1122)
(1023)
]1123(
(1123)
(1033)
(2123)
]1033(

140.31

547.45
775.80
779.22
961.99
970.90
987.01

1008.57
1181.29
1219.54
1236.84
1244.37
1274.56

p6

p 0

h
r(770)
v(783)
h 8 (958)
f0 (975)
a0 (980)
f(1020)
h1 (1170)
b1 (1235)
f0 (1240)
a1 (1260)
f2 (1270)
f1 (1285)

139.5679
134.9743
547.45
768.1
781.95
957.75
974.1
982.7

1019.413
1170620
1232610
1240610
1260630
127565
128265

10.53%
13.95%
reference
11.00%
20.35%
10.44%
20.33%
10.44%
21.06%
10.96%
21.01%
20.25%
21.24%
20.03%
20.58%

strangeness 1

(1111)

]1311(

]1511(

502.51

899.48

1235.82

K6

K0

K*6 (892)
K*0 (892)
K1 (1270)

493.646
497.671
891.59
896.10

1270610

11.79%
10.97%
10.89%
10.38%
22.7%

associations gradually become tentative as the spacing narrows and becomes
comparable to the discrepancies (and finally to some of the experimental errors, not to
mention the enormous widths of some resonances).

It gives reason for concern that several roots of (8.9) and a few of (7.11)—including
modes that do possess radial nodes—have to be ignored for not corresponding to
known particles. On the other hand, within the energy range covered by the meson
table, every established particle or resonance has found a plausible allocation—mostly
within 1% of mass—except that ]1033( is shared by f2 (1270) and f1 (1285). The Review
of Particle Properties classifies the f0 (1240) meson as requiring experimental
confirmation; it corresponds well with (1033). Note that among the unflavoured mesons
listed, all monopole allocations correspond to isospin zero and most dipole ones to
isospin one, with the notable exception of the h 8 (958) and also of the very short-lived
resonance h1 (1170). Among the strange mesons listed, the association of K1 (1270) with
]1511(, not shown in fig. 1, is clearly a tentative one, this being the only decapole mode
considered. It is true that any plausible allocation becomes impossible above the
highest energy listed, thus above l1n j1n n46, there being many more observed
resonances than (low-order) roots offered by eqs. (7.11) and (8.9).

The same is true for the baryons above l1n j1n n47, although almost complete
(tentative) lists have been obtained separately for each strangeness, including l1n j1
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TABLE III. – Baryons. (Nln j n n ): root of jn 81nj 840; ]1 ln j n n(: root of 3 jn 81nj 840.

Nln j n n mth OMeV Particle mex OMeV (mth2mex )Omex

strangeness 0: N and D

(1212)

]1222(
(1223)
(1323)
]1233(

939.92

1222.43
1419.97
1613.37
1692.36

p
n
D(1232)
N(1440)
D(1620)
D(1700)

938.27231
939.56563

123262
1440130

210
1620155

25
1700170

230

10.175%
10.037%
20.78%
21.4%
20.41%
20.45%

strangeness 21: L

(1312)
]1322(
(1422)
]1422(

1121.93
1412.01
1555.10
1596.43

L
L(1405)
L(1520)
L(1600)

1115.63
140764
1519.561
16001100

240

10.56%
10.36%
12.34%
20.22%

strangeness 21: S

(1222)

]1223(

1182.99

1381.01

S1

S 0

S2

S1 (1385)
S 0 (1385)
S2 (1385)

1189.37
1192.55
1197.43
1382.8
1383.7
1387.2

20.54%
20.80%
21.21%
20.13%
20.19%
20.45%

strangeness 22: J

(1412)

]1323(

1299.0

1573.66

J0

J2

J0 (1530)
J2 (1530)

1314.960.6
1321.3260.13
1531.860.32
1535.060.6

21.21%
21.69%
12.73%
12.52%

strangeness 23: V

(1233) 1653.76 V2 1672.43 21.12%

n n48, which is also the allocation of the stable V2. The one absence from com-
pleteness within its short list is a D(1600) resonance which carries three-star status
in ref. [5].

The following argument is a first tentative step towards an analysis of higher
orders of excentricity e . The excentricity of the two foci by 6eeR creates a first-order
pressure perturbation dp(r , u , W) expressed by

dp(r , u , W)4eR[e Q˜(a2 jl (u) Y m
l (u , W) )2e Q˜((a1 jl (u)1Nbnl (u) ) Yl

m (u , W) )] ,(8.10)
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explicitly by

dp

eKR
4 k(a 2 j 8l 2Nbn 8l ) Y m

l er1
1

u
(a 2 jl2Nbnl ) g ¯Y m

l

¯u
eu1

¯Y m
l

sin u¯W
eWhl

KR

,(8.11)

er4 (ex cos W1ey sin W) sin u1ez cos u ,(8.11a)

eu4 (ex cos W1ey sin W) cos u2ez sin u ,(8.11b)

eW4 (2 ex sin W1ey cos W) ,(8.11c)

where a 2
fa22a1 . Since e has arbitrary direction, the mode can be oriented so as to

make Y m
l 4cos mWP m

l , where the last function is an associated Legendre polynomial.
The eight angle-dependent terms on the right-hand side of (8.11) are all orthogonal
to Y m

l . This confirms the absence of a perturbation at the resonance orders (l , m)
to first order in e but indicates the excitation of neighbouring orders. Since the
off-order modes excited by dp have excentric wave centres as well, their excitation
produces, in turn, a reaction at the original surface-harmonic, but one that is propor-
tional to e 2.

Coupling of modes due to this effect of finite excentricity may be expected to
become noticeable whenever adjacent frequencies are close to each other. This might
be held responsible for part of the deviations of (7.11) and (8.9) from reality, possibly
also for the proliferation of resonances at higher frequencies. The first conjecture is
supported by the following observation. Plotting the roots of (7.11) and (8.9) as a line
spectrum (fig. 1) shows that neighbouring orders are grouped in clusters of common
l1n j1n n . The experimental spectrum, as associated, visibly follows the same pattern
except that the mass values appear to repel each other within each group, so that the
discrepancies—theory minus experiment—are positive at the lower end of a group (the
J with l1n j1n n47 being the only exception) and negative at the upper end.

Two serious problems remain and only hints of possible solutions can be suggested
here. The first problem is that no model for the inhabitants’ concept of
‘spin’—oscillatory phase advance per geometrical rotation—has emerged so far,
besides the suggestion that three-dimensional modes correspond to hadronic fermions
and one- and two-dimensional ones to bosons. Secondly, inhabitants situated far
enough from the centre of their universe to observe deviations from eq. (7.11) should
also observe anistropy of their mass spectrum with respect to their axis e.

A common basis for the solution of both problems is created by assuming that all
normal modes with respect to the axis e are always excited and that the observed rest
frequency is an average. The beat between these geometrically normal oscillations will
trace out a Lissajous pattern. Uncoupled dipole modes of slightly different frequency
along and transverse to e cover all relative phases and, thus, give zero average ‘spin’.
Conservation of classical angular momentum (as seen from outside) might lock these
modes with a permanent relative phase shift. This would give ‘integer spin’. (In
inhabitants’ terms two geometrically orthogonal oscillations at p/2 relative oscillatory
phase constitute ‘unity spin’.) Note that any finite classical angular momentum which
the excentric oscillations considered here may possess must be due to the motion in
outer regions of the universe, the central region of n 8 (r) Y(u , W) carrying no linear
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momentum. Finite spin of monopole modes must be assumed due to their residual
dipole component at finite excentricity.

The three normal modes of excentric sectorial oscillations will trace out a
three-dimensional Lissajous pattern. This creates a prerequisite, at least, for the basic
feature of half-integer spin of requiring two full rotations about an axis before the
initial pattern is re-established. The model also suggests that such modes cannot be
superimposed.

Two objections will be raised against this association of particle masses with roots of
(7.11) and (8.9). The first one is that little or no order concerning other particle
properties than mass and no manifestation of the quark model (beyond the association
of mesons with l40 and 1 and of baryons with lF2) is perceptible. Clearly, there is no
obvious correlation of these features with the spherical Bessel and Neumann functions
invoked to calculate ‘mass’.

It should be noted, however, that (7.11) and (8.9) are formulae for mass, not particle
properties, and that the two are strikingly uncorrelated in reality as well. The model
not only reflects this fact but also offers an explanation as follows.

Each resonant configuration considered here possesses a granular wave centre
where potential and kinetic energy is concentrated, the pressure scaling with power
l11 and the velocity with power l12 of inverse radius. Since ‘particles’ in this model
are associated with propagating dislocations, it must be expected that ‘particle’
properties other than mass are local features, related to the granular wave centre. For
‘electric charge’ in terms of this model this is, indeed, the case (cf. sect. 9 and beyond).
Moreover—and in close relation as will be shown—any dipole motion of the central
molecular cluster controls the barycentre of the entire model—universe as dipole
displacements (for r b R) scale with the cube of inverse radius.

By contrast, the ‘mass’ spectrum (KR)i has been derived from continuum dynamics
at the outer boundary of the model universe, without any consideration of the granular
wave centre. Continuation of NsNPn 8 (Kr) to zero radius is implied, a configuration
which does not entail any net transport of mass along an axis even for l41.

The reason why this non-local treatment is correct (in first approximation) is that
near the wave centre the ratio of wave pressure p to displacement s—the local spring
constant contributing to resonance—tends to zero although pressure and displacement
separately tend to infinity (everything remaining finite, however, with finite granularity).

Therefore, in this model as in reality, ‘mass’ is apart from particle-like behaviour. It
is a non-local property in being controlled by bulk dynamics at the border of the
universe and only this dynamics is related to spherical Bessel and Neumann
functions.

A second possible objection is the existence of gaps in the associations: the fact that
not all roots of (7.11) and (8.9)—with N41 and 2 where it applies—correspond to
known particles. There are two kinds of such gaps. Firstly, modes which do not possess
a radial node of pressure (n j4n n41) fail systematically (with the exceptions
discussed below) to correspond to real particles. The probable explanation is that the
absence of a radial node prevents the balance of residual barycentre motion due to
wave centre excentricity. If this is the explanation, then it cannot apply to odd-order
zonal modes whose angular distribution Pl ( cos u) is inherently self-balancing. This,
then, is perfectly consistent with the observation that the modes (1111), ]1311( and
tentatively ]1511( do have plausible associations.

