# <sup>231</sup> 1 Supplementary material for LHCb-PAPER-2018 <sup>232</sup> 051

### <sup>233</sup> 1.1 Further tables and plots for the nominal solution

The results of the nominal solution as function of  $x, y, \Delta x, \Delta y$  is shown in Table 2. Its corresponding correlation matrix is presented in Table 3.

Table 2: Dalitz plot fit results of the nominal solution as function of  $x, y, \Delta x, \Delta y$ , where the uncertainty presented is statistical only.

| Component        | x                | y                | $\Delta x$       | $\Delta y$       |
|------------------|------------------|------------------|------------------|------------------|
| $K^{*}(892)^{0}$ | 1.00  (fixed)    | 0 (fixed)        | $-0.06 \pm 0.04$ | 0  (fixed)       |
| $K_0^*(1430)^0$  | $-0.66 \pm 0.08$ | $0.26\pm0.09$    | $-0.07 \pm 0.08$ | $-0.31\pm0.08$   |
| Single-Pole      | $-1.77 \pm 0.16$ | $-0.49 \pm 0.15$ | $0.14 \pm 0.11$  | $-0.97\pm0.16$   |
| $ \rho(1450)^0 $ | $-1.80 \pm 0.16$ | $0.53 \pm 0.24$  | $-0.33 \pm 0.14$ | $-0.70\pm0.25$   |
| $f_2(1270)$      | $-0.46 \pm 0.13$ | $-0.86 \pm 0.09$ | $0.23 \pm 0.13$  | $0.03\pm0.09$    |
| rescattering     | $0.60\pm0.19$    | $-1.22 \pm 0.13$ | $0.46\pm0.20$    | $-0.37\pm0.12$   |
| $\phi(1020)$     | $0.03\pm0.07$    | $0.03 \pm 0.05$  | $0.09 \pm 0.07$  | $-0.18 \pm 0.05$ |

235

Projections of the nominal solution, separated by charge, are shown in Figs. 4, 5 and 6. The Dalitz plot of the  $B^+$  and  $B^-$  candidates is shown in Fig. 7.



Figure 4: Distribution of  $m_{\pi^{\pm}K^{\mp}}^2$  up to 3.5 GeV<sup>2</sup>/ $c^4$ . Data are represented by points for  $B^+$  and  $B^-$  candidates separately, with the result of the nominal solution overlaid. The relative contribution of the individual components in the model is also shown, with the interference terms effects not included.



Figure 5: Distribution of  $m_{\pi^{\pm}K^{\mp}}^2$  in the high mass region. Data are represented by points for (top)  $B^+$  and (bottom)  $B^-$  with the result of the nominal solution overlaid. The relative contribution of the individual components in the model is also shown, with the interference terms effects not included.



Figure 6: Distribution of  $m_{K^+K^-}^2$  up to 3.5 GeV<sup>2</sup>/ $c^4$ . Data are represented by points for  $B^+$  and  $B^-$  candidates separately, with the result of the nominal solution overlaid. The relative contribution of the individual components in the model is also shown, with the interference terms effects not included.



Figure 7: Dalitz plot for  $B^+ \to \pi^+ K^- K^+$  and  $B^- \to \pi^- K^+ K^-$  candidates in the selected signal region.

Table 3: Correlation matrix for the nominal solution.

 $K^{*0}(892)$ : par  $3 = \Delta x$ .  $K_0^*(1430)^0$ : par 5,6,7,8 =  $x, y, \Delta x, \Delta y$ . NR Single-Pole Form Factor: par 9,10,11,12 =  $x, y, \Delta x, \Delta y$ .  $\rho(1450)^0$ : par 13,14,15,16 =  $x, y, \Delta x, \Delta y$ .  $f_2(1270)$ : par 17,18,19,20 =  $x, y, \Delta x, \Delta y$ . Rescattering: par 21,22,23,24 =  $x, y, \Delta x, \Delta y$ .  $\phi(1020)$ : par 24,26,27,28 =  $x, y, \Delta x, \Delta y$ .

| 28      | 0.054  | 0.034  | -0.070  | -0.005 | -0.037 | 0.184  | -0.161   | 0.165  | 0.007  | -0.000   | -0.266  | 0.213  | -0.078 | 0.262  | -0.085 | 0.044  | 0.005  | 0.294  | 0.305 | 0.161  | 0.295 | -0.217 | 0.115  | 0.267 | 1.0 |
|---------|--------|--------|---------|--------|--------|--------|----------|--------|--------|----------|---------|--------|--------|--------|--------|--------|--------|--------|-------|--------|-------|--------|--------|-------|-----|
| .77     | -0.008 | -0.049 | -0.018  | 0.015  | -0.021 | 0.011  | -0.229   | 0.136  | 0.090  | -0.269   | -0.304  | 0.331  | 0.043  | 0.300  | -0.276 | -0.141 | 0.218  | 0.298  | 0.116 | -0.117 | 0.085 | -0.417 | -0.225 | 1.0   |     |
| 26      | 0.036  | -0.010 | -0.034  | -0.035 | -0.030 | 0.092  | -0.006   | 0.088  | -0.153 | 0.183    | -0.080  | -0.109 | -0.242 | 0.038  | 0.020  | 0.237  | -0.170 | 0.169  | 0.235 | 0.306  | 0.254 | 0.275  | 1.0    |       |     |
| 25      | 0.054  | 0.010  | -0.031  | -0.051 | -0.033 | 0.113  | 0.087    | 0.055  | -0.252 | 0.310    | 0.034   | -0.311 | -0.335 | -0.138 | 0.213  | 0.328  | -0.305 | -0.106 | 0.094 | 0.318  | 0.158 | 1.0    |        |       |     |
| $^{24}$ | 0.163  | 0.002  | -0.153  | -0.088 | -0.106 | 0.456  | -0.238   | 0.401  | -0.350 | 0.340    | -0.532  | -0.048 | -0.693 | 0.408  | -0.006 | 0.566  | -0.416 | 0.673  | 0.833 | 0.830  | 1.0   |        |        |       |     |
| 23      | 0.120  | -0.045 | -0.098  | -0.124 | -0.114 | 0.306  | -0.024   | 0.306  | -0.535 | 0.479    | -0.218  | -0.375 | -0.834 | 0.069  | 0.204  | 0.777  | -0.632 | 0.396  | 0.609 | 1.0    |       |        |        |       |     |
| 22      | 0.195  | 0.107  | -0.210  | -0.072 | -0.099 | 0.577  | -0.365   | 0.469  | -0.163 | 0.215    | -0.708  | 0.244  | -0.446 | 0.589  | -0.132 | 0.350  | -0.145 | 0.732  | 1.0   |        |       |        |        |       |     |
| 21      | 0.064  | -0.118 | -0.098  | -0.044 | -0.090 | 0.190  | -0.503   | 0.420  | -0.047 | -0.293   | -0.794  | 0.488  | -0.235 | 0.729  | -0.566 | 0.095  | 0.179  | 1.0    |       |        |       |        |        |       |     |
| 20      | -0.088 | -0.030 | 0.040   | 0.138  | 0.065  | -0.203 | -0.337   | -0.033 | 0.519  | -0.695   | -0.301  | 0.689  | 0.686  | 0.449  | -0.524 | -0.659 | 1.0    |        |       |        |       |        |        |       |     |
| 19.     | 0.112  | 0.000  | -0.063  | -0.086 | -0.121 | 0.297  | 0.144    | 0.207  | -0.612 | 0.619    | 0.0238  | -0.604 | -0.826 | -0.171 | 0.461  | 1.0    |        |        |       |        |       |        |        |       |     |
| 18      | 0.103  | 0.244  | -0.054  | -0.020 | -0.006 | 0.275  | 0.425    | -0.109 | -0.301 | 0.737    | 0.520   | -0.657 | -0.322 | -0.492 | 1.0    |        |        |        |       |        |       |        |        |       |     |
| 17      | 0.100  | 0.020  | 0.164   | 0.012  | 0.053  | 0.301  | -0.604   | 0.437  | 0.164  | 0.382    | 0.822   | 0.680  | 0.0416 | 1.0    |        |        |        |        |       |        |       |        |        |       |     |
| 16.     | -0.139 | 0.041  | 0.094 - | 0.140  | 0.121  | -0.324 | -0.043 - | -0.284 | 0.634  | -0.589 - | 0.155 - | 0.559  | 1.0    |        |        |        |        |        |       |        |       |        |        |       |     |
| 15      | -0.023 | -0.024 | -0.044  | 0.091  | 0.006  | 0.016  | -0.512   | 0.192  | 0.459  | -0.712   | -0.646  | 1.0    |        |        |        |        |        |        |       |        |       |        |        |       |     |
| 14      | -0.116 | 0.039  | 0.161   | 0.026  | 0.090  | -0.347 | 0.618    | -0.497 | -0.052 | 0.339    | 1.0     |        |        |        |        |        |        |        |       |        |       |        |        |       |     |
| 13      | 0.180  | 0.238  | -0.138  | -0.073 | -0.052 | 0.485  | 0.313    | 0.060  | -0.421 | 1.0      |         |        |        |        |        |        |        |        |       |        |       |        |        |       |     |
| 12.     | -0.216 | -0.246 | 0.089   | 0.207  | 0.521  | -0.382 | -0.164   | -0.320 | 1.0    |          |         |        |        |        |        |        |        |        |       |        |       |        |        |       |     |
| 11      | 0.359  | -0.030 | -0.591  | -0.013 | -0.194 | 0.572  | -0.650   | 1.0    |        |          |         |        |        |        |        |        |        |        |       |        |       |        |        |       |     |
| 10      | -0.129 | 0.159  | 0.533   | -0.333 | 0.093  | -0.293 | 1.0      |        |        |          |         |        |        |        |        |        |        |        |       |        |       |        |        |       |     |
| 6       | 0.339  | 0.257  | -0.318  | -0.067 | -0.404 | 1.0    |          |        |        |          |         |        |        |        |        |        |        |        |       |        |       |        |        |       |     |
| ×       | -0.113 | -0.274 | 0.188   | 0.287  | 1.0    |        |          |        |        |          |         |        |        |        |        |        |        |        |       |        |       |        |        |       |     |
| 2       | 0.038  | -0.407 | -0.275  | 1.0    |        |        |          |        |        |          |         |        |        |        |        |        |        |        |       |        |       |        |        |       |     |
| 9       | -0.217 | 0.163  | 1.0     |        |        |        |          |        |        |          |         |        |        |        |        |        |        |        |       |        |       |        |        |       |     |
| 5       | 0.068  | 1.0    |         |        |        |        |          |        |        |          |         |        |        |        |        |        |        |        |       |        |       |        |        |       |     |
|         | 1.0    |        |         |        |        |        |          |        |        |          |         |        |        |        |        |        |        |        |       |        |       |        |        |       |     |

## <sup>238</sup> 1.2 Second fit solution

In the following the results and projections of the second solution are presented in Table 4and Figs. 8, 9, 10. This is interpreted as an unphysical solution.