In addition there are, within the energy range covered, nine gaps out of 36 modes
which do have radial pressure nodes. Note, however, that for given order (ln j n n ) the
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configurations described by (8.9) and by the two variants of (7.11) are merely the result
of a split of one basic mode: the angular distributions are identical, the radial ones have
the same topology and the frequencies are close to each other too. One can hardly
expect, therefore, that all variants of the same order (ln j n n ) are sufficiently stable
to be observable in isolation. In fact, some experimental resonances in the energy
range considered are very short-lived (with full widths G up to 300 MeV) too.

However, as far as fig. 1 reaches in energy, all orders (ln j n n ) correspond to at least
one established particle-mass so that, in this wider sense, there are no gaps.

9. – Maxwell’s equations and the nature of electric charge

The model universe proposed here is a standing-wave resonator for compressional
waves where the irrotational term of eq. (7.2) gives rise to the spectrum of rest
frequencies. The solenoidal term alone, with div s40 everywhere, designates
dispersionless shear waves propagating freely with velocity c4kmOr—clearly the
equivalent of electromagnetic waves in vacuum. Indeed, the solenoidal part of (7.2) can
be written in the form of the following pair of coupled equations:

m˜3s42L
n

,(9.1)

˜3L4rs
n

(9.2)

which are identical with Maxwell’s in vacuum. The left-hand side of (9.1) gives (half) the
shear-induced torque on a rotated volume element, identifying the auxiliary quantity L
as an angular momentum per unit volume. Note that the pair (9.1)-(9.2) is ‘Lorentz
invariant’ while (seen from outside) it expresses Newton’s second law in an
incompressible medium.

Historically, Maxwell’s equations were preceded by just this model for the
propagation of light. It changed, however, into complicated ether mechanisms [1] of
unacceptable artificiality, brought about by various attempts at explaining coupling to
the macroscopic “ponderable bodies” which were supposed to constitute our reality.

The ultimate reason for rejecting any Newtonian model of electricity—an invalid
one as is claimed in sect. 3 and 4—was special relativity. Another problem appeared to
be the absence of partial conversion to longitudinal waves at skew incidence upon the
interface between different media. In this model there is only one medium (the
‘material’ with which electromagnetic waves interact being formed by molecular wave
centres therein) and the existence of travelling longitudinal waves is prohibited by the
closed reflecting boundary. A third seemingly fundamental problem, the existence of
electric charge [6], has also disappeared as the following argument shows.

The only plausible way of interpreting eqs. (9.1) and (9.2) as Maxwell’s is to
associate the mechanical displacement s with the ‘electric displacement’ D by
putting

Dfe 0 Efqs ,(9.3)

where q is a scale factor. The consequence is inescapable then that the ‘electric
charge density’ r e is associated with excess or deficit of ether volume, since the identity
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of r e4div D implies

r e4q˜ Qs .(9.4)

This ether (like its original 19th-century predecessor) is incompressible over any
distance much below the size of the universe. However, the concept of molecular
dislocations, already introduced in the context of the mass spectrum, offers a most
natural explanation for compressionless volume divergence, manifesting itself via the
finite rigidity m alone. The model is in agreement with reality: the electric charge
is a particle property which does not occur without associated ‘mass’ and it is
quantized—into e4qV0 in this model if V0 is the molecular volume, counted negative
for a hole. Our deeply rooted concept of indestructible material is conserved but refers
to electric charge rather than ‘mass’—in agreement also with experimental reality.

Macroscopically, then, the ‘electric charge density’ is formed by the number density
n 0 of excess or deficit dislocations, that is

r e4qadiv sb4qn 0 V0(9.5)

and the (area) density J of ‘conduction current’ must be taken as

J4qn 0 V0 vg(9.6)

since it is at the group velocity vg4˜k v that the dislocations propagate. Continuity in
the absence of compression requires that the diffusion velocity vg of a total dislocation
volume n 0 V0 per reference volume be accompanied by an average material velocity as

n

J b
in that volume. Therefore as

n

J b4n 0 V0 vg and the conduction current J is accompanied by
an internal displacement velocity

as
n

J b4
J

q
.(9.7)

Adding this to the right-hand side of eq. (9.2), multiplying everything with the scale
factor q and defining the ‘magnetic field’ by H/q4L/r—the mass density of angular
momentum—yields the complete equations

c 2 ˜3D42H
n

,(9.8)

˜3H4D
n

1J .(9.9)

The auxiliary status of the axial vector H and the concomitant asymmetry between
the two equations reflect reality; there are no magnetic monopoles.

Moreover, since the shear stress in an incompressible solid must break down at
some maximum shear angle w (the deviation from 907 in an infinitesimal fiducial square
with a radial diagonal), every central volume perturbation V0 will be surrounded by a
stress-free spherical volume whose radius rd is given by

r 3
d 4

3V0

4pw
4

r 3
0

w
42

2r 3
0

3e d

D0 ,(9.10)

where r0 (of either sign) is the molecular radius and e d4 [¯sr /¯r ]d is the radial
disruption strain (which differs from w since there is shear in two orthogonal
directions).
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If, as is plausible, the disruption angle w is small, the disruption radius rd is larger
than the molecular radius r0 . An association of rd with (half the) ‘classical electron
radius’ re /2—a cut-off radius for the accumulation of electrostatic ‘energy’—suggests
itself here and will be consolidated in the next two sections in which the disruption
phenomenon plays a central role. It seems worth stressing, therefore, that it is not an
additional ad hoc hypothesis but the inevitable consequence of the introduction of
granularity and of dislocations in the medium, requiring the formulation of two
additional material constants—r0 and w .

It will be noted that ‘electricity’ in this model represents the residues of material
motion—microscopic displacement from rest position and macroscopic migration of
molecular defects.

The spatial localization of isolated photons and g-particles—one of the problems
sidestepped by orthodox physics—asks for an explanation. Clearly, here, a photon is a
solenoidal wave packet resulting from localized generation. In the direction of
propagation it does not diffuse as it suffers no interaction with the boundary of the
universe and, hence, no dispersion. Transverse localization must be due to the presence
of a discrete molecular perturbation. A suitable plane wave consists of a cylindrical
dipole Neumann function whose axis is formed by displaced molecules strung along the
direction, z, of propagation and an amplitude spectrum exp [iv(t2zOc) ].

10. – Disruption modes—the leptons

The primary feature of the compressional resonances associated with hadrons (sect.
6, 7 and 8) is the n-mode (spherical Neumann function) component. Physical reality
requires that the divergence of n 8l (r) be interrupted by a discontinuity of the medium
near a wave centre and it was assumed that this takes place at a radius comparable to a
molecular radius r0 . A self-adjusting mechanism of central intermolecular forces,
responding to large displacements, has to be invoked to explain the balancing of
dynamic pressure near r0 . This model is made tenable by the fact that the ratio
v 2 rr0 O(l11) of dynamic n-mode pressure to concomitant radial displacement
decreases linearly with r0 .

By contrast, what is considered in this section are dipole modes in which a
transition from n-type to singularity-free j-type motion takes place at the disruption
boundary of radius rd , necessarily formed in the presence of a permanent volume
dislocation. Since the small-argument j1-mode is identical with rigid-body motion
(along a vertical z-axis, say), these modes are completely devoid of intermolecular
distortion inside the radius rd .

Near rd the spherical Bessel functions (6.2) and (6.3) are given by the asymptotic
terms of their power series expansions [7]

(10.1) jl (u)4
u l

(2 l11) !!
g12 1

2
u 2 1

1!(2 l13)
1 g 1

2
u 2h2 1

2!(2 l13)(2 l15)
R h ,

(10.2) nl (u)42
(2 l21) !!

u l11 g12 1

2
u 2 1

1!(122 l)
1 g 1

2
u 2h2 1

2!(122 l)(322 l)
R h .

Substitution into (7.4) and (7.5) gives the dynamic dipole pressure amplitude just inside
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and outside the disruption boundary as

p j
1d4v 2 rrd s×z cos u ,(10.3)

p n
1d42

1

2
v 2 rrd s×z cos u ,(10.4)

respectively, if s×z is the common peak north-pole (rd , 0 ) displacement at r4rd . The two
dynamic pressures do not balance but add to a surface density of free radially outward
force given by

fd4
3

2
v 2 rrd s×z cos u .(10.5)

It equals the inertial surface pressure of a sphere of effective mass

meff42prr 3
d(10.6)

oscillating bodily with frequency v and amplitude s×z along the z-axis, one third of this
being due to the n-mode motion outside rd .

The first case to be considered is the (2101) or ‘pion’ mode, modified in such a way
as to account for an n-j transition at radius rd . The effect of this transition must be
expected to be a loading of the (2101) resonator by the effective mass (10.6) of the
disrupted sphere and, therefore, a decrease of frequency. A tentative association with
the muon suggests itself at once. It reflects the close relation between pions and
muons—charged pions decaying almost exclusively to muons at about 25% loss of
‘mass’—as well as the fundamental difference of presence vs. absence of ‘strong
interaction’—represented here by the presence vs. absence of near divergent
intermolecular distortion and concomitant stress at a molecular wave centre.

In calculating the resonance of this loaded (2101) mode—which will be called
(2101)d—two assumptions are made. The first one is that, for rDrd , the mode is formed
by simple addition of the dipole n-mode pressure created by the oscillating sphere of
radius rd to the unperturbed (2101) pressure field defined by this mode’s j1-to-n1 ratio
a/b . The second assumption is that the resulting frequency remains far above the
resonance formed by the interaction of rigidity with the effective mass (10.6).

Since the dynamic pressures (10.3) and (10.4) do not balance out, the second
assumption implies that the vibration of the disrupted sphere must create an n-mode
pressure field which very nearly cancels the unperturbed elastic n-mode pressure. The
finite rigidity (which will be held responsible for the very low-frequency resonance
discussed below) guarantees the presence of a small residual n-mode at rDrd , enough
to define a ‘particle’. However, the near cancellation of the unperturbed n-mode with
that created by the n-j transition at rd makes the elastic n-mode pressure nearly zero
everywhere. What is left, as seen from inside the moving system, is the apparent
inertial surface pressure bn1 (KR) cos u implied by N42 and this must cancel with the
j-mode, as stated by (7.6). In other words, the resonant value (KR)d

2101 coincides with
the node of elastic pressure—given by aj1bn40—of the unperturbed (2101) mode.

The (2101) pressure node is easily found by inserting (KR)210140.973508 (the
lowest finite root of (7.11) with N42, l41) into (7.7) so as to obtain a/b49.789344 and
then solve (7.6) with this value of a/b . The result of this entirely analytical
manipulation, devoid of any free parameter, is

(KR)2101

(KR)d
2101

41.321267 .
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The experimental mass ratio of the charged pion to the muon,

1 .320931 ,

is lower by only 2 .531024 relative error!
In the absence of rigidity the next lower mode would have zero frequency.

This (2100) mode is indeed unique in making the left-hand side of (7.11)—namely
23(KR)3 /10 for KRb1—vanish to third order in KR. A small but finite rigidity must
be expected to give this mode, which will be called (2100)d , a finite frequency. An
identification of this low and isolated resonance with the electron is almost inescapable
at this point. In the terms of this model it forms a unique ‘light lepton’ whose ‘mass’ is
entirely ‘electric’ in being independent of k .

At first sight it might appear that the frequency in question is essentially equal to
c/rd . The analysis presented in appendix B shows that this would indeed be the case,
with a numerical factor k6 if the boundary of rigid-body motion remained fixed in the
oscillating medium. Such behaviour would, however, be at variance with the assumption
that the boundary is created by disruption. As, by definition, the normal force at the
disruption boundary cannot exceed the disruption stress, any finite momentum
acquired by the mass of the sphere will make it break through the surrounding medium
almost freely. It does not matter in this context that the disruption boundary
propagates through the medium with 1Ow times the material velocity (cf. the
caterpillar motion discussed in appendix B) so that an individual molecule cannot
follow free ballistic motion for more than a very short time. Every volume element
overtaken by the boundary transmits its axial momentum forward via central elastic
collisions between neighbouring molecules, the propagation—at compressional wave
velocity—being essentially instantaneous. In the absence of interaction with the
boundary of the universe this mechanism keeps the j-n boundary (the boundary of
rigid-body motion) concentric with the disruption and there is no net force. This, in
fact, is the case for macroscopic transport of ‘electric charge’ which cannot have any net
interaction with the boundary of the universe.

For isolated oscillatory motion a restoring force proportional to NwN does result
from the impossibility of net transport of excess or deficit material within the finite
volume of the universe. If KRb1, as was the basic assumption for the mode under
discussion, the ether must be considered incompressible all the way out to the
boundary radius R. Since, therefore, a translation of the monopole field associated with
an isolated ‘charge’ would displace the entire universe by an amount inversely
proportional to its mass rR 3 (cf. appendix B), the disruption cannot follow the
oscillating mass at the centre of the (2100) mode in question. As a consequence of the
resulting excentricity, the finite dipole force given by (B.19) acts on the effective mass
(10.6) although there is no such force at the disruption boundary. The result is the
resonance frequency given by (B.20), namely

v d
210042NwN1O2 c

rd

.(10.7)

Note that this ‘mass’, like all others, is non-local since it is due to the interaction of
the wave centre with the boundary of the model universe although the value of v d

2100

does not depend on KR to the approximation in which it is treated here. Reversibility of
disruption is assumed, here as well as in sect. 11. The tentative model of rigidity
proposed at the end of appendix B does have this feature.
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If rd (the cut-off radius of ether rigidity) is associated with half the classical electron
radius re /2 (a cut-off for ‘electric energy’) the association of v d

2100 with the electron
makes NwN1O2 equal to one quarter of the fine-structure constant a41/137 .04 .
Additional support for this association will be forthcoming in sect. 11. It follows that
NwN43.328 mrad r042.104310217 m and q44.10931030 AsOm3 . Such relatively
coarse granularity may be considered uncomfortable. Note again, however, that r0 does
not form a cut-off wavelength, since resonance and coupling are due to the
participation of a large number of molecules. The physical ether displacement s with
respect to the boundary of the universe amounts to 2 .15310233 m for an electric field
of 109 V/m and to 1 .56310221 m at half the classical radius.

In this model, single electron creation from baryon decay (such as nKpe2 n– e )
corresponds to the creation of a zonal mode from a sectorial one and of concomitant
axial momentum. A similar problem of momentum conservation also occurs in the
(2101)K (2101)d conversion (modelling p6Km6 n m ) since the latter mode carries
axial momentum at its centre and the former does not. It would appear, therefore, that
both types of conversion require the simultaneous creation of a companion dipole mode
of opposite displacement, a mode which must possess an n1 -j1 transition at radius rd

although it contains no permanent dislocation.
The necessity of these classical companion modes clearly finds its counterpart in

reality in the necessity of neutrino production as a byproduct of single charged lepton
creation. The self-balancing frozen dipole stress calculated in appendix B suggests
itself as a model. This will develop if an ether sphere of radius rd is disrupted and
displaced, with attendant development of dipole stress at rDrd , then fused again with
its sourroundings. The boundary can propagate the n1 -j1 transition by local curl
bridging. As this entails no irrotational elastic force, zero rest frequency results.

In summary, then, the modes analysed in this section represent leptons by virtue of
the absence of any distortion and associated elastic stress within the disruption radius
rd which is half the inhabitants’ ‘classical electron radius’. The ‘charge’ is represented
by an excess or deficit molecule but its place within rd is undefined and the
corresponding expansion or contraction of volume uniformly distributed within a
sphere of liquid. Neutrinos also have a bodily oscillating core but contain no excess or
deficit volume, zero rest frequency being a necessary consequence.

The point-like nature of leptons corresponds to the geometrical centre of the
structureless disruption sphere. The ‘strong force’, by implication, must be related to
the nearly divergent intermolecular distortion associated with n-mode penetration
down to molecular size.

What remains unexplained is the absence of higher-mode versions of the muon and
the difference between different varieties of neutrinos. Also unexplained is the t-lepton
with its mass above that of the stable hadrons (and above the range of quantitative
success of the hadron model of sect. 7 and 8).

The association of leptons with dipole oscillations seems to be inconsistent with the
result of sect. 7 and 8 where hadronic fermions were associated with three-dimensional
modes. It is, however, a characteristic feature of the modes considered here that the
bodily moving disruption sphere carries local classical momentum and, hence, angular
momentum 2prr 2

d eRe3s
n

at the excentric position eRe . The effect is independent of rd

since NsNPr 23
d . Since all modes of this section are of N42 type, they are subject to

inertial coupling to a partner via the surface of the universe (non-locality!). The partner
might be the proton ‘charge’ in a hydrogen atom; it will be the partner-in-creation as
long as a newly formed lepton pair remains undisturbed. The coupling of two discrete,
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excentric and non-coincident oscillatory masses does appear to contain the necessary
element of three-dimensionality. This is not true, by contrast, of the zonal modes
associated with hadrons—not even for N42 dipole modes—as an n-mode reaching all
the way to its centre contains no localized momentum there. The statement includes
‘charged’ modes since the excess or deficit molecule is not supposed to be localized
within the disruption sphere it creates.

11. – The Coulomb force

An explanation of the electrostatic ‘force’ in terms of ether rigidity will cover one of
the four ‘forces’ of nature; it will also form the keystone for the model of classical
electricity presented in sect. 9.

For convenience, the words positive or negative charge (without quotation marks)
will be used for one excess or deficit molecule, respectively, without commitment as to
the polarity of the corresponding electric ‘charge’. Two charges at distance z12 from
each other define a vertical z-axis, the upper one being called test charge, the lower one
source charge, notwithstanding the obvious symmetry of the situation.

It will be sufficient to show that the ether perturbation produced by the source
charge acts on the test charge in such a way as to impart on any wave centred therein a
rate of change of wave number given by

dk

dt
46a

c

z 2
12

,(11.1)

the upper sign (repulsion) being valid for equal signs of the two charges. It will be
sufficient, moreover, to demonstrate this in the rest frame of the test charge.

It might be thought that the model attempted to lend (imagined) reality to the
concept known as Maxwell stress tensor. This concept is a phenomenological one,
however, already concerned with the inhabitants’ ‘force’ ˇ¯vO¯z . In fact, the
Faraday-Maxwell concept of ‘electric stress’ supposed to exist even in the absence of a
test ‘charge’ and in unbounded ‘vacuum’ does not find a direct counterpart in this
model’s ether stress. The monopole stress created by an isolated volume perturbation
decreases with the inverse third power of distance—its gradient with inverse
fourth—and cannot be invoked. And the mutual body force created by direct
interaction of two monopole stresses in an unbounded medium is zero.

The Coulomb force must be associated, therefore, with the displacement of the
medium surrounding the test charge with respect to the closed boundary of the
universe, representing ‘absolute space’. Since the total volume of this universe is
statically incompressible, such an effect is bound to exist and it is the one already
invoked to explain the electron rest frequency. In what follows, it will be assumed at
first that the test ‘charge’ is in fact an electron, the dislodged molecule forming a
(2100)d mode.

The unperturbed ether displacement due to the source charge amounts to

sz04w 1
r 3

d

3z 2
12

(11.2)

with the sign of w 1 .
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The test charge cannot follow the displacement (11.2) directly. This results in an
n-mode strain of (north-pole) amplitude

s×z42w 1 w 2
r 3

d

3z 2
12

(11.3)

at the disruption radius—as if the sphere were displaced by 2w 2 sz0 . Substitution of s×z

into eq. (B.17) gives the total force

Fz44pmw 1 w 2
r 4

d

z 2
12

,(11.4)

upward (repulsive) for equal signs of w 1 and w 2 . The mechanism is similar to that
generating the (2100)d-mode (‘electron’) restoring force: it creates a net force Fz at
constant disruption stress.