Table 4: Results of the Dalitz plot fit using the isobar model for the second solution, where the uncertainty presented is statistical only. This solution is interpreted as unphysical.

|                  | Fit frac       | tion $(\%)$  | Μ             | agnitude and p      | phase coefficient | S                   | $A_{CP}$ (%)    |
|------------------|----------------|--------------|---------------|---------------------|-------------------|---------------------|-----------------|
| Component        | $B^+$          | $B^-$        | $a_i^+$       | $\delta_i^+[\circ]$ | $a_i^-$           | $\delta_i^-[\circ]$ |                 |
| $K^{*}(892)^{0}$ | $5.7 \pm 0.8$  | $10.4\pm1.0$ | $0.93\pm0.04$ | 0  (fixed)          | $1.07\pm0.04$     | 0  (fixed)          | $14.9 \pm 8.6$  |
| $K_0^*(1430)^0$  | $3.5 \pm 1.2$  | $34.9\pm3.7$ | $0.73\pm0.15$ | $-176 \pm 10$       | $1.97\pm0.14$     | $-149 \pm 3$        | $76.1 \pm 10.2$ |
| Single-Pole      | $30.9 \pm 1.9$ | $31.0\pm3.0$ | $2.16\pm0.13$ | $-138 \pm 7$        | $1.86\pm0.13$     | $140 \pm 7$         | $-15.0 \pm 5.9$ |
| $\rho(1450)^0$   | $29.5 \pm 1.8$ | $32.4\pm2.1$ | $2.11\pm0.11$ | $-175\pm10$         | $1.90\pm0.10$     | $77 \pm 13$         | $-10.6 \pm 4.4$ |
| $f_2(1270)$      | $4.7 \pm 0.9$  | $10.8\pm1.4$ | $0.84\pm0.09$ | $-106\pm11$         | $1.10\pm0.08$     | $170\pm 5$          | $25.7\pm10.3$   |
| rescattering     | $23.7 \pm 1.3$ | $6.8\pm0.9$  | $1.89\pm0.09$ | $-57\pm12$          | $0.87\pm0.07$     | $-145\pm17$         | $-65.0 \pm 3.9$ |
| $\phi(1020)$     | $0.2 \pm 0.2$  | $0.4\pm0.2$  | $0.19\pm0.07$ | $-53\pm23$          | $0.22\pm0.06$     | $42 \pm 30$         | $11.2\pm43.1$   |
| Sum              | 98.3           | 126.7        |               |                     |                   |                     |                 |



Figure 8: Distribution of  $m_{\pi^{\pm}K^{\mp}}^2$  up to 3.5 GeV<sup>2</sup>/ $c^4$ . Data are represented by points for  $B^+$  and  $B^-$  candidates separately, with the result of the second solution overlaid. This is interpreted as an unphysical solution. The relative contribution of the individual components in the model is also shown, with the interference terms effects not included.



Figure 9: Distribution of  $m_{\pi^{\pm}K^{\mp}}^2$  in the high mass region. Data are represented by points for (top)  $B^+$  and (bottom)  $B^-$  with the result of the second solution overlaid. This is interpreted as an unphysical solution. The relative contribution of the individual components in the model is also shown, with the interference terms effects not included.



Figure 10: Distribution of  $m_{K^+K^-}^2$  up to 3.5 GeV<sup>2</sup>/ $c^4$ . Data are represented by points for  $B^+$  and  $B^-$  candidates separately, with the result of the second solution overlaid. This is interpreted as an unphysical solution. The relative contribution of the individual components in the model is also shown, with the interference terms effects not included.

The results of the second solution given as function of  $x, y, \Delta x, \Delta y$  is shown in Table 5. Its corresponding correlation matrix is presented in Table. 6.

Table 5: Dalitz plot fit results of the second solution as function of  $x, y, \Delta x, \Delta y$ , where the uncertainty presented is statistical only.

| Component        | x              | y                | $\Delta x$       | $\Delta y$     |
|------------------|----------------|------------------|------------------|----------------|
| $K^*(892)^0$     | 1.00  (fixed)  | 0  (fixed)       | $-0.08 \pm 0.04$ | 0  (fixed)     |
| $K_0^*(1430)^0$  | $-1.21\pm0.10$ | $-0.53\pm0.12$   | $0.48\pm0.08$    | $0.48\pm0.13$  |
| Single-Pole      | $-1.51\pm0.16$ | $-0.12 \pm 0.13$ | $-0.09 \pm 0.13$ | $-1.32\pm0.13$ |
| $ \rho(1450)^0 $ | $-0.83\pm0.21$ | $0.84\pm0.20$    | $-1.27 \pm 0.23$ | $-1.01\pm0.19$ |
| $f_2(1270)$      | $-0.66\pm0.10$ | $-0.31\pm0.13$   | $0.42\pm0.09$    | $-0.50\pm0.13$ |
| rescattering     | $0.16\pm0.18$  | $-1.04\pm0.15$   | $0.88\pm0.18$    | $-0.54\pm0.15$ |
| $\phi(1020)$     | $0.14\pm0.06$  | $-0.01\pm0.06$   | $-0.02 \pm 0.06$ | $-0.15\pm0.06$ |

Table 6: Correlation matrix for the second solution. This is interpreted as an unphysical solution.  $K^*(892)^0$ : par  $3 = \Delta x$ .  $K_0^*(1430)^0$ : par  $5,6,7,8 = x, y, \Delta x, \Delta y$ . NR Single-Pole Form Factor: par  $9,10,11,12 = x, y, \Delta x, \Delta y$ .  $\rho(1450)^0$ : par  $13,14,15,16 = x, y, \Delta x, \Delta y$ .  $f_2(1270)$ : par  $17,18,19,20 = x, y, \Delta x, \Delta y$ . Rescattering: par  $21,22,23,24 = x, y, \Delta x, \Delta y$ .  $\phi(1020)$ : par  $24,26,27,28 = x, y, \Delta x, \Delta y$ .