The force Fz does not relax the strain directly but sets in motion the caterpillar
migration discussed in appendix B and sect. 10. Now, however, the effective mass is
only that of the volume perturbation V0 , hence only w 2 times meff of (10.6), so that the
material inside the disruption sphere suffers an acceleration in z-direction of

u
n

42w 1 c 2 rd

z 2
12

.(11.5)

As is shown in appendix B (cf. the arguments leading to (B.18)) the propagation of
charge in the bounded incompressible medium requires that the disruption limit
propagates at v4uOw . This gives

v
n

42
w 1

w 2

c 2 rd

z 2
12

462c 2 rd

z 2
12

,(11.6)

the upper sign—repulsion—being valid for equal signs of the two charges.
The free propagation of the (2100)d mode, as of all others, is due to the solenoidal

(double curl) term of eq. (7.2). Since the rigidity m is zero inside the disruption
boundary, the only way its contents can follow the group motion is by means of the
divergence-free migration velocity v4uOw which involves classical momentum,
transmitted by elastic intermolecular collisions. Since, therefore, v is identical with the
group velocity c 2 k/v of the electron, (11.6) is identical with

d

dt
g k

v
h4 1

vg 2

dk

dt
462

rd

z 2
12

.(11.7)

For the inhabitant observer in the electron rest frame, for whom the Lorentz
transformations of time and distance are valid and v appears as the rest frequency v 0 ,
(11.7) reads

dk 8

dt 8
462

v 0 rd

z 2
12

.(11.8)

Dropping the dashes and substituting (10.7) for v 0 yields, indeed, Coulomb’s law in the
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form of

dk

dt
464NwN1O2 c

z 2
12

.(11.9)

The same result is obtained if the inhabitants’ view is taken directly and their law for
the addition of colinear relativistic velocities is employed for adding velocity
increments v

n

dt to vg .
Equation (3.7) identifies (11.9)—obtained from group acceleration—with a

refractive frequency gradient given by

2
¯v

¯z
464NwN1O2 c

z 2
12

.(11.10)

It is instructive to derive this refraction directly, by means of the following
argument [8].

In an ether frame, the material velocity u at the disruption centre is zero, but there
is a finite acceleration ¯uz O¯t4u

n

. In a group rest frame (still seen by the outside
observer) a central flow velocity vf42vg and a flow acceleration dvf Odt4u

n

2v
n

are
observed. Continuity in this frame requires the inclusion of a convection term
(vf Qgrad ) vf so that (in z-direction)

u
n

2v
n

4
dvfz

dt
4

¯vfz

¯t
1vf Q˜vfz4u

n

2vg Q˜vfz(11.11)

and thus, with vg4c 2 kOv and v
n

from (11.6):

k Q˜vfz4
v

c 2
v
n

462rd
v

z 2
12

.(11.12)

The product of a wave number and a velocity gradient produces a negative Doppler
gradient of local frequencies v(z) (whose Doppler-shifted transformations in the group
frame all equal the carrier frequency v), thus

2
¯v(z)

¯z
462rd

v

z 2
12

.(11.13)

Since there cannot be a discontinuity of phase in the medium, (11.13) must be identical
with 2¯vO¯z in the neighbourhood of the wave centre, so that (3.7) gives the
associated ‘force’ dk/dt . So far, this is the outsider’s point of view; but since it is already
taken in an ‘electron’ rest frame the only change for the inhabitants is their
interpretation of v at the right-hand side of (11.13) as their electron rest frequency v 0 ,
to be identified with v d

2100 of (10.7). Again, Coulomb’s law is the result if rd is associated
with half the classical radius.

The argument exposes a Doppler gradient as the translator from the outside
observer’s classical dynamics to the wave kinematics which form the inhabitants’
‘dynamics’. The factor v in the numerator of (11.13) is intriguing—a force proportional
to test-mass as in gravity. It is, however, cancelled by the factor rd .

The result (11.9) establishes mutual agreement among the three claims made in
connection with disruption:
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– that the disruption radius is the cut-off radius re /2 ;

– that the (2100)d mode is the electron;

– that the square root of the disruption shear angle NwN is one quarter of the fine-
structure constant a .

An extension of this ‘Coulomb force’ to an arbitrary host mode carrying a
permanent molecular dislocation at its centre may be based on the observation that the
caterpillar migration appears to form the only possible way of charge transport. The
corresponding (2100)d motion cannot be freely propagating but must be locked to the
host mode, whatever its configuration. A mechanism for this is given by the fact that
the disruption limit forms a common boundary for finite-rigidity (solenoidal)
propagation of both modes. If the host-mode wave centre shifts with respect to the
caterpillar momentum centre, a force analogous to (B.19) appears and imparts a rate of
change of momentum to the medium inside rd . The mechanism does have the
characteristic of a phase-lock system, a wave number correction (dk/dt) produced by a
phase error (kdz).

In the presence of a source charge at distance z12 , the force (11.4) adds the
acceleration v

n

of (11.6) to the (2100)d-propagation. The resulting acceleration of
disruption is not equal to v

n

, however, but reduced by the synchronizing force in such a
way as to equalize the rates of change of wave number of the two locked modes. This
implies that

v d
2100 v

n

4v x v
n

gx ,(11.14)

where the index x is given to the host mode. It follows from this and either one of the
derivations of eqs. (11.9) and (11.10) that they remain valid for any charge-carrying
mode.

If an ether molecule could be spontaneously created, the associated monopole
displacement would spread with compressional velocity, thus ‘instantly’, just as a radial
electric field would emerge instantly from the fictitious creation of an isolated electric
charge. It is a fundamental feature of this model as well as of reality that this is
impossible. After pair creation, a molecular dislocation can only migrate with vgEc .
This dipole motion does not create compression and the attendant displacement field
can only spread with the shear velocity c, creating the familiar ‘retardation’.

Whether actual Coulomb scattering at impact parameters comparable with or
smaller than rd is properly replicated remains to be studied and may become a test for
the range of validity of this simple model. At least the absence of a hard core is
properly represented.

It must be admitted that the analysis of disruption given here requires
consolidation even within the realm of classical mechanics, since, increasingly, as the
arguments advanced, the derivations relied on intuition and plausibility for want of
rigour. Perhaps more seriously, it may be objected that continuum concepts are being
employed throughout although the disruption sphere contains a finite number of
molecules. While this appears justified for analysing average behaviour, the coarse
granularity of the propagating medium might be taken as a suggestion that the
model—at least in its naive simplicity—has been stretched to its limits and cannot
be expected to render finer details or non-hadronic (non-compressional) phenomena
substantially above 10 GeV, where vcc/r0 . On the other hand, the coarseness of the
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medium, permitting continuum analysis for averages but not for individual events,
reflects the ‘indeterminacy’ of reality.

An ether model which replicates the three bulk constants mOr , k/r , w in a natural
way may be constructed from hard frictionless spheres which are held in nearly close
packing by a hydrostatic pressure but prevented from self-locking by the presence of
dislocations. This construction will be briefly sketched at the end of appendix B. It
should be considered a mere proof of existence.

12. – The Schrödinger equation

This model universe consists of waves which propagate in a medium possessing a
very large ratio of bulk modulus k to rigidity m , a simple molecular structure and a
large spherical boundary. It has been shown that in undisturbed regions near the
centre of this universe vibrational displacements s(r , t) from rest position are governed
by the differential equation (6.1), namely (3)

¯2

¯t 2
s(r , t)4c 2 ˜2 s(r , t)2v 2

0 s(r , t) ,(12.1)

in agreement with the ‘free space’ dispersion relation (3.1), namely

v 22v 2
04k 2 c 2 .(12.2)

Here r4xi , k4NkN and v 0 is one of the rest frequencies or ‘masses’ of which
representative examples have been calculated in sect. 7, 8 and 10.

The model supports free wave packets which form around molecular dislocations
migrating with group velocity vg4gradk v . The central Fourier component is given by

s(r , t)4s0 (r) e 2i(vt2k Qr) .(12.3)

In non-relativistic approximation, that is to first order in (v2v 0 )Ov 0b1, the free-
wave dispersion takes the form

v Df (v2v 0 )4
k 2 c 2

2v 0

(12.4)

and this expression designates the inhabitants’ ‘kinetic energy over ˇ of a free particle’.
With this dispersion (corresponding to a linearized group velocity vg4kc 2 Ov 0 ) the
wave (12.3) satisfies the differential equation

2i
¯

¯t
s(r , t)4

c 2

2v 0

˜2 s(r , t)2v 0 s(r , t)(12.5)

containing only the first derivative with respect to time.

(3) In this section the convention of using dots for material-motion time derivatives will be
dropped in favour of ¯O¯t . Also, the phase rotation for positive frequency will be taken as
clockwise (thus i replaced by 2i with respect to all other sections) so as to conform to general
usage in the context of quantum mechanics.
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The proximity of another wave centre can be expected to perturb the medium in
such a way as to create refraction for nearby waves and this may be expressed in terms
of a local perturbation dv 0 (r , t) of the rest frequency. The simplicity of the model
offers only few possibilities for the formation of a refractive gradient ¯v 0 O¯xi , but the
‘forces’ of our real world are in fact limited to just four also, one of which is explained in
terms of this model in sect. 11.

Adding a refractive frequency shift dv 0 (the result of integrating (11.10) from
infinity to r for the Coulomb ‘potential’) to v 0 changes (12.5) to

2i
¯

¯t
s(r , t)4

c 2

2v 0

˜2 s(r , t)2 (v 01dv 0 (r , t) ) s(r , t) .(12.6)

The simple addition of dv 0 is justified provided the gradients and rates of change of
dv 0 (r , t) are adiabatic, that is the fractional change per radian of oscillation remains
small.

Taking the divergence on both sides of (12.6), multiplying with 2k and
remembering that 2k div s is the pressure p, one obtains

2i
¯

¯t
p(r , t)4

c 2

2v 0

˜2 p(r , t)2 (v 01dv 0 (r , t) ) p(r , t) .(12.7)

It may be noted that taking the divergence of (12.1) results in Schrödinger’s
relativistic (or Klein-Gordon) equation. In either case, the change from the vector field
s to the scalar p discards all information about the solenoidal part of the motion,
contained in the double curl component of the vector Laplacian. Equation (12.7) cannot
be expected, therefore, to represent intrinsic angular-momentum terms like the
‘magnetic field’.

The condition of adiabatic variation imposed on dv 0 (r , t) permits factoring out the
steady-state time dependence by putting p(r , t)4p×(r , t) exp [2iv 0 t] making p×(r , t)
the distribution in space and time of a complex pressure amplitude. With this, eq. (12.7)
takes the form of

2i
¯

¯t
p(r , t)4

c 2

2v 0

˜2 p×(r , t)2dv 0 (r , t) p×(r , t)(12.8)

or of

2˜2 p×s (r)42
v 0

c 2
(v D2dv 0 (r) ) p×s (r)(12.9)

if dv 0 does not depend on time at all so that p(r , t)4p×s (r) exp [2ivt].
Clearly, (12.8) and (12.9) are the time-dependent and stationary versions,

respectively, of the Schrödinger equation if the amplitude p× of ether pressure is taken
as the wave function, an association which is in fact very plausible. As Np×N2 Ok is the
density of compressional energy, the wave function p× can be normalized by a division by
the total compressional energy. In the non-relativistic regime considered here this is
nearly equal to the total wave energy and, hence, constant in any independent system.
Moreover, even for vDv 0 the absence of linear coupling between the irrotational and
solenoidal terms of eq. (7.1) suggests invariance of compressional energy in a closed
system.
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The association equals a particle’s ‘position probability density’ with the density of
compressional wave energy and the ‘expectation value’ of a measurable quantity with a
volume average weighted with this energy. Note that here the term energy stands for
the classical dynamic quantity seen by the outside observer, not the inhabitants’
‘energy’. And it is to be expected that enlightened inhabitants will employ the
kinematic operators i¯O¯t, 2i grad and 2ir3grad for their ‘abstract’ description of
hidden but imagined amplitude transients in a world of patterns where the
corresponding eigenvalues, the steady-state kinematic entities frequency, wave
number and angular wave number appear to them as ‘dynamic’ and are called (total)
‘energy’, ‘momentum’ and ‘angular momentum’.

In the presence of several interacting wave centres, the total pressure amplitude p×t

is the phasor sum of the partial pressures. Since the refraction dv 0 (r , t), called
‘potential’, depends on the coordinates of all participating centres, eqs. (12.8) and (12.9)
become multidimensional. If it is true, then, that the compressional wave energy
supplies a weighing function, the cross products of partial pressures contained in p×t p×*t
give it for the complete configuration.

Nothing new can be deduced from this model for a free particle, where the abstract
notion of a wave function has been merely replaced by an (imagined) wave pressure.
There are, however, two fundamental problems, concerning particle interaction and
bound states, which have to be faced here although orthodox physics refuses to do so.

The orthodox interpretation of the ‘wave function’ has to insist on its fictitious-
probabilistic nature, reverting to ‘reality’ only upon its instantaneous reduction to a
specific result by the act of ‘observation’—an act which necessarily involves the interaction
of propagating dislocations in this model. It seems indeed very plausible, then, that
the creation of new wave centres at the expense of original ones, implied by such
interaction, occurs at positions whose probability is proportional to the original energy
density, but also that such molecular relocation, or jump, will occur at compressional
wave velocity (of the order of the pion rest energy times ROˇ), thus instantaneously.
The claim remains a qualitative one here, but the process appears to be accessible
to quantitative simulation.

A second and related problem occurs in the description of bound states. It is in fact
an essential part of orthodoxy to abstain from forming models of the four ingredients
of Coulomb bound states, namely the law of dynamics (3.1), the existence of an
elementary electric charge, the Coulomb force and its continued action when the point
charge has been spread out into a standing-wave pattern. Since this theory proposes a
model covering the three former facts and as migrating molecular perturbations play a
fundamental role therein, it becomes necessary to accept their continued presence in
bound states as well.

Naively, therefore, the electron in a ground-state hydrogen atom might be
imagined to be identical with an unmodified disruption sphere carrying out orbital
migrations, at the Bohr radius re Oa 2 and with group velocity ac , around a ‘charged’
compressional (1212) wave centre, the refraction (11.10) making the phase advance, at
velocity c/a , curl around and close in itself. Spherical symmetry must then be explained
by continuous precession of the orbital plane.

This return to pre-1926 orbiting electrons is unsatisfactory but it is also partly at
variance with the present model and suggestive of the following modification. The
radial gradient of tangential group velocity ¯2 vO¯r ¯ku associated with (11.10) must be
expected to spread out the disruption volume into spherical shells. In the ground state
there is one such shell (presumably occupying a fractured molecular layer). In the
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absence of any preferred direction, tangential (classical) momentum in the layer and
concomitant group velocity outside, average out to zero. The oscillations are purely
radial and so synchronized as to form the breathing motion associated with l4m40.
Although the perturbation of molecular order associated with ‘charge’ is spread around
the (1212) wave centre, it is still due to exactly one excess or deficit molecule. It will,
thus, coalesce again into a regular disruption sphere at the centre of a free (2100)d

mode as soon as the refraction is cancelled due to interaction with a third particle. The
‘ionizing potential’ of 13.6 eV/ˇ is the frequency shift (12.4) with respect to v 04v d

2100,

taken at the Bohr radius a04 lCe Oa4rd O8w , defined by the phase closure a0 ku41. The
same result is obtained by integrating (11.10) from a0 to infinity and taking into account
the self-shielding which reduces the effective proton charge (the radial displacement
due to the excess or deficit molecule at the (1212) centre) by one half at the middle
layer of the (2100)d disruption shell.

It remains to be demonstrated—but appears quite likely at this point—that the
model is able to replicate the (partly disconnected) charge distributions of excited
states as well. The coarse granularity of the model ether precludes the formation of
smooth patterns for individual atoms but not on average over a large number and this
is consistent with the randomness of individual events. Spontaneous mode conversion
by molecular rearrangement will be at compressional velocity, hence ‘instantaneous’.
The matter will not be pursued further here but proposed for quantitative simulation,
one of the many occasions to test this model which is supposed to expose what the
inhabitants cannot observe, and (a fortiori) what happens when they do not look.

The formation of nuclei, the only other case of stable bound states occurring in
nature, must be explained by the mutual coupling of (1212) modes via the strong
refractive gradients which may plausibly be assumed to exist near n-mode wave
centres. The ‘force’ must be attractive, which means that ¯vO¯r must be positive, if a
bound state is to be formed. The concomitant positive gradient of phase velocity at
given and constant oscillation frequency v , namely

y ¯vp

¯r
z

v4const

4
vp

2v D

¯v 0

¯r
,

makes propagating (1212) modes curl into each other.
A quantitative analysis is beyond the scope of this paper but might yield new

information and constitute another test for the model. Qualitatively, there is no
problem. A number n of coupled (1212) resonators will exhibit a comb of n closely
spaced modes whose central frequency is close to but below the free (1212) frequency.
The inhabitants add the n frequencies and call the sum (contained in the
cross-products of partial pressures) the ‘nuclear mass’.

13. – Summary and conclusions

It is claimed that—quite unexpectedly and in violation of a dogma—the most
elementary features, at least, of our reality can be quantitatively represented by a
classical mechanical model of striking simplicity. The features of reality treated here
do not extend to the subjects of state-of-the-art research but they do include special
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relativity, elementary quantum mechanics, a mass spectrum splitting into hadrons and
leptons and classical electricity.

In considering the model, a clear distinction must be made between the point of
view of its external observer—generally taken here—and that of hypothetical model
inhabitants who are claimed to experience their universe as we experience ours.

The only material constituent of this model is a single and universal medium for the
propagation of classical mechanical waves. The assumed medium is subject to the
combination of Newton’s and Hooke’s laws—expressed by eq. (7.1)—with invariable
mass density. Thus, when viewed from outside, this model is rigorously governed by
the Newtonian-Galilean dynamics which we believe to experience in the limits of low
velocity and large dimensions. The medium is assumed to be devoid of any structure
other than being composed of very small molecular constituents and being contained
within a very large closed boundary. It is also assumed to be devoid of any motion
beyond sub-molecular perturbative displacements from rest position. There are, in
particular, no ballistic particles.

The model universe formed on this macroscopically homogeneous and stationary
medium, including the inhabitants of this universe and everything available to them, is
to consist entirely of propagating perturbations so that group velocity of wave patterns
is the only manifestation of motion.

It is a consequence of this construction that any model inhabitants must necessarily
live inside a purely kinematic world of patterns, where time and space are their only
meaningful entities. The inhabitants are, of course, free to define a system of
‘dynamics’ of their own by multiplying the kinematic quantities frequency v (2p over
period) and wave number k (2p over wavelength)—which can be counted against the
system of internal references introduced below—with a universal scale factor ˇ and call
the results ‘energy’ and ‘momentum’, respectively. It follows at once, however, that this
system of ‘dynamics’ must be subject to the familiar uncertainty relations—the
mathematical fact, applied to conjugate variables, that the rms width of a distribution
times the width of its Fourier transform cannot be smaller than one half—since these
relations, called bandwidth theorem in classical wave physics, impose a fundamental
and unsurmountable limit on the transmission of any information by wave patterns.

Even a solely kinematic world requires references for time and space in order to be
recognizable. Since the absence of material structures is to be a fundamental feature of
the medium, these references are assumed to be formed, instead, by a universal
propagation velocity c combined with a spectrum of intrinsic resonance frequencies
v 0 i—called ‘rest energies’ ˇv 0 i or ‘masses’ ˇv 0 i Oc 2 by the inhabitants. Since the model
must have these features anyhow in order to match reality, this construction, which
makes the mass spectrum the only reference of the inhabitants’ time, is the most
economic one possible.