| 28    | 0.074    | -0.043   | 0.094    | -0.059  | -0.147  | 0.24    | -0.036   | -0.021  | -0.126  | 0.300    | -0.283  | -0.190  | -0.073  | 0.254   | 0.226   | 0.095   | -0.280   | 0.109 | 0.415   | 0.323 | -0.015 | 0.389  | -0.199 | -0.341 | 1.0 |
|-------|----------|----------|----------|---------|---------|---------|----------|---------|---------|----------|---------|---------|---------|---------|---------|---------|----------|-------|---------|-------|--------|--------|--------|--------|-----|
| 27    | 0.016    | 0.108    | -0.112   | 0.140   | 0.061   | 0.016   | -0.181   | 0.233   | -0.013  | -0.221   | -0.124  | 0.269   | -0.295  | 0.110   | -0.260  | 0.184   | 0.214    | 0.219 | -0.039  | 0.028 | 0.313  | -0.243 | 0.402  | 1.0    |     |
| 26    | 0.002    | 0.108    | 0.124    | 0.146   | 0.083   | 0.021   | 0.159    | 0.221   | 0.017   | -0.229   | -0.085  | 0.292   | -0.257  | 0.122   | -0.306  | 0.226   | 0.231    | 0.339 | -0.026  | 0.087 | 0.403  | -0.354 | 1.0    |        |     |
| 52    | 0.036    | 0.157    | 0.076 -  | 0.111   | 0.100   | 0.128 - | 0.016 -  | 0.052   | 0.195   | 0.254 -  | 0.264 - | 0.250   | 0.117 - | 0.144   | 0.205 - | 0.110   | 0.278    | 0.031 | 0.260 - | 0.226 | 0.090  | 1.0    |        |        |     |
| 4     | 0.092    | 0.257 -  | 0.221    | 0.339 - | 0.074 - | 0.182   | 0.474 -  | 0.559 - | 0.055 - | 0.407    | 0.530 - | 0.597 - | 0.704 - | 0.484   | 0.610   | 0.630   | 0.394 -  | 0.898 | 0.288   | 0.408 | 1.0 -  |        |        |        |     |
| 3     | 0.106    | 0.250    | 0.051 -  | 020.0   | 0.172   | 0.331   | 0.241    | 0.145   | 0.467 - | 0.392 -  | 0.739 - | 0.306   | 0.642 - | 0.720   | 0.166 - | 0.568   | 0.488    | 0.655 | 0.812   | 1.0   |        |        |        |        |     |
| 2 2   | 0.197    | - 800.0  | ).133    | 1.013 - | 1.292 - | 0.602   | 1.234 -1 | 0.133   | .309 -  | 0.560    | - 181.  | 0.301 - | - 7447  | 0.653   | 0.346   | 0.385   | 0.524 -  | 0.476 | 1.0     |       |        |        |        |        |     |
| 1 2   | 0.094 (  | 0.073 (  | 0.181 (  | ).226 ( | .019 -( | 0.208 ( | .452 -(  | .513 (  | .242 -( | ).256 (  | .638 -( | .405 -( | - 108.0 | .561 (  | ).462 ( | 0.750 ( | ).175 -( | 0.1   |         |       |        |        |        |        |     |
| 2     | .050 0   | .424 0   | .324 -0  | .354 (  | .318 (  | .276 (  | .221 -(  | (397 (  | .365 -( | .823 -(  | .295 -( | .840 (  | )- 2001 | .158 (  | .776 -( | .074 (  | 0.       |       |         |       |        |        |        |        |     |
| 9. 20 | .065 -0  | .034 0   | (130 -0  | 0 260.0 | 007 0   | .167 -0 | .409 -0  | .428 0  | .331 0  | .174 -0  | .602 0  | .224 0  | .744 -0 | .098 -0 | .251 -0 | 0.0     | -        |       |         |       |        |        |        |        |     |
| 1     | .062 0   | .227 -0  | .361 -0  | .353 0  | .334 -0 | .316 0  | .289 -0  | .464 0  | .184 -0 | .832 -0  | .095 -0 | .812 0  | .368 -0 | .573 0  | 0-0.    | 1       |          |       |         |       |        |        |        |        |     |
| 18    | 212 0    | .137 -0  | .003 0   | .114 -0 | .208 -0 | .584 0  | .401 0   | .352 -0 | .297 -0 | .287 0   | .773 -0 | .036 -0 | .580 0  | 0 0.    | 1       |         |          |       |         |       |        |        |        |        |     |
| . 17  | 060 0.   | 060 0.   | 160 -0.  | 165 0.  | 0- 800  | 186 0.  | 462 -0.  | 476 0.  | 372 -0. | 204 0    | 754 -0. | 264 -0. | 0       | -i      |         |         |          |       |         |       |        |        |        |        |     |
| 16    | 010 -0.  | 464 0.   | 325 0.   | 428 -0. | 258 -0. | 138 -0. | 333 0.   | 532 -0. | 301 0.  | 863 0.   | 101 0.  | 0.0     | Τ.      |         |         |         |          |       |         |       |        |        |        |        |     |
| 15    | 212 -0.0 | 0.23 0.4 | 016 -0.3 | 109 0.4 | 227 0.1 | 580 -0. | 123 -0.3 | 352 0.1 | 383 0.3 | 330 -0.3 | .0      | ÷       |         |         |         |         |          |       |         |       |        |        |        |        |     |
| 14    | 23 -0.2  | 14 -0.0  | 33 -0.(  | 95 -0.1 | 67 0.2  | 63 -0.5 | 67 0.4   | 64 -0.3 | 58 0.3  | 9.<br>9  | 1.(     |         |         |         |         |         |          |       |         |       |        |        |        |        |     |
| 13    | 17 0.1   | 75 -0.2  | 64 0.3   | 74 -0.2 | 75 -0.3 | 36 0.4  | 02 0.1   | 04 -0.3 | -0.2    | 1.0      |         |         |         |         |         |         |          |       |         |       |        |        |        |        |     |
| 12.   | 38 -0.2  | 11 0.4   | 1.0- 20  | 23 0.5  | 44 0.5  | 36 -0.4 | 99 0.1   | -0.1    | 1.0     |          |         |         |         |         |         |         |          |       |         |       |        |        |        |        |     |
| 11    | 2 0.2    | 40 0.4   | 15 -0.60 | 27 0.52 | 0 0.1   | 0.28    | -0.79    | 1.0     |         |          |         |         |         |         |         |         |          |       |         |       |        |        |        |        |     |
| 10    | 8 -0.17  | 3 -0.52  | 5 0.6    | 9 -0.45 | 1 -0.05 | -0.3(   | 1.0      |         |         |          |         |         |         |         |         |         |          |       |         |       |        |        |        |        |     |
| 6     | 6 0.33   | 6 0.07   | 4 0.20   | 9 -0.06 | -0.63   | 1.0     |          |         |         |          |         |         |         |         |         |         |          |       |         |       |        |        |        |        |     |
| ×     | 5 -0.21  | 5 0.32   | 7 -0.46  | 0.46    | 1.0     |         |          |         |         |          |         |         |         |         |         |         |          |       |         |       |        |        |        |        |     |
| 2     | 5 -0.03  | 7 0.51   | -0.53    | 1.0     |         |         |          |         |         |          |         |         |         |         |         |         |          |       |         |       |        |        |        |        |     |
| 9     | 7 0.00   | -0.43'   | 1.0      |         |         |         |          |         |         |          |         |         |         |         |         |         |          |       |         |       |        |        |        |        |     |
| 5     | 0.057    | 1.0      |          |         |         |         |          |         |         |          |         |         |         |         |         |         |          |       |         |       |        |        |        |        |     |
| 3     | 1.0      |          |          |         |         |         |          |         |         |          |         |         |         |         |         |         |          |       |         |       |        |        |        |        |     |
|       | က        | ŋ        | 9        | 1-      | x       | 6       | 10       | 11      | 12      | 13       | 14      | 15      | 16      | 17      | 18      | 19      | 20       | 21    | 22      | 23    | 24     | 25     | 26     | 27     | 28  |

## 243 **1.3** Systematic uncertainties

The systematic uncertainties for CP asymmetries, total fit fractions,  $B^+$  and  $B^-$  fit fractions, magnitudes and phases for the  $B^{\pm} \to \pi^{\pm} K^+ K^-$  Dalitz plot fit are shown in Tables 7 to 11, respectively.

 $A_{CP}$  $K^{*}(892)$  $K_0^*(1430)^0$ Single pole  $\rho(1450)^0$  $f_2(1270)$ Rescattering  $\phi(1020)$ Statistical uncertainty 5.310.23.8 43.6 8.7 14.94.4 $B^{\pm}$  mass fit Maximum value 2.62.632.01 0.28 0.08 0.26 10.11 Minimum value 0.26 0.350.250.730.1414.270.3Efficiency model Simulation sample size 0.540.9 0.270.370.830.392.47PID 1.750.41 0.120.03 0.07 0.010.06 L0 trigger correction 0.550.18 0.16 0.01 0.21 0.02 0.03 0.020.23 0.2Finer binning 0.96 0.110.151.01Coarse binning 0.190.17 2.050.072.211.4 0.21 $B^+$  production and detection asymmetry 1.491.511.481.481.390.851.47MC truth requirement 0.03 0.01 0.00.0 0.020.00.01 Background models Combinatorial background 1.341.190.420.190.850.372.52Peaking background 0.190.240.090.890.08 0.150.09 Isobar Model Fit bias 0.630.94 0.220.160.840.190.23Blatt Weisskopf radii set in 3  ${\rm GeV^{-1}}$ 0.830.362.791.04 2.780.91.39Blatt Weisskopf radii set in 5  $\text{GeV}^{-1}$ 0.41 0.39 0.33 3.39 0.431.240.8Mass and width variation 0.827.520.341.070.657.521.6 $\phi$  background level 0.10.06 0.060.07 0.420.07 9.14 Upward Downward 0.120.120.10.120.420.119.66  $\rho(1450)$  free to float in the fit 11.34 1.671.971.33 1.631.580.64 Total systematic uncertainty 4.518.78 3.452.364.811.9426.59

Table 7: Systematic uncertainties for the *CP* asymmetries (in percent).

#### Table 8: Systematic uncertainties for the total fit fractions (in percent).

| Total fit fraction FF                            | $K^{*}(892)$ | $K_0^*(1430)^0$ | Single pole | $\rho(1450)^{0}$ | $f_2(1270)$ | Rescattering | $\phi(1020)$ |
|--------------------------------------------------|--------------|-----------------|-------------|------------------|-------------|--------------|--------------|
| Statistical uncertainty                          | 0.60         | 0.68            | 1.54        | 1.22             | 0.82        | 0.75         | 0.13         |
| $B^{\pm}$ mass fit                               |              |                 |             |                  |             |              |              |
| Maximum value                                    | 0.38         | 0.78            | 2.0         | 0.25             | 0.06        | 0.55         | 0.01         |
| Minimum value                                    | 0.04         | 0.19            | 0.51        | 0.08             | 0.07        | 0.44         | 0.05         |
| Efficiency model                                 |              |                 |             |                  |             |              |              |
| Statistical fluctuation                          | 0.04         | 0.04            | 0.09        | 0.09             | 0.07        | 0.09         | 0.01         |
| PID                                              | 0.1          | 0.02            | 0.04        | 0.04             | 0.01        | 0.02         | 0.0          |
| L0 trigger correction                            | 0.03         | 0.01            | 0.05        | 0.03             | 0.01        | 0.04         | 0.0          |
| Finer binning                                    | 0.01         | 0.02            | 0.05        | 0.11             | 0.05        | 0.13         | 0.01         |
| Coarse binning                                   | 0.03         | 0.01            | 0.09        | 0.09             | 0.01        | 0.05         | 0.0          |
| <i>B</i> production and detection asymmetry      | 0.03         | 0.02            | 0.02        | 0.02             | 0.05        | 0.13         | 0.0          |
| MC truth requirement                             | 0.0          | 0.0             | 0.0         | 0.0              | 0.0         | 0.0          | 0.0          |
| Background models                                |              |                 |             |                  |             |              |              |
| Combinatorial background                         | 0.11         | 0.23            | 0.48        | 0.31             | 0.17        | 0.17         | 0.0          |
| Peaking background                               | 0.02         | 0.03            | 0.1         | 0.11             | 0.04        | 0.05         | 0.0          |
| Isobar model                                     |              |                 |             |                  |             |              |              |
| Fit bias                                         | 0.22         | 0.05            | 0.19        | 0.04             | 0.0         | 0.02         | 0.05         |
| Blatt Weisskopf radii set in 3 $\text{GeV}^{-1}$ | 0.03         | 0.38            | 0.13        | 0.02             | 0.12        | 0.29         | 0.01         |
| Blatt Weisskopf radii set in 5 $\text{GeV}^{-1}$ | 0.01         | 0.21            | 0.14        | 0.1              | 0.04        | 0.21         | 0.0          |
| Mass and Width variation                         | 0.19         | 0.76            | 3.45        | 0.79             | 0.23        | 0.35         | 0.01         |
| $\phi$ background level                          |              |                 |             |                  |             |              |              |
| Upward                                           | 0.01         | 0.06            | 0.23        | 0.08             | 0.05        | 0.24         | 0.03         |
| Downward                                         | 0.01         | 0.06            | 0.25        | 0.09             | 0.05        | 0.27         | 0.03         |
| $\rho(1450)$ free to float in the fit            | 0.07         | 0.22            | 0.17        | 0.03             | 0.6         | 0.0          | 0.03         |
| Total systematic uncertainty                     | 0.51         | 1.23            | 4.07        | 0.92             | 0.69        | 0.97         | 0.09         |