It is pointed out, then, that the dispersion relation v(k) of eq. (3.1), which fully
creates for the model inhabitants what we call special relativity, is indeed the
dispersion of a classical medium consisting of a three-dimensional ensemble of identical
coupled harmonic oscillators, provided that each oscillator has a resonance spectrum
v 0 i matching our rest energies, that the coupling is frequency-independent and
transverse to wave propagation and that the medium exhibits no graininess to
inhabitant observers. These required properties can be summarized by the statement
that the medium must possess an appropriate spectrum v 0 i of intrinsic resonances in
addition to the more familiar properties of finite mass density and rigidity, zero
viscosity and almost vanishing compressibility.
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Thus, already at this stage, relativistic dynamics, the Lorentz transformations (cf.
sect. 4 and appendix A) and the uncertainty relations emerge as deducible
consequences. In short, all apparently ‘material’ structures of our world are declared
illusions while reality is assigned to the seemingly ‘abstract’ kinematic entities of
quantum wave mechancis. At first sight, little seems to have been gained at this point,
since there remain the problems, not only of constructing a plausible medium with the
required properties, but also of accounting for the manifest existence in reality of
particle-like interaction centres and for the probabilistic nature of any description by
waves. The first problem might be expected to lead to the introduction of unacceptable
contrivances, reminiscent of 19th-century ether models. The second and third one
appear to have been the reasons why all particle-free pure-wave models have been
discarded long ago and almost from the outset.

Here it is claimed, however, that a quantitatively suitable classical-model medium
does exist, and that it is of seemingly barren simplicity. In fact, all that is required in
addition to finite rigidity m and mass density r is a very large but finite modulus of
compression k (so that k/m amounts to many tens of orders of magnitude), a free
spherical boundary at a very large radius R—the radius of the model universe—and a
very small but ordered molecular structure, however simple, in which dislocations can
develop and propagate.

Explicitly, this model universe may be imagined as a large spherical assembly (a
bag of radius R) of small frictionless spheres whose hardness is such as to produce the
bulk modulus k . A coherence pressure p0 compresses these spherical molecules to a
packing order just short of coordination number 12. In fact, the bulk density reaches
the maximum permitted by the presence of dislocations which prevent the
configuration from locking into complete 12-connection. This bag model exhibits a
disruptible and reversible rigidity m (see the end of appendix B) which is roughly equal
to p0 and, thus, unrelated to the arbitrarily large bulk modulus k .

Strikingly, no further constructions or assumptions are required. Yet, what unfolds
from these spare if unorthodox ingredients is a broad-brush picture of elementary
physics. It includes most, though not all, of what was known around 1960 and, although
there is no representation of subsequent developments, there is no flagrant
contradiction either.

In this model the ‘rest energies’ v 0 i are formed by standing compressional waves
which shuttle between opposite boundaries of the entire universe in times
commensurate with ˇ over rest energy. They form a spectrum of cavity resonances
v 0 i4 (KR)i ck /R , where ck4kkOr is the compressional wave velocity and (KR)i a
spectrum of numerical factors. Molecular dislocations, called ‘particles’ by the
inhabitants of this universe, form compressional wave centres where pressure and
displacement nearly diverge but remain finite due to the finite molecular size. For wave
centres not too far from the centre of this spherical cavity-universe the spectrum of
compressional resonances is approximated by the roots (KR)i of eqs. (7.11) and (8.9);
they relate the spherical Bessel and Neumann functions jl , nl with their derivatives
and contain no free parameter.

An association of these spherical-cavity resonances with the low-energy hadron
spectrum is depicted in fig. 1 (sect. 8). The agreement—at 1% level—is striking at first
sight up to the f-meson and still discernible as far as the listing goes via the cor-
related clustering of masses and of resonances which share a common sum l1n j1n n ,
where l is the order of the spherical Bessel and Neumann functions and n j , n n are the
orders of neighbouring zeros of these functions (cf. the discussion in sect. 7 and 8).
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To the author’s knowledge this representation of the low-energy mass spectrum by
an elementary analytical formula was hereto unknown. Two objections are likely to be
raised. The first one is the absence of clear correlation with any particle properties
other than mass (and beyond the definite association of mesons with l40 and 1 and of
baryons with lF2). The second objection is the presence of gaps in the
associations—the fact that not all roots of (7.11) and (8.9) correspond to known
particles. Both objections are answered at the end of sect. 8. In any case and in spite of
all open questions the concordance appears too good to be dismissed as coincidence and
it is further strengthened by the (0.025%) success of a closely related prescription for
calculating the pion-to-muon mass ratio emerging from the lepton model discussed in
sect. 10 and summarized below. The correlation shown in fig. 1 is, therefore, taken as
justification for pursuing the concept from which it has emerged.

As is discussed at the beginning of sect. 7, the combination of travelling shear
waves—which would be free of dispersion and have wave velocity c4kmOr if the
medium had no boundary—with the compressional cavity resonances v 0 i produces the
waveguide-like dispersion (3.1) and concomitant group velocity vg4¯vO¯kEc . This
dispersion forms, in every respect, an exact representation of special relativity if,
obviously, the free shear velocity c is taken as the velocity of light. The Lorentz
transformations result unambiguously from this dispersion and the absence of any
references for the inhabitants’ time and space besides v 0 i and c (sect. 4 and
appendix A).

Although the field of dynamic wave pressure associated with each propagating
dislocation fills the entire sphere (a ‘wave function’ associated with every ‘particle’ fills
the ‘universe’), the dislocation finds essentially infinite space for migration since c is
very much smaller than ck . And although the pressure fields of all ‘particles’ are
superimposed within the same closed boundary, they do not interact except in the
vicinity of the wave centres where the (Neumann-function) near-divergence of
pressure and stress makes such interaction very likely. The interaction creates the
inhabitants’ ‘force’ in the form of mutual diffraction dkOdt42grad v and can lead to
bound states. It is true that only one such interaction—a long-range one which is found
to be mediated by the boundary at radius R—has been studied here (sect. 11): it turns
out to be in complete agreement with the Coulomb force.

Particle-like objects are introduced by this notion of molecules. But, in contrast to
ballistic particles, they are macroscopically stationary and do not violate the basic
assumption of there being nothing but waves. Moreover, as the cavity resonances v 0 i

and the shear-wave velocity c are both bulk properties, involving a very large number
of molecules, the granularity of the medium is not reflected in the dispersion relation
(3.1). There is, in particular, no p-mode cut-off of propagation at a wavelength
approaching the molecular size.

On the other hand, any dynamic interaction of wave centres at close distance to each
other must be expected to produce small relocations of molecules, thus jumps of wave
centres. These jumps will occur in the granular medium at compressional wave velocity
ck , hence ‘instantaneously’. They are necessarily limited to microscopic regions of high
wave pressure near dislocations.

It turns out (sect. 12) that an association of this wave pressure (a complex entity
since its Fourier components include phase) with the wave function of orthodox
physics leads (for hcbv 0 ) directly to the Schrödinger equation (in multidimensional
configuration space if several coupled wave centres participate). It may be said,
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therefore, that this concept of non-local bulk waves in a granular medium assures the
model’s success at the most fundamental level. The concept implies at once that waves,
filling the model universe, on whose large-scale properties they depend alone,
completely determine all probabilistic behaviour, while perturbations of microscopic
granularity define exact (but statistically fluctuating) phase space coordinates of
dislocations and associated wave centres. Recognition of these coordinates by model
inhabitants consisting of waves—and deriving their structure of time and space from
the bulk-wave properties v 0 i and c alone—is bound to be subject to the uncertainty
relations, since these relations control the information content of modulated waves.

The concept of compressional resonances filling the model universe implies
vanishing compressibility over any distance much smaller than R. Therefore, local
configurations of pure shear waves, in which all displacements s from rest position form
closed loops, have div s40. They do not interact with the boundary and propagate at
velocity c without dispersion. As might have been expected, such configurations
conform to Maxwell’s equations in vacuum if s is associated with the inhabitants’
‘electric field’. It turns out that the concomitant ‘magnetic field’ is (half) the mass
density of angular momentum carried in the medium. This and the two subsequent
statements are derived in sect. 9.

A permanently dislocated molecule, as well as the hole it leaves behind elsewhere,
creates in the surrounding medium a localized source of radial displacement which falls
off with the inverse square of distance. Clearly, therefore, the volume perturbation
created by such an excess or deficit molecule forms a most natural replica of electric
charge. The concept explains at once the quantization of electric charge, its two exactly
annihilating polarities, its conservation under all other circumstances and its
attachment to wave centres (‘particles’). It also completes Maxwell’s equations by
representing average ‘charge density’ as adiv sbc0 and thus as divergence of ‘electric
field’ and by adding the associated ‘conduction current’.

Moreover, it is a necessary consequence of this identification of quantized ‘charge’
with dislocated molecules, creating compression-free strain and stress in their
neighbourhood, that each one must be surrounded by a spherical volume of definite
radius within which the maximum elastic shear angle of the medium is exceeded and its
rigidity is disrupted. The bag model invoked above does have this feature, the
disruption strain being defined as the one required to break up the molecular order of
nearly dense packing so as to destroy its rigidity. The bag model also features
automatic re-establishment of rigidity behind a propagating dislocation, in such a way
that the sphere of disruption follows the dislocation.

In the terms of the model, the disruption radius formed by this inescapable
process—a cut-off radius for elastic energy—suggests itself as a model for the
classical radius—a cut-off of electrostatic energy—and this association is fully
validated in yielding an ‘electron mass’ and a ‘Coulomb force’ in quantitative mutual
agreement. The elastic forces in the medium which are responsible for these results are
subtle ones and their existence depends on the medium’s containment in a boundary.
This is the subject of sect. 10 and 11, the more technical part being deferred to
appendix B.

Generally, ‘leptons’ in this model are associated with dipole modes in which the
Neumann-function distributions of dynamic pressure and displacement do not
penetrate into the molecular radius, as was implied for the ‘hadrons’ of sect. 7 and 8
and fig. 1, but end at the much larger disruption radius. Inside this radius, the
medium, having lost its molecular order, is free of any strain and stress, so that these



A NON-LOCAL WAVE MODEL FOR PARTICLES AND FIELDS 185

modes are coreless. The second lowest mode of this kind is being associated with the
muon. Combining this association and that of the pion with the lowest root of
eq. (7.11)—as shown in fig. 1—implies a unique analytical prescription (sect. 10) for
the charged-pion–to–muon mass ratio. Its 0.025% agreement with reality lends strong
support to both this lepton model and to the hadron model of sect. 8. The model also
offers an immediate explanation for the predominant decay mode of charged pions.

Finally, it emerges that the mode conversions which, in this model, correspond to
single charged-lepton creation from baryon decay require—in order to conserve
classical momentum—the creation of a companion mode which possesses a disruption
radius, surrounded by permanent stress frozen into the medium (appendix B),
although it contains no ‘charge’. An association with the neutrino strongly suggests
itself although there is, so far, no quantitative confirmation beyond vanishing ‘mass’
(v 040), and no explanation for the existence of different varieties of neutrino in reality.

Clearly, in this model, an isolated dislocation, forming a discrete wave centre,
represents a free particle. The complicated configurations of bound-state wave
functions must be represented by distributed patterns of molecular perturbation, held
together by mutual refraction, each participant creating sufficient refractive gradient
grad v(r) in its neighbourhood to make a partner’s wave propagation close in itself
and all partners’ propagations curl into each other. Here, only the simplest example
by far, the ground-state hydrogen atom, has been explicitly related to the model.
Following the demonstrations that the model does render the Coulomb ‘potential’
¯v 04acOr and Schrödinger’s equation applied to pressure waves in the medium,
only the smeared-out status of the electron charge remains to be explained. It is argued
that this does in fact correspond to a pattern of molecular disruption which, although
caused by exactly one displaced molecule, is sheared into a spherical shell by the radial
gradient of tangential group velocity ¯vO¯r ¯ku . The concept is readily extendible to
excited states, including the concomitant existence of disconnected regions populated by
smeared-out fragments of ‘elementary charge’. The re-emergence of a localized wave
centre (a ‘free electron’) following escape from the refractive gradient acOr 2 is properly
represented.

Thus, this model of non-local bulk waves in a granular bounded medium (a large bag
of small spherical grains) offers detailed concepts for the nature of hadrons and
leptons—including a classification in mesons and baryons for the former and in charge
carriers and neutrinos for the latter—as well as a naturally emerging explanation for
classical electricity. This explanation, which associates the ‘electric field’ with what
little material displacements from rest position (or ‘vacuum’) are present, includes
Maxwell’s equations, quantized charge surrounded by a cut-off radius for electrostatic
‘energy’, the electron and the Coulomb ‘force’. In agreement with reality, it is ‘charge’,
not ‘mass’, which represents indestructible material in this model universe, whose
limited size and non-local behaviour therein are decisive features in all respects.

Admittedly, only an indirect and qualitative hint is given for the nature of the
strong force, none for the weak force, and only conjectures for the nature of spin (end
of sect. 8).

Quantitative results are analytical prescriptions for the mass spectrum of hadrons
and for the pion-to-muon mass ratio. The former gives the mass ratios of the
quasistable hadrons p , K, h , p/n , L , S , J , V2 and of many more light particles and
resonances with 1% rms accuracy. The latter is correct within 2 .531024 relative error.
The electron mass resulting from this model is in exact agreement with the
concomitant explanations for the classical electron radius and the Coulomb force.
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Finally, the model yields a straightforward derivation of the Schrödinger equation
and this gives rise to the following epistemological remarks. The model contains two
kinds of hidden variable. The first kind concerns bulk dynamics of the medium, the
most prominent example being its dynamic pressure which is, however, no more hidden
from inhabitants’ recognition (and less from their imagination) than its orthodox
equivalent, the ‘wave function’. The second kind concerns molecular kinematics, such
as the exact position of a dislocation. It appears that the latter parameters are indeed
hidden more deeply from wavy inhabitants’ observation than atoms ever were from
chemists or molecular trajectories from thermodynamicists. This, however, does not
prevent the model from exposing itself generously to potential falsification in
confrontation with quantitative detail and with more advanced subjects where it
may—or may not—lose its naive simplicity or fail altogether.

It has to be investigated yet, in fact, whether the model can account for all the
numerous phenomena and quantitative relationships which are the subjects of
contemporary physics and it may well fail to do so. It seems unlikely even then,
however, that its validity should stop abruptly at the elementary but surprisingly
complete level reached here without offering potentially useful guidance into more
advanced subjects.

For the time being, the richness of its contents is remarkable and at variance with
the dogma that such models are doomed to fail from the outset. Therefore, the most
important result in the author’s opinion is re-established hope that the world of which
we are part might yet be accessible to common-sense logic and visual imagination, even
though the model’s barren simplicity may appear shocking.

AP P E N D I X A

The Lorentz transformations

In a universe formed by nothing but propagating oscillations a meaningful frame of
reference can only consist of a coherent wave pattern moving with group velocity vg .
Another pattern—for instance the single pulse constituting an elementary
‘particle’—moving with the same group velocity in the same direction must be
considered ‘at rest’ in that frame. A comoving inhabitant observer has no choice,
therefore, but to consider that particle’s apparent carrier frequency (the central
frequency of the observed Fourier spectrum) as the ‘rest frequency’ in that frame. The
inhabitant observer has no difficulty in doing so. Since all patterns at rest in the moving
frame have the same value of g4v i Ov 0 i in the ether frame, their mutual ratios of
frequencies remain unchanged.

A pattern moving in the direction of the positive x-axis (seen in the ether frame and
from outside) with group velocity vg4bc may be taken as a modulated wave whose
carrier is of the form exp [i(vt2kx) ]. With the help of eqs. (3.3) and (3.4) the exponent
can be written as

W4gv 0gt2 b

c
xh .(A.1)

This is the phase difference between two oscillating ether elements at distance x and
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time difference t. For x4vg t this reduces to gv 0 t(12b 2 ) and thus to

W 04
v 0 t

g
(A.2)

and it does not matter that the inhabitants can count W 0 in terms of half-cycles only.
(Note that x4vg t is indeed the place of maximum contribution to the Fourier spectrum
since it designates the stationary phase [9] in the sense of ¯fO¯v4¯WO¯k40. )

Observers moving through structureless ether with group velocity vg cannot know
that the waves of which they and their surroundings consist penetrate fresh volume
elements continuously. They have no choice but to consider W 0 as the variation of phase
‘at a fixed location’ in their frame and—in the absence of any other reference of
time—equate W 0 with v 0 t 8 , defining their time t 8 by the nominal value assigned to v 0 .
Equating v 0 t 8 with the right-hand side of (A.2) yields the time dilatation at fixed
position x 8 in the moving frame as

t4g[t 8 ]x 84const .(A.3)

Moreover, the phases of a comoving wave, observed ‘simultaneously’ but at different
locations x 8 in the moving frame, are all identical, confirming that the observed wave is
indeed a rest-frequency (0-mode) oscillation. This may be argued as follows.

‘Simultaneity’ of events at points x 81 and x 82 (say) in the moving system can only be
defined by an exchange of signals—light pulses for instance. Thus, light pulses
simultaneously leaving an intermediate point at x 840 (say) in opposite directions are
reflected at x 81 and x 82 ‘simultaneously’ if they return to x 840 in coincidence (a
situation which also defines ‘equidistance’ x 81 42x 82 ). Assuming coincidence of
coordinate systems (x4x 840) at the time t40 of light emissions, the reflections may
be said to occur at x1 , t1 and x2 , t2 as seen in the ether frame. While the light signals
travel, the moving observer’s origin has shifted a distance x4vg t , where t is the round-
trip travel time—the same for both signals since they travel from coincidence (at x40)
to coincidence (at x4vg t) in a stationary medium. It follows that the locations and
times of the two reflections, as seen in the ether frame, are given by

2x142 (12b) ct ,(A.4)

2x24 (11b) ct ,(A.5)

ct142x1D0 ,(A.6)

ct24x2D0 .(A.7)

Since W4vt2kx is the phase of the light wave travelling in the direction of x2D0, one
finds

2W 142(vt12kx1 )422x1g v

c
1kh4ct(12b) g v

c
1kh ,(A.8)

2W 242(vt22kx2 )412x2g v

c
2kh4ct(11b) g v

c
2kh(A.9)

and, therefore, with the help of eqs. (3.3) and (3.4)

W 14W 24
v 0 t

2g
,(A.10)
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the same for both arbitrarily chosen points x 81 and x 82 in the moving frame, confirming
the 0-mode feature of any comoving wave pattern.

Since, therefore, the observed wave number k 8 is zero in any comoving wave the
entire expression (A.1) must be interpreted as v 0 t 8 . This yields the Lorentz
transformation of time

t 84g gt2b
x

c
h .(A.11)

According to the arguments of sect. 3, ‘distance’ in a frame moving with group
velocity vg in the ether is half the round-trip time t 8 of a reflected-light pulse times the
assigned nominal value c. Let L be such a distance (the end points moving with vg ) as
seen from the privileged position of the outside observer. The times of forward and
return travels of the light pulses are given by

ct14L1vg t1 ,(A.12)

ct24L2vg t2 ,(A.13)

respectively, the moving frame having advanced by vg t1 during the forward travel and
by vg (t11 t2 ) on the return to the moving origin—all this seen from outside. This
yields

ct42g 2 L(A.14)

for the round-trip time since g 241O(11b)(12b). For the outside observer the Galilei
transformation L4x2bct is valid. For inhabitants who are stationary in the moving
frame the time is t 84 tOg . Moreover,

x 8f
ct 8

2
(A.15)

defines the distance x 8 for them, since they have no other reference but this, with the
nominal value of c. What follows is

x 84g(x2bct) ,(A.16)

the Lorentz transformation of distance.
Finally, the group properties of (A.11), (A.16) extend their validity to all

transformations between inhabitants’ frames in constant relative motion. These
frames, therefore, are indistinguishable for them.

Formally, the arguments given above are familiar and elementary. The point is that
they are being made from an entirely Galilean position, concerning an entirely
Newtonian system: no ad hoc ‘principle’ is being invoked; the indistinguishable
equivalence of inertial frames and the universality of a velocity limit are results rather
than starting points of the analysis.

AP P E N D I X B

Disruption dynamics

Spherical coordinates r , u , W will be used, the axis being defined by the dipole
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motion under discussion. The terms pole, meridian and equator will designate
locations on the spherical disruption limit of radius rd , the point (rd , 0 ) being called
north pole.