| $B^+$ Fit fraction: FF <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $K^{*}(892)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $K_0^*(1430)^0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Single pole                                                                                                                                                                             | $\rho(1450)^0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $f_2(1270)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Rescattering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\phi(1020)$                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Statistical uncertainty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.0                                                                                                                                                                                     | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2                                                                                                                                                                                     |
| $B^{\pm}$ mass fit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                         |
| Maximum value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.52                                                                                                                                                                                    | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                    |
| Minimum value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.46                                                                                                                                                                                    | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01                                                                                                                                                                                    |
| Efficiency model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                         |
| Simulation sample size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.13                                                                                                                                                                                    | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01                                                                                                                                                                                    |
| PID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.07                                                                                                                                                                                    | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                     |
| L0 trigger correction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.07                                                                                                                                                                                    | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                     |
| Finer binning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.01                                                                                                                                                                                    | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01                                                                                                                                                                                    |
| Coarse binning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                     | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01                                                                                                                                                                                    |
| B production and detection asymmetry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                     |
| MC truth requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                     |
| Background models                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                         |
| Combinatorial background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.43                                                                                                                                                                                    | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01                                                                                                                                                                                    |
| Peaking background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.08                                                                                                                                                                                    | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                     |
| Isobar Model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                         |
| Fit bias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.13                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.05                                                                                                                                                                                    |
| Blatt Weisskopf radii set in 3 $\text{GeV}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.13                                                                                                                                                                                    | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                    |
| Blatt Weisskopf radii set in 5 $GeV^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01                                                                                                                                                                                    |
| Mass and width variation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.0                                                                                                                                                                                     | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                    |
| $\phi$ background level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                         |
| Upward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.22                                                                                                                                                                                    | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                     |
| Downward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.24                                                                                                                                                                                    | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                     |
| $\rho(1450)$ free to float in the fit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.56                                                                                                                                                                                    | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.06                                                                                                                                                                                    |
| Total systematic uncertainty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.49                                                                                                                                                                                    | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.08                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                         |
| $B^-$ Fit fraction: FF <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $K^{*}(892)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $K_0^*(1430)^0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Single pole                                                                                                                                                                             | $\rho(1450)^{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $f_2(1270)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Rescattering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\phi(1020)$                                                                                                                                                                            |
| B <sup>-</sup> Fit fraction: FF <sup>-</sup> Statistical uncertainty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | K*(892)<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $K_0^*(1430)^0$<br>1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Single pole<br>2.6                                                                                                                                                                      | $\rho(1450)^0$ <b>1.9</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $f_2(1270)$<br>1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rescattering 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\phi(1020)$ <b>0.2</b>                                                                                                                                                                 |
| B <sup>-</sup> Fit fraction: FF <sup>-</sup> Statistical uncertainty       B <sup>±</sup> mass fit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | K*(892)<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{K_0^*(1430)^0}{1.2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Single pole<br>2.6                                                                                                                                                                      | $\rho(1450)^0$ <b>1.9</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $f_2(1270)$<br>1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rescattering 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | φ(1020)<br><b>0.2</b>                                                                                                                                                                   |
| $B^-$ Fit fraction: FF <sup>-</sup> Statistical uncertainty $B^{\pm}$ mass fit         Maximum value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | K*(892)           1.0           0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{K_0^*(1430)^0}{1.2}$ 1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Single pole 2.6 2.61                                                                                                                                                                    | $\rho(1450)^0$<br><b>1.9</b><br>0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $f_2(1270)$<br>1.3<br>0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rescattering 0.8 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | φ(1020)<br>0.2<br>0.04                                                                                                                                                                  |
| B <sup>-</sup> Fit fraction: FF <sup>-</sup> Statistical uncertainty         B <sup>±</sup> mass fit         Maximum value         Minimum value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | K*(892)           1.0           0.8           0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{K_0^*(1430)^0}{1.2}$ 1.17 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Single pole<br><b>2.6</b><br>0.57                                                                                                                                                       | $\begin{array}{c} \rho(1450)^0 \\ \hline 1.9 \\ 0.63 \\ 0.09 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} f_2(1270)\\ \hline 1.3\\ 0.19\\ 0.01 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Rescattering<br>0.8<br>0.22<br>0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\phi(1020)$ 0.2 0.04 0.13                                                                                                                                                              |