For radii outside rd (but much smaller than R), monopole and dipole displacements
can be derived as gradients of (fictitious) potentials f n0 and f n1 which are proportional
to the small-argument asymptotes of n0 (r) and n1 (r) cos u , respectively. Explicitly,
these potentials, the displacements snl (r , u) and strain tensors e nl

ik (r , u) are given by

f n042w
r 3

d

3r
,(B.1)

f n142s×z
r 3

d

2r 2
cos u ,(B.2)

s n0
r 4w

r 3
d

3r 2
,(B.3)

s n1
r 4s×z

r 3
d

r 3
cos u ,(B.4)

s n0
u 40 ,(B.5)

s n1
u 4s×z

r 3
d

2r 3
sin u ,(B.6)

e n0
ik 4

2

3
w

r 3
d

r 3

C
`
D

21

0

0

0

1O2

0

0

0

1O2

E
`
F

,(B.7)

e n1
ik 43s×z

r 3
d

r 4

C
`
D

2cos u

2sin uO2

0

2sin uO2

cos uO2

0

0

0

cos uO2

E
`
F

,(B.8)

where wfr 2
0 Or 3

d (including the sign of r0 ), s×z is the north-pole dipole displacement
s n1

r (rd , 0 ) and sW40 everywhere. Note that suD0 means downward displacement
at the equator. The monopole fields are created by an excess or deficit molecule of
radius r0 contained in the disruption sphere. The medium inside rd may be taken as
liquid and the volume perturbation uniformly spreads among randomly distributed
molecules.

Offsetting the monopole centre by a small amount dz with respect to a given
coordinate system (by removing the volume perturbation and recreating it uniformly
shifted) creates a situation which is identical with a superposition of the original
monopole and a dipole field which is the gradient of a potential perturbation

df n142 dz( cos u , 2sin u , 0 ) Q˜f n0 .(B.9)
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This is equivalent to a dipole (north pole) displacement

ds×z4
2

3
wdz .(B.10)

Thus the offset monopole creates a dipole strain tensor as given by substituting ds×z for
s×z in (B.8).

The dipole motion for rErd is the uniform vertical displacement

s j1
r 4s×z cos u ,(B.11)

s j1
u 42s×z sin u .(B.12)

The u-component is the opposite double of s n1
u (rd ) implying slippage at the boundary

surface.
The area density of elastic force across the surface r4rd is the scalar product of the

surface-normal vector (2m , 0 , 0 ) with the appropriate strain tensor. Thus the monopole
strain creates a radial force density of 24mw/3 , inward, producing a positive pressure
of equal magnitude for wD0, that is for the presence of an excess molecule. (Note that
the vanishing divergence of s does not exclude pressure, since kKQ).

If, in a dipole motion, the disruption surface remains locked in the medium, the
dipole strain creates a skew force density across r4rd , the radial and meridian
components being given by

f n1
r 426ms×z

cos u

rd

,(B.13)

f n1
u 423ms×z

sin u

rd

.(B.14)

For s×zD0 the radial force points downward at both poles but the meridian force points
upward at the equator. Separate integration of the z-components fr cos u and 2fu sin u
over the surface r4rd gives the total axial forces due to f n1

r and f n1
u as

F r
z 428pmrd s×z ,(B.15)

F u
z 42F r

z ,(B.16)

respectively. Therefore, in a situation in which the tangential force is actually
transmitted across r4rd the total force is zero indicating static stability. A
configuration of this kind is formed if a solid but disrupted sphere not containing an
excess or deficit molecule fuses with its sourroundings after having suffered a dipole
displacement. Such frozen dipole stress is being associated with the neutrino.

The force F u
z cannot act across a disruption at r4rd , however. Instead, it is

effectively reversed and halved by the slippage between boundaries. That this must
be so can be seen by comparing the total elastic-dipole energy 6pmrd s× 2

z , found by
integrating me n1

ik e n1
ik over the entire volume outside rd , with the work 4pmrd s× 2

z done
by displacing the sphere against F r

z alone. Therefore, if the assumption of a disruption
surface locked to the medium (a solid sphere displaced within an elastic medium to
which it does not stick) could be maintained, a total axial restoring force

Fz4212pmrd s×z(B.17)
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would result. Balancing this against v 2 s×z times the effective mass (10.6) would yield
a resonance v4k6 cOrd .

The disruption boundary cannot remain locked to the medium, however, if indeed w
is the disruption shear angle, a definition which also implies that the normal force at
the disruption surface remains constant at 24mw/3 and the restoring force (B.17)
cannot occur. Instead, any momentum acquired by the mass of the disrupted sphere
makes it break through the surrounding medium almost freely—completely so if the
medium had no boundary—in spite of the fact that individual molecules are not free to
follow ballistic motion.

The motion, for wD0, say, can be visualized as follows. An infinitesimal material
displacement sz of the disrupted sphere, due to its momentum, drains a trailing
hemispherical meniscus of thickness Dz4sz /w of its share w of fractional excess volume
and inflates a corresponding meniscus in front by the same fractional amount w . (Here
the term meniscus designates a thin shell bounded by two hemispheres, both of radius
rd , whose centres differ by Dz . ) The motion is identical with a shift of the excess
volume and of the associated spherical disruption boundary by Dz . For rDrd the
motion is an n-mode of north-pole amplitude 2sz /3 , as given by (B.10). This provides
the necessary backflow across the equatorial plane, so as to maintain continuity at zero
divergence, the entire process being the exact equivalent of removing the excess
molecule and recreating it at the new position Dz . For wE0 the motion is the same
except that the material displacement sz and the (much larger) shift Dz of disruption
are in opposite directions. This motion is free of divergence and curl. It resembles the
advance of a caterpillar: since w is small, the main body stays almost at rest (it even
retreats slightly for wE0) while, continuously, a head is stretched out and a tail
retracted.

Thus, if the uniform material velocity for rErd is u, the propagation of volume
perturbation and disruption equals

v4
u

w
.(B.18)

For either sign of w , molecules continuously leave the sphere at the rear of the group
motion v while new ones enter in front. However, the molecules which—having been
overtaken by the rear boundary—come to rest in an incompressible dissipationless
medium, cannot but transmit their momentum (of either sign) forward with respect to
the direction of v and at the near infinite compressional propagation velocity kkOr .
The result would be force-free concentric propagation of the j-n boundary, the
momentum centre, the volume perturbation and the disruption boundary—if the ether
had infinite extension.

For KRb1 the medium must, however, be considered incompressible over its
entire volume out to the boundary at R. In this situation, an isolated excess (or deficit)
ether volume V0 cannot migrate with respect to this boundary, as the equivalent
n1-motion would displace the entire universe by an amount inversely proportional to its
mass rR 3 . On the other hand, the oscillatory displacement sz of the effective mass
(10.6) is not prohibited since it is balanced by opposite motion elsewhere, this being an
essential part of the mode in question as expressed by N42. The resulting excentricity
sz of the disruption limit to the centre of the moving mass and eq. (B.10) give an
equivalent n-mode amplitude ds×z42wsz O3. Substituting this instead of s×z into (B.17)
gives a total force

Fz428pmrd NwNs×z .(B.19)

When balanced against v 2 s×z times the effective mass (10.6), this yields a resonance
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frequency given by

v 244NwN
c 2

r 2
d

(B.20)

which is being associated with the electron. The caterpillar migration invoked above
does remain the mechanism for macroscopic charge propagation or ‘current’ which,
being closed in itself, does not interact with the boundary of the universe.

The following explicit molecular model appears to replicate the three bulk constants
mOr , kOr , w in a natural way. It consists of an ensemble of hard frictionless spheres
pressed into dense packing by a coherence pressure p0 which might be of external
origin or due to central intermolecular attraction including non-contacting
near-neighbours. The packing density h is, therefore, a maximum, plausibly the
apparent (if mathematically unconfirmed) absolute maximum of 0.7405 of a
(near)12-connected configuration (face-centred cubic, hexagonal or mixed). Ideally
such a configuration is self-locking. But 12-connection of identical incompressible
spheres forms an overconstrained system which changes to a smaller coordination
number, and thus gains freedom for small deformations, by the presence of the
slightest lattice perturbation somewhere within the long range of negligible
compressibility. The presence of dislocations guarantees this.

For small shear angles j4 (¯si O¯xk1¯sk O¯xi ) the bulk volume perturbations are,
therefore, of second order in j , so that

¯

¯j
(˜ Qs)4h 0

¯

¯j
(h21 )4gj ,(B.21)

where g is a numerical factor of order unity. Multiplication of ˜ Qs with p0 gives a shear-
dependent energy density W(j) which defines a rigidity m via the relation

mf
¯2

¯j 2
W(j)4gp0 .(B.22)

The quiescent deviation from 12-connection may be characterized by a small
average distortion angle. The dynamic shear j beyond this enforces a change of
configuration such that the dependence of volume—and thus of energy W(j)—changes
to first order in j , making the second derivative zero. The size of this disruption angle,
small but not infinitesimal, is related to the density of dislocations averaged over the
universe, or at least a large fraction of it. The economy of constructions is potentially
improved over the assumption of separate bulk constants m and w , as p0 merely replaces
m while w is at least conceptually related to the presence of dislocations which is already
a fundamental ingredient of the model. The concept requires, however, that a 2 be
related to a long-range average of ‘particle’ density and this remains to be studied.

An alternative model might be built on the assumption of a local minimum of
packing density (as in a body-centred or simple cubic configuration), due to repulsion
between non-contacting neighbours. However, coherence would require an attractive
contact force in addition and the smallness of the disruption angle w would remain
unexplained.

There remains the striking fact that the numerical value of the hadron scale length
rs of eq. (7.12) (the radius of an equivalent universe with compressional wave velocity
c), extracted from table I, is nearly equal to the value of the disruption radius rd
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implied by its association with re /2 . The agreement is within 3%. It implies a
relation

k

m
B g R

rd
h2

,(B.23)

which points to further economy in free parameters. However, a plausible model for
this has not been found so far.
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