| B <sup>-</sup> Fit fraction: FF <sup>-</sup> Statistical uncertainty         B <sup>±</sup> mass fit         Maximum value         Minimum value         Efficiency model                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | K*(892)           1.0           0.8           0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{K_0^*(1430)^0}{1.2}$ 1.17 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Single pole<br><b>2.6</b><br>2.61<br>0.57                                                                                                                                               | $\frac{\rho(1450)^0}{1.9}$ 0.63 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} f_2(1270) \\ \hline 1.3 \\ 0.19 \\ 0.01 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rescattering<br>0.8<br>0.22<br>0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} \phi(1020) \\ \hline 0.2 \\ \hline 0.04 \\ 0.13 \end{array}$                                                                                                          |
| B <sup>-</sup> Fit fraction: FF <sup>-</sup> Statistical uncertainty         B <sup>±</sup> mass fit         Maximum value         Minimum value         Efficiency model         Simulation sample size                                                                                                                                                                                                                                                                                                                                                                                                                                                | K*(892)           1.0           0.8           0.1           0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{K_0^*(1430)^0}{1.2}$ 1.17 0.28 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Single pole<br><b>2.6</b><br>2.61<br>0.57<br>0.13                                                                                                                                       | $\begin{array}{c} \rho(1450)^0\\ \hline 1.9\\ 0.63\\ 0.09\\ 0.13 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} f_2(1270)\\\hline 1.3\\\hline 0.19\\0.01\\\hline 0.1\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rescattering<br>0.8<br>0.22<br>0.22<br>0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \phi(1020) \\ \hline 0.2 \\ \hline 0.04 \\ 0.13 \\ 0.01 \end{array}$                                                                                                  |
| B <sup>-</sup> Fit fraction: FF <sup>-</sup> Statistical uncertainty         B <sup>±</sup> mass fit         Maximum value         Minimum value         Efficiency model         Simulation sample size         PID                                                                                                                                                                                                                                                                                                                                                                                                                                    | K*(892)           1.0           0.8           0.1           0.07           0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{K_0^*(1430)^0}{1.2}$ 1.17 0.28 0.05 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Single pole<br><b>2.6</b><br>2.61<br>0.57<br>0.13<br>0.02                                                                                                                               | $\begin{array}{c} \rho(1450)^0\\ \hline 1.9\\ 0.63\\ 0.09\\ 0.13\\ 0.01 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} f_2(1270)\\\hline 1.3\\0.19\\0.01\\0.1\\0.0\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Rescattering<br>0.8<br>0.22<br>0.22<br>0.07<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} \phi(1020)\\ \hline 0.2\\ \hline 0.04\\ 0.13\\ \hline 0.01\\ 0.0\\ \end{array}$                                                                                       |
| B <sup>-</sup> Fit fraction: FF <sup>-</sup> Statistical uncertainty         B <sup>±</sup> mass fit         Maximum value         Minimum value         Efficiency model         Simulation sample size         PID         L0 trigger correction                                                                                                                                                                                                                                                                                                                                                                                                      | K*(892)           1.0           0.8           0.1           0.07           0.01           0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} K_0^*(1430)^0 \\ \hline 1.2 \\ \hline 1.17 \\ 0.28 \\ 0.05 \\ 0.01 \\ 0.01 \\ 0.01 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Single pole<br><b>2.6</b><br>2.61<br>0.57<br>0.13<br>0.02<br>0.02                                                                                                                       | $\begin{array}{c} \rho(1450)^0 \\ \hline 1.9 \\ 0.63 \\ 0.09 \\ 0.13 \\ 0.01 \\ 0.0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} f_2(1270)\\\hline 1.3\\0.19\\0.01\\0.1\\0.0\\0.02\\\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rescattering<br>0.8<br>0.22<br>0.22<br>0.07<br>0.0<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                         |
| B <sup>-</sup> Fit fraction: FF <sup>-</sup> Statistical uncertainty         B <sup>±</sup> mass fit         Maximum value         Minimum value         Efficiency model         Simulation sample size         PID         L0 trigger correction         Finer binning                                                                                                                                                                                                                                                                                                                                                                                | K*(892)           1.0           0.8           0.1           0.07           0.01           0.01           0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{r} K_0^*(1430)^0 \\ \hline 1.2 \\ \hline 1.17 \\ 0.28 \\ 0.05 \\ 0.01 \\ 0.01 \\ 0.03 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Single pole<br>2.6<br>2.61<br>0.57<br>0.13<br>0.02<br>0.02<br>0.13                                                                                                                      | $\begin{array}{c} \rho(1450)^0 \\ \hline 1.9 \\ \hline 0.63 \\ 0.09 \\ \hline 0.13 \\ 0.01 \\ 0.0 \\ 0.15 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} f_2(1270)\\\hline 1.3\\\hline 0.19\\0.01\\\hline 0.1\\0.0\\0.02\\0.15\\\hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rescattering<br>0.8<br>0.22<br>0.22<br>0.07<br>0.0<br>0.01<br>0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                         |
| B <sup>−</sup> Fit fraction: FF <sup>−</sup> Statistical uncertainty         B <sup>±</sup> mass fit         Maximum value         Minimum value         Efficiency model         Simulation sample size         PID         L0 trigger correction         Finer binning         Coarse binning                                                                                                                                                                                                                                                                                                                                                         | K*(892)           1.0           0.8           0.1           0.07           0.01           0.01           0.09           0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} K_0^*(1430)^0 \\ \hline 1.2 \\ 1.17 \\ 0.28 \\ 0.05 \\ 0.01 \\ 0.01 \\ 0.03 \\ 0.05 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Single pole<br><b>2.6</b><br>2.61<br>0.57<br>0.13<br>0.02<br>0.02<br>0.13<br>0.22                                                                                                       | $\begin{array}{c} \rho(1450)^0 \\ \hline 1.9 \\ 0.63 \\ 0.09 \\ 0.13 \\ 0.01 \\ 0.0 \\ 0.15 \\ 0.01 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} f_2(1270)\\\hline 1.3\\\hline 0.19\\0.01\\\hline 0.1\\0.0\\0.02\\0.15\\0.14\\\hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rescattering<br>0.8<br>0.22<br>0.22<br>0.07<br>0.0<br>0.01<br>0.09<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                         |
| B <sup>−</sup> Fit fraction: FF <sup>−</sup> Statistical uncertainty         B <sup>±</sup> mass fit         Maximum value         Minimum value         Efficiency model         Simulation sample size         PID         L0 trigger correction         Finer binning         Coarse binning         B production and detection asymmetry                                                                                                                                                                                                                                                                                                            | K*(892)           1.0           0.8           0.1           0.07           0.01           0.01           0.02           0.03           0.04           0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} K_0^*(1430)^0 \\ \hline 1.2 \\ \hline 1.17 \\ 0.28 \\ 0.05 \\ 0.01 \\ 0.01 \\ 0.03 \\ 0.05 \\ 0.0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Single pole<br>2.6<br>2.61<br>0.57<br>0.13<br>0.02<br>0.02<br>0.13<br>0.22<br>0.0                                                                                                       | $\begin{array}{c} \rho(1450)^0 \\ \hline 1.9 \\ 0.63 \\ 0.09 \\ 0.13 \\ 0.01 \\ 0.0 \\ 0.15 \\ 0.01 \\ 0.0 \\ 0.0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} f_2(1270)\\\hline 1.3\\0.19\\0.01\\0.0\\0.02\\0.15\\0.14\\0.0\\\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Rescattering<br>0.8<br>0.22<br>0.22<br>0.07<br>0.0<br>0.01<br>0.09<br>0.04<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \phi(1020)\\ \hline 0.2\\ \hline 0.04\\ 0.13\\ \hline 0.01\\ 0.0\\ 0.0\\ 0.02\\ 0.01\\ 0.0\\ \hline 0.0\\ 0.0\\ \end{array}$                                          |
| B <sup>-</sup> Fit fraction: FF <sup>-</sup> Statistical uncertainty         B <sup>±</sup> mass fit         Maximum value         Minimum value         Efficiency model         Simulation sample size         PID         L0 trigger correction         Finer binning         Coarse binning         B production and detection asymmetry         MC truth requirement                                                                                                                                                                                                                                                                               | K*(892)           1.0           0.8           0.1           0.07           0.01           0.01           0.02           0.03           0.04           0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} K_0^*(1430)^0 \\ \hline 1.2 \\ \hline 1.17 \\ 0.28 \\ 0.05 \\ 0.01 \\ 0.01 \\ 0.03 \\ 0.05 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Single pole<br>2.6<br>2.61<br>0.57<br>0.13<br>0.02<br>0.02<br>0.13<br>0.22<br>0.0<br>0.0<br>0.0                                                                                         | $\begin{array}{c} \rho(1450)^0 \\ \hline 1.9 \\ 0.63 \\ 0.09 \\ 0.13 \\ 0.01 \\ 0.0 \\ 0.15 \\ 0.01 \\ 0.0 \\ 0.0 \\ 0.0 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} f_2(1270)\\ \hline 1.3\\ 0.19\\ 0.01\\ 0.1\\ 0.0\\ 0.02\\ 0.15\\ 0.14\\ 0.0\\ 0.0\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rescattering<br>0.8<br>0.22<br>0.22<br>0.07<br>0.0<br>0.01<br>0.09<br>0.04<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} \phi(1020)\\ \hline 0.2\\ \hline 0.04\\ 0.13\\ \hline 0.01\\ 0.0\\ 0.0\\ 0.02\\ 0.01\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ \end{array}$                                           |
| B <sup>−</sup> Fit fraction: FF <sup>−</sup> Statistical uncertainty         B <sup>±</sup> mass fit         Maximum value         Minimum value         Efficiency model         Simulation sample size         PID         L0 trigger correction         Finer binning         Coarse binning         B production and detection asymmetry         MC truth requirement         Background models                                                                                                                                                                                                                                                     | K*(892)           1.0           0.8           0.1           0.07           0.01           0.01           0.02           0.03           0.04           0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} K_0^*(1430)^0 \\ \hline 1.2 \\ \hline 1.17 \\ 0.28 \\ 0.05 \\ 0.01 \\ 0.01 \\ 0.03 \\ 0.05 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Single pole<br>2.6<br>2.61<br>0.57<br>0.13<br>0.02<br>0.02<br>0.13<br>0.22<br>0.0<br>0.0<br>0.0                                                                                         | $\begin{array}{c} \rho(1450)^0 \\ \hline 1.9 \\ 0.63 \\ 0.09 \\ 0.13 \\ 0.01 \\ 0.0 \\ 0.15 \\ 0.01 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} f_2(1270)\\ \hline 1.3\\ 0.19\\ 0.01\\ 0.1\\ 0.0\\ 0.02\\ 0.15\\ 0.14\\ 0.0\\ 0.0\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rescattering<br>0.8<br>0.22<br>0.22<br>0.07<br>0.0<br>0.01<br>0.09<br>0.04<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                         |
| B <sup>−</sup> Fit fraction: FF <sup>−</sup> Statistical uncertainty         B <sup>±</sup> mass fit         Maximum value         Minimum value         Efficiency model         Simulation sample size         PID         L0 trigger correction         Finer binning         Coarse binning         B production and detection asymmetry         MC truth requirement         Background models         Combinatorial background                                                                                                                                                                                                                    | K*(892)           1.0           0.8           0.1           0.07           0.01           0.01           0.01           0.01           0.02           0.03           0.04           0.0           0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} K_0^*(1430)^0 \\ \hline 1.2 \\ \hline 1.17 \\ 0.28 \\ 0.05 \\ 0.01 \\ 0.03 \\ 0.05 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.32 \\ 0.32 \\ 0.5 \\ 0.0 \\ 0.32 \\ 0.5 \\ 0.0 \\ 0.32 \\ 0.5 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.0 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\$ | Single pole<br>2.6<br>2.61<br>0.57<br>0.13<br>0.02<br>0.02<br>0.13<br>0.22<br>0.0<br>0.0<br>0.0<br>0.59                                                                                 | $\begin{array}{c} \rho(1450)^0 \\ \hline 1.9 \\ \hline 0.63 \\ 0.09 \\ \hline 0.13 \\ 0.01 \\ 0.0 \\ 0.15 \\ 0.01 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.34 \\ \hline 0.34 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0$                                                                                                | $\begin{array}{c} f_2(1270)\\ \hline 1.3\\ 0.19\\ 0.01\\ 0.1\\ 0.0\\ 0.02\\ 0.15\\ 0.14\\ 0.0\\ 0.0\\ 0.0\\ 0.2\\ 0.2\\ 0.2\\ 0.2\\ 0.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rescattering<br>0.8<br>0.22<br>0.22<br>0.07<br>0.0<br>0.01<br>0.09<br>0.04<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | φ(1020)<br>0.2<br>0.04<br>0.13<br>0.01<br>0.0<br>0.0<br>0.02<br>0.01<br>0.0<br>0.0<br>0.0<br>0.0                                                                                        |
| B <sup>−</sup> Fit fraction: FF <sup>−</sup> Statistical uncertainty         B <sup>±</sup> mass fit         Maximum value         Minimum value         Efficiency model         Simulation sample size         PID         L0 trigger correction         Finer binning         Coarse binning         B production and detection asymmetry         MC truth requirement         Background models         Combinatorial background         Peaking background                                                                                                                                                                                         | K*(892)           1.0           0.8           0.01           0.01           0.01           0.01           0.01           0.01           0.01           0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} K_0^*(1430)^0 \\ \hline 1.2 \\ \hline 1.17 \\ 0.28 \\ 0.05 \\ 0.01 \\ 0.01 \\ 0.03 \\ 0.05 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.32 \\ 0.05 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Single pole<br>2.6<br>2.61<br>0.57<br>0.13<br>0.02<br>0.02<br>0.02<br>0.13<br>0.22<br>0.0<br>0.0<br>0.0<br>0.59<br>0.12                                                                 | $\begin{array}{c} \rho(1450)^0 \\ \hline 1.9 \\ \hline 0.63 \\ 0.09 \\ \hline 0.13 \\ 0.01 \\ 0.0 \\ 0.15 \\ 0.01 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.34 \\ 0.12 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} f_2(1270)\\ \hline 1.3\\ 0.19\\ 0.01\\ 0.1\\ 0.0\\ 0.02\\ 0.15\\ 0.14\\ 0.0\\ 0.0\\ 0.0\\ 0.2\\ 0.05\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rescattering           0.8           0.22           0.22           0.07           0.0           0.01           0.09           0.04           0.0           0.0           0.14           0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} \phi(1020)\\ \hline 0.2\\ \hline 0.04\\ 0.13\\ \hline 0.01\\ 0.0\\ 0.02\\ 0.01\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$                                              |
| B <sup>−</sup> Fit fraction: FF <sup>−</sup> Statistical uncertainty         B <sup>±</sup> mass fit         Maximum value         Minimum value         Efficiency model         Simulation sample size         PID         L0 trigger correction         Finer binning         Coarse binning         B production and detection asymmetry         MC truth requirement         Background models         Combinatorial background         Peaking background         Isobar Model                                                                                                                                                                    | K*(892)           1.0           0.8           0.01           0.01           0.01           0.02           0.01           0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} K_0^*(1430)^0 \\ \hline 1.2 \\ \hline 1.17 \\ 0.28 \\ 0.05 \\ 0.01 \\ 0.01 \\ 0.03 \\ 0.05 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.32 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ $                                               | Single pole<br>2.6<br>2.61<br>0.57<br>0.13<br>0.02<br>0.02<br>0.13<br>0.22<br>0.0<br>0.0<br>0.0<br>0.59<br>0.12                                                                         | $\begin{array}{c} \rho(1450)^0 \\ \hline 1.9 \\ 0.63 \\ 0.09 \\ 0.13 \\ 0.01 \\ 0.0 \\ 0.15 \\ 0.01 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.34 \\ 0.12 \\ 0.12 \\ 0.11 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\$                                                                                                              | $\begin{array}{c} f_2(1270)\\\hline 1.3\\\hline 0.19\\0.01\\\hline 0.1\\0.0\\0.02\\0.15\\0.14\\0.0\\0.0\\0.0\\0.2\\0.05\\\hline 0.2\\0.05\\\hline 0.12\\0.05\\\hline 0.12\\0.05\\0.05\\\hline 0.12\\0.05\\\hline 0.0$                                                                                                                                                                                                                                                                                             | Rescattering<br>0.8<br>0.22<br>0.22<br>0.07<br>0.0<br>0.01<br>0.09<br>0.04<br>0.0<br>0.04<br>0.0<br>0.0<br>0.04<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | φ(1020)<br>0.2<br>0.04<br>0.13<br>0.01<br>0.0<br>0.00<br>0.02<br>0.01<br>0.0<br>0.01<br>0.0<br>0.01<br>0.0                                                                              |
| B <sup>−</sup> Fit fraction: FF <sup>−</sup> Statistical uncertainty         B <sup>±</sup> mass fit         Maximum value         Minimum value         Efficiency model         Simulation sample size         PID         L0 trigger correction         Finer binning         Coarse binning         B production and detection asymmetry         MC truth requirement         Background models         Combinatorial background         Peaking background         Isobar Model         Fit bias                                                                                                                                                   | K*(892)           1.0           0.8           0.1           0.07           0.01           0.01           0.01           0.02           0.034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $K_0^*(1430)^0$<br>1.2<br>1.17<br>0.28<br>0.05<br>0.01<br>0.01<br>0.03<br>0.05<br>0.0<br>0.0<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Single pole<br>2.6<br>2.61<br>0.57<br>0.13<br>0.02<br>0.02<br>0.02<br>0.0<br>0.22<br>0.0<br>0.0                                                                                         | $\rho(1450)^0$ 1.9 0.63 0.09 0.13 0.01 0.0 0.15 0.01 0.0 0.0 0.34 0.12 0.11 0.11 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} f_2(1270)\\\hline 1.3\\\hline 0.19\\0.01\\\hline 0.1\\0.0\\0.02\\0.15\\0.14\\0.0\\0.0\\\hline 0.2\\0.05\\0.05\\0.09\\0.05\\\hline 0.09\\0.05\\\hline 0.09\\0.09\\0.09\\0.09\\0.09\\0.09\\0.09\\0.09$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rescattering<br>0.8<br>0.22<br>0.22<br>0.07<br>0.0<br>0.01<br>0.09<br>0.04<br>0.0<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.5<br>0.                                                     | $\phi(1020)$ 0.2 0.04 0.13 0.01 0.0 0.0 0.0 0.02 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                                                                                |
| B <sup>−</sup> Fit fraction: FF <sup>−</sup> Statistical uncertainty         B <sup>±</sup> mass fit         Maximum value         Minimum value         Efficiency model         Simulation sample size         PID         L0 trigger correction         Finer binning         Coarse binning         B production and detection asymmetry         MC truth requirement         Background models         Combinatorial background         Peaking background         Isobar Model         Fit bias         Blatt Weisskopf radii set in 3 GeV <sup>-1</sup>                                                                                          | $\begin{array}{c} K^{*}(892) \\ \hline 1.0 \\ \hline 0.8 \\ 0.1 \\ 0.07 \\ 0.01 \\ 0.01 \\ 0.09 \\ 0.04 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.1 \\ 0.02 \\ 0.34 \\ 0.11 \\ 0.01 \\ 0.01 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} K_0^*(1430)^0 \\ \hline 1.2 \\ \hline 1.17 \\ 0.28 \\ 0.05 \\ 0.01 \\ 0.01 \\ 0.03 \\ 0.05 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.32 \\ 0.05 \\ 0.05 \\ 0.02 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ 0.57 \\ $                                               | Single pole<br>2.6<br>2.61<br>0.57<br>0.13<br>0.02<br>0.02<br>0.02<br>0.03<br>0.22<br>0.0<br>0.0<br>0.59<br>0.12<br>0.27<br>0.49<br>0.27<br>0.49                                        | $\begin{array}{c} \rho(1450)^0 \\ \hline 1.9 \\ \hline 0.63 \\ 0.09 \\ \hline 0.13 \\ 0.01 \\ 0.0 \\ 0.15 \\ 0.01 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.34 \\ 0.12 \\ \hline 0.11 \\ 0.15 \\ 0.25 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} f_2(1270)\\ \hline 1.3\\ \hline 0.19\\ 0.01\\ \hline 0.1\\ 0.0\\ 0.02\\ 0.15\\ 0.14\\ 0.0\\ 0.0\\ \hline 0.2\\ 0.05\\ \hline 0.09\\ 0.05\\ 0.09\\ 0.05\\ 0.05\\ 0.09\\ 0.05\\ 0.05\\ 0.09\\ 0.05\\ 0.09\\ 0.05\\ 0.05\\ 0.09\\ 0.05\\ 0.09\\ 0.05\\ 0.09\\ 0.05\\ 0.05\\ 0.09\\ 0.05\\ 0.09\\ 0.05\\ 0.09\\ 0.05\\ 0.05\\ 0.09\\ 0.05\\ 0.09\\ 0.05\\ 0.09\\ 0.05\\ 0.05\\ 0.09\\ 0.05\\ 0.09\\ 0.05\\ 0.09\\ 0.05\\ 0.09\\ 0.05\\ 0.05\\ 0.09\\ 0.05\\ 0.09\\ 0.05\\ 0.09\\ 0.05\\ 0.05\\ 0.09\\ 0.05\\ 0.09\\ 0.05\\ 0.09\\ 0.05\\ 0.05\\ 0.09\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rescattering<br>0.8<br>0.22<br>0.22<br>0.07<br>0.0<br>0.01<br>0.09<br>0.04<br>0.0<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.031<br>0.04<br>0.03<br>0.04<br>0.03<br>0.04<br>0.03<br>0.04<br>0.04<br>0.03<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04 | φ(1020)<br>0.2<br>0.04<br>0.13<br>0.01<br>0.0<br>0.01<br>0.02<br>0.01<br>0.00<br>0.01<br>0.0<br>0.01<br>0.0<br>0.05<br>0.0<br>0.05<br>0.0<br>0.01                                       |
| B <sup>−</sup> Fit fraction: FF <sup>−</sup> Statistical uncertainty         B <sup>±</sup> mass fit         Maximum value       Minimum value         Efficiency model       Simulation sample size         PID       L0 trigger correction         Finer binning       Coarse binning         B production and detection asymmetry       MC truth requirement         Background models       Combinatorial background         Peaking background       Isobar Model         Fit bias       Blatt Weisskopf radii set in 3 GeV <sup>-1</sup> Blatt Weisskopf radii set in 5 GeV <sup>-1</sup>                                                         | $\begin{array}{c} K^{*}(892) \\ \hline 1.0 \\ \hline 0.8 \\ 0.1 \\ \hline 0.07 \\ 0.01 \\ 0.01 \\ 0.09 \\ 0.04 \\ 0.0 \\ 0.0 \\ 0.1 \\ 0.02 \\ \hline 0.34 \\ 0.11 \\ 0.04 \\ 0.0 \\ 0.1 \\ 0.04 \\ 0.0 \\ 0.0 \\ 0.34 \\ 0.11 \\ 0.04 \\ 0.04 \\ 0.01 \\ 0.04 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 $ | $\begin{array}{c} K_0^*(1430)^0 \\ \hline 1.2 \\ \hline 1.17 \\ 0.28 \\ 0.05 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.03 \\ 0.05 \\ 0.0 \\ 0.0 \\ 0.32 \\ 0.05 \\ 0.02 \\ 0.57 \\ 0.28 \\ 0.02 \\ 0.57 \\ 0.28 \\ 0.07 \\ 0.28 \\ 0.07 \\ 0.28 \\ 0.07 \\ 0.28 \\ 0.07 \\ 0.28 \\ 0.07 \\ 0.28 \\ 0.07 \\ 0.28 \\ 0.07 \\ 0.28 \\ 0.07 \\ 0.28 \\ 0.07 \\ 0.28 \\ 0.07 \\ 0.28 \\ 0.07 \\ 0.28 \\ 0.07 \\ 0.28 \\ 0.07 \\ 0.28 \\ 0.07 \\ 0.28 \\ 0.07 \\ 0.28 \\ 0.07 \\ 0.28 \\ 0.07 \\ 0.28 \\ 0.07 \\ 0.28 \\ 0.07 \\ 0.28 \\ 0.07 \\ 0.28 \\ 0.07 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\$                                               | Single pole<br>2.6<br>2.61<br>0.57<br>0.13<br>0.02<br>0.02<br>0.13<br>0.22<br>0.0<br>0.0<br>0.59<br>0.12<br>0.27<br>0.49<br>0.35<br>0.55<br>0.12                                        | $\rho(1450)^0$ 1.9 0.63 0.09 0.13 0.01 0.0 0.15 0.01 0.0 0.0 0.34 0.12 0.11 0.15 0.26 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} f_2(1270)\\ \hline 1.3\\ \hline 0.19\\ 0.01\\ \hline 0.0\\ 0.02\\ 0.15\\ 0.14\\ 0.0\\ 0.0\\ \hline 0.2\\ 0.05\\ \hline 0.09\\ 0.05\\ 0.16\\ 0.2\\ 0.02\\ \hline 0.02\\ 0.05\\ 0.16\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rescattering<br>0.8<br>0.22<br>0.22<br>0.07<br>0.0<br>0.01<br>0.09<br>0.04<br>0.0<br>0.14<br>0.04<br>0.04<br>0.04<br>0.23<br>0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\phi(1020)$ 0.2 0.04 0.13 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                                                                                                      |
| $B^-$ Fit fraction: FF <sup>-</sup> Statistical uncertainty $B^\pm$ mass fit         Maximum value         Minimum value         Efficiency model         Simulation sample size         PID         L0 trigger correction         Finer binning         Coarse binning         B production and detection asymmetry         MC truth requirement         Background models         Combinatorial background         Peaking background         Isobar Model         Fit bias         Blatt Weisskopf radii set in 3 GeV <sup>-1</sup> Mass and width variation                                                                                         | $\begin{array}{c} K^{*}(892) \\ \hline 1.0 \\ \hline 0.8 \\ 0.1 \\ \hline 0.07 \\ 0.01 \\ 0.01 \\ 0.09 \\ 0.04 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.1 \\ 0.02 \\ \hline 0.34 \\ 0.11 \\ 0.04 \\ 0.31 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} K_0^*(1430)^0 \\ \hline 1.2 \\ \hline 1.17 \\ 0.28 \\ 0.05 \\ 0.01 \\ 0.01 \\ 0.03 \\ 0.05 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.32 \\ 0.05 \\ 0.02 \\ 0.57 \\ 0.28 \\ 0.77 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Single pole<br>2.6<br>2.61<br>0.57<br>0.13<br>0.02<br>0.02<br>0.02<br>0.03<br>0.00<br>0.59<br>0.12<br>0.27<br>0.49<br>0.35<br>4.1                                                       | $\begin{array}{c} \rho(1450)^0 \\ \hline 1.9 \\ 0.63 \\ 0.09 \\ 0.13 \\ 0.01 \\ 0.0 \\ 0.15 \\ 0.01 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.34 \\ 0.12 \\ 0.11 \\ 0.15 \\ 0.26 \\ 0.8 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} f_2(1270)\\ \hline 1.3\\ \hline 0.19\\ 0.01\\ \hline 0.0\\ 0.02\\ 0.15\\ 0.14\\ 0.0\\ 0.0\\ \hline 0.2\\ 0.05\\ \hline 0.09\\ 0.05\\ 0.16\\ 0.26\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rescattering<br>0.8<br>0.22<br>0.22<br>0.07<br>0.0<br>0.01<br>0.09<br>0.04<br>0.0<br>0.14<br>0.04<br>0.04<br>0.31<br>0.23<br>0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \phi(1020)\\ \hline 0.2\\ \hline 0.04\\ 0.13\\ \hline 0.01\\ 0.0\\ 0.0\\ 0.02\\ 0.01\\ 0.0\\ 0.02\\ 0.01\\ 0.0\\ 0.01\\ 0.0\\ 0.05\\ 0.0\\ 0.01\\ 0.03\\ \end{array}$ |
| $B^-$ Fit fraction: FF <sup>-</sup> Statistical uncertainty $B^\pm$ mass fit         Maximum value         Minimum value         Efficiency model         Simulation sample size         PID         L0 trigger correction         Finer binning         Coarse binning         B production and detection asymmetry         MC truth requirement         Background models         Combinatorial background         Paking background         Isobar Model         Fit bias         Blatt Weisskopf radii set in 3 GeV <sup>-1</sup> Mass and width variation $\phi$ background level                                                                  | K*(892)           1.0           0.8           0.1           0.07           0.01           0.01           0.01           0.01           0.02           0.34           0.11           0.02           0.34           0.11           0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} K_0^*(1430)^0 \\ \hline 1.2 \\ \hline 1.17 \\ 0.28 \\ 0.05 \\ 0.01 \\ 0.01 \\ 0.03 \\ 0.05 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.32 \\ 0.05 \\ 0.02 \\ 0.57 \\ 0.28 \\ 0.77 \\ 0.28 \\ 0.77 \\ 0.26 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Single pole<br>2.6<br>2.61<br>0.57<br>0.13<br>0.02<br>0.02<br>0.02<br>0.02<br>0.00<br>0.00<br>0.59<br>0.12<br>0.27<br>0.49<br>0.35<br>4.1<br>0.24                                       | $\begin{array}{c} \rho(1450)^0 \\ \hline 1.9 \\ \hline 0.63 \\ 0.09 \\ \hline 0.13 \\ 0.01 \\ 0.0 \\ 0.15 \\ 0.01 \\ 0.0 \\ 0.0 \\ 0.34 \\ 0.12 \\ \hline 0.11 \\ 0.15 \\ 0.26 \\ 0.8 \\ \hline 0.02 \\ \hline 0.02 \\ \hline 0.02 \\ 0.03 \\ \hline 0.03 \\ 0.03 \\ 0.03 \\ \hline 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03$ | $\begin{array}{c} f_2(1270)\\\hline 1.3\\\hline 0.19\\0.01\\\hline 0.1\\0.0\\0.02\\0.15\\0.14\\0.0\\0.0\\0.0\\0.0\\0.0\\0.05\\0.05\\0.06\\0.26\\0.26\\0.26\\0.26\\0.22\\0.02\\0.05\\0.02\\0.05\\0.02\\0.05\\0.02\\0.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rescattering<br>0.8<br>0.22<br>0.22<br>0.07<br>0.0<br>0.01<br>0.09<br>0.04<br>0.0<br>0.0<br>0.14<br>0.04<br>0.31<br>0.23<br>0.26<br>0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\phi(1020)$ 0.2 0.04 0.13 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                                                                                                      |
| $B^-$ Fit fraction: FF <sup>-</sup> Statistical uncertainty $B^\pm$ mass fit         Maximum value         Minimum value         Efficiency model         Simulation sample size         PID         L0 trigger correction         Finer binning         Coarse binning         B production and detection asymmetry         MC truth requirement         Background models         Combinatorial background         Peaking background         Isobar Model         Fit bias         Blatt Weisskopf radii set in 3 GeV <sup>-1</sup> Blatt Weisskopf radii set in 5 GeV <sup>-1</sup> Mass and width variation $\phi$ background level         Upward | $\begin{array}{c} K^{*}(892) \\ \hline 1.0 \\ \hline 0.8 \\ 0.1 \\ 0.07 \\ 0.01 \\ 0.01 \\ 0.09 \\ 0.04 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.1 \\ 0.02 \\ 0.34 \\ 0.11 \\ 0.04 \\ 0.31 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ $          | $K_0^*(1430)^0$<br>1.2<br>1.17<br>0.28<br>0.05<br>0.01<br>0.01<br>0.03<br>0.05<br>0.0<br>0.00<br>0.02<br>0.57<br>0.28<br>0.77<br>0.28<br>0.77<br>0.9<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Single pole<br>2.6<br>2.61<br>0.57<br>0.13<br>0.02<br>0.02<br>0.02<br>0.0<br>0.0<br>0.0<br>0.59<br>0.12<br>0.27<br>0.49<br>0.35<br>4.1<br>0.24<br>0.24<br>0.24                          | $\begin{array}{c} \rho(1450)^0 \\ \hline 1.9 \\ \hline 0.63 \\ 0.09 \\ \hline 0.13 \\ 0.01 \\ 0.0 \\ 0.15 \\ 0.01 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.34 \\ 0.12 \\ \hline 0.11 \\ 0.15 \\ 0.26 \\ 0.8 \\ 0.03 \\ 0.01 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} f_2(1270)\\ \hline 1.3\\ \hline 0.19\\ 0.01\\ \hline 0.1\\ 0.0\\ 0.02\\ 0.15\\ 0.14\\ 0.0\\ 0.0\\ \hline 0.2\\ 0.05\\ \hline 0.09\\ 0.05\\ 0.16\\ 0.26\\ \hline 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rescattering<br>0.8<br>0.22<br>0.22<br>0.07<br>0.0<br>0.01<br>0.09<br>0.04<br>0.0<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.23<br>0.26<br>0.11<br>0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\phi(1020)$ 0.2 0.04 0.13 0.01 0.0 0.0 0.02 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                                                                                    |
| $B^-$ Fit fraction: FF <sup>-</sup> Statistical uncertainty $B^\pm$ mass fit         Maximum value         Minimum value         Efficiency model         Simulation sample size         PID         L0 trigger correction         Finer binning         Coarse binning         B production and detection asymmetry         MC truth requirement         Background models         Combinatorial background         Peaking background         Isobar Model         Fit bias         Blatt Weisskopf radii set in 3 GeV <sup>-1</sup> Mass and width variation $\phi$ background level         Upward         Downward                                 | $\begin{array}{c} K^{*}(892) \\ \hline 1.0 \\ \hline 0.8 \\ 0.1 \\ 0.07 \\ 0.01 \\ 0.01 \\ 0.09 \\ 0.04 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.1 \\ 0.02 \\ 0.34 \\ 0.11 \\ 0.04 \\ 0.31 \\ 0.03 \\ 0.03 \\ 0.04 \\ 0.04 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} K_0^*(1430)^0 \\ \hline 1.2 \\ \hline 1.17 \\ 0.28 \\ 0.05 \\ 0.01 \\ 0.01 \\ 0.03 \\ 0.05 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.05 \\ 0.02 \\ 0.57 \\ 0.28 \\ 0.77 \\ 0.09 \\ 0.1 \\ 0.20 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Single pole<br>2.6<br>2.61<br>0.57<br>0.13<br>0.02<br>0.02<br>0.02<br>0.03<br>0.22<br>0.0<br>0.0<br>0.59<br>0.12<br>0.27<br>0.49<br>0.35<br>4.1<br>0.24<br>0.26<br>0.27                 | $\begin{array}{c} \rho(1450)^0 \\ \hline 1.9 \\ \hline 0.63 \\ 0.09 \\ \hline 0.13 \\ 0.01 \\ 0.0 \\ 0.15 \\ 0.01 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.34 \\ 0.12 \\ \hline 0.11 \\ 0.15 \\ 0.26 \\ 0.8 \\ \hline 0.03 \\ 0.01 \\ 0.550 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} f_2(1270)\\ \hline 1.3\\ \hline 0.19\\ 0.01\\ \hline 0.1\\ 0.0\\ 0.02\\ 0.15\\ 0.14\\ 0.0\\ 0.0\\ \hline 0.2\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.06\\ 0.26\\ \hline 0.02\\ 0.03\\ 0.74\\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rescattering<br>0.8<br>0.22<br>0.22<br>0.07<br>0.0<br>0.01<br>0.09<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.23<br>0.26<br>0.11<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.23<br>0.26<br>0.11<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.23<br>0.26<br>0.11<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14<br>0.14 | $\phi(1020)$ 0.2 0.04 0.13 0.01 0.0 0.0 0.02 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                                                                                    |
| $\begin{array}{c} B^- \mbox{ Fit fraction: FF}^- \\ \hline \begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | K*(892)           1.0           0.8           0.1           0.07           0.01           0.01           0.01           0.01           0.01           0.01           0.01           0.02           0.34           0.11           0.04           0.31           0.03           0.03           0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $K_0^*(1430)^0$<br>1.2<br>1.17<br>0.28<br>0.05<br>0.01<br>0.01<br>0.03<br>0.05<br>0.00<br>0.0<br>0.02<br>0.57<br>0.28<br>0.77<br>0.09<br>0.1<br>0.39<br>1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Single pole<br>2.6<br>2.61<br>0.57<br>0.13<br>0.02<br>0.02<br>0.02<br>0.13<br>0.22<br>0.0<br>0.0<br>0.59<br>0.12<br>0.27<br>0.49<br>0.35<br>4.1<br>0.24<br>0.26<br>0.37<br>0.24<br>0.26 | $\begin{array}{c} \rho(1450)^0 \\ \hline 1.9 \\ \hline 0.63 \\ 0.09 \\ \hline 0.13 \\ 0.01 \\ 0.0 \\ 0.15 \\ 0.01 \\ 0.0 \\ 0.0 \\ 0.34 \\ 0.12 \\ \hline 0.11 \\ 0.15 \\ 0.26 \\ 0.8 \\ \hline 0.03 \\ 0.01 \\ 0.59 \\ \hline 1.20 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} f_2(1270)\\ \hline 1.3\\ \hline 0.19\\ 0.01\\ \hline 0.0\\ 0.02\\ 0.15\\ 0.14\\ 0.0\\ 0.0\\ 0.0\\ \hline 0.2\\ 0.05\\ \hline 0.02\\ 0.05\\ 0.16\\ 0.26\\ \hline 0.02\\ 0.03\\ 0.74\\ \hline 0.02\\ 0.03\\ 0.74\\ \hline 0.02\\ 0.03\\ 0.74\\ \hline 0.02\\ 0.03\\ \hline 0.74\\ \hline 0.02\\ 0.03\\ \hline 0.74\\ \hline 0.02\\ \hline 0.03\\ \hline 0.74\\ \hline 0.02\\ \hline 0.03\\ \hline 0.74\\ \hline 0.02\\ \hline 0.03\\ $ | Rescattering<br>0.8<br>0.22<br>0.22<br>0.07<br>0.0<br>0.01<br>0.09<br>0.04<br>0.0<br>0.0<br>0.14<br>0.04<br>0.04<br>0.23<br>0.26<br>0.11<br>0.14<br>0.13<br>0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\phi(1020)$ 0.2 0.04 0.13 0.01 0.0 0.0 0.02 0.01 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0                                                                                                    |

# Table 9: Systematic uncertainties for $B^+$ and $B^-$ fit fractions (in percent).

| D+                                                |              |                 | Resor       | ant Compo      | nents       |              |              |
|---------------------------------------------------|--------------|-----------------|-------------|----------------|-------------|--------------|--------------|
| <i>B</i> magnitude: <i>a</i>                      | $K^{*}(892)$ | $K_0^*(1430)^0$ | Single pole | $\rho(1450)^0$ | $f_2(1270)$ | Rescattering | $\phi(1020)$ |
| Statistical uncertainty                           | 0.04         | 0.09            | 0.13        | 0.11           | 0.09        | 0.09         | 0.07         |
| $B^{\pm}$ mass fit                                |              |                 |             |                |             |              |              |
| Maximum value                                     | 0.01         | 0.04            | 0.1         | 0.05           | 0.02        | 0.01         | 0.0          |
| Minimum value                                     | 0.0          | 0.01            | 0.02        | 0.01           | 0.01        | 0.02         | 0.0          |
| Efficiency model                                  |              |                 |             |                |             |              |              |
| Simulation sample size                            | 0.0          | 0.01            | 0.01        | 0.01           | 0.01        | 0.01         | 0.0          |
| PID                                               | 0.01         | 0.01            | 0.02        | 0.02           | 0.01        | 0.02         | 0.0          |
| L0 trigger correction                             | 0.0          | 0.0             | 0.0         | 0.01           | 0.0         | 0.01         | 0.0          |
| Finer binning                                     | 0.0          | 0.0             | 0.0         | 0.0            | 0.0         | 0.01         | 0.0          |
| Coarse binning                                    | 0.0          | 0.01            | 0.01        | 0.0            | 0.01        | 0.01         | 0.0          |
| B production and detection asymmetry              | 0.01         | 0.01            | 0.02        | 0.02           | 0.01        | 0.02         | 0.0          |
| MC truth requirement                              | 0.0          | 0.0             | 0.0         | 0.0            | 0.0         | 0.0          | 0.0          |
| Background models                                 |              |                 |             |                |             |              |              |
| Combinatorial background                          | 0.01         | 0.02            | 0.03        | 0.02           | 0.02        | 0.02         | 0.0          |
| Peaking background                                | 0.0          | 0.0             | 0.01        | 0.01           | 0.0         | 0.0          | 0.0          |
| Isobar Model                                      |              |                 |             |                |             |              |              |
| Fit bias                                          | 0.0          | 0.01            | 0.03        | 0.02           | 0.01        | 0.02         | 0.01         |
| Blatt Weisskopf radii set in 3 $\text{GeV}^{-1}$  | 0.0          | 0.02            | 0.0         | 0.0            | 0.02        | 0.01         | 0.01         |
| Blatt Weisskopf radii set in 5 $GeV^{-1}$         | 0.0          | 0.02            | 0.0         | 0.0            | 0.01        | 0.01         | 0.0          |
| Mass and width variation                          | 0.0          | 0.08            | 0.13        | 0.04           | 0.02        | 0.03         | 0.01         |
| $\phi$ background level                           |              |                 |             |                |             |              |              |
| Upward                                            | 0.0          | 0.0             | 0.01        | 0.0            | 0.01        | 0.01         | 0.0          |
| Downward                                          | 0.0          | 0.0             | 0.01        | 0.01           | 0.01        | 0.01         | 0.0          |
| $\rho(1450)$ free to float in the fit             | 0.01         | 0.01            | 0.03        | 0.0            | 0.05        | 0.01         | 0.02         |
| Total systematic uncertainty                      | 0.02         | 0.09            | 0.17        | 0.07           | 0.07        | 0.06         | 0.02         |
| $B^-$ magnitude: $a^-$                            | $K^{*}(892)$ | $K_0^*(1430)^0$ | Single pole | $\rho(1450)^0$ | $f_2(1270)$ | Rescattering | $\phi(1020)$ |
| Statistical uncertainty                           | 0.04         | 0.09            | 0.12        | 0.10           | 0.08        | 0.07         | 0.06         |
| $B^{\pm}$ mass fit                                |              |                 |             |                |             |              |              |
| Maximum value                                     | 0.01         | 0.06            | 0.14        | 0.04           | 0.02        | 0.01         | 0.02         |
| Minimum value                                     | 0.0          | 0.02            | 0.02        | 0.0            | 0.0         | 0.01         | 0.03         |
| Efficiency model                                  |              |                 |             |                |             |              |              |
| Simulation sample size                            | 0.0          | 0.0             | 0.01        | 0.01           | 0.01        | 0.01         | 0.0          |
| PID                                               | 0.01         | 0.01            | 0.02        | 0.02           | 0.01        | 0.01         | 0.0          |
| L0 trigger correction                             | 0.0          | 0.0             | 0.01        | 0.01           | 0.0         | 0.0          | 0.0          |
| Finer binning                                     | 0.0          | 0.0             | 0.0         | 0.0            | 0.01        | 0.01         | 0.0          |
| Coarse binning                                    | 0.0          | 0.0             | 0.01        | 0.0            | 0.01        | 0.0          | 0.0          |
| B production and detection asymmetry              | 0.01         | 0.01            | 0.01        | 0.01           | 0.01        | 0.01         | 0.0          |
| MC truth requirement                              | 0.0          | 0.0             | 0.0         | 0.0            | 0.0         | 0.0          | 0.0          |
| Background models                                 |              |                 |             |                |             |              |              |
| Combinatorial background                          | 0.01         | 0.02            | 0.02        | 0.02           | 0.01        | 0.01         | 0.0          |
| Peaking background                                | 0.0          | 0.0             | 0.01        | 0.0            | 0.0         | 0.0          | 0.0          |
| Isobar Model                                      |              |                 |             |                |             |              |              |
| Fit bias                                          | 0.0          | 0.01            | 0.03        | 0.02           | 0.02        | 0.01         | 0.0          |
| Blatt Weisskopf radii set in $3 \text{ GeV}^{-1}$ | 0.0          | 0.04            | 0.02        | 0.01           | 0.0         | 0.02         | 0.0          |
| Blatt Weisskopf radii set in 5 $\text{GeV}^{-1}$  | 0.0          | 0.02            | 0.01        | 0.01           | 0.01        | 0.02         | 0.0          |
| Mass and width variation                          | 0.0          | 0.06            | 0.14        | 0.03           | 0.02        | 0.02         | 0.01         |
| $\phi$ background level                           | 0.7          | 0.55            | 0.51        | 0.5            | 0.7         | 0.07         | 0.55         |
| Upward                                            | 0.0          | 0.01            | 0.01        | 0.0            | 0.0         | 0.01         | 0.02         |
| Downward                                          | 0.0          | 0.01            | 0.01        | 0.0            | 0.0         | 0.01         | 0.02         |
| $\rho(1450)$ tree to float in the fit             | 0.01         | 0.03            | 0.0         | 0.03           | 0.04        | 0.0          | 0.0          |
| Total systematic uncertainty                      | 0.02         | 0.10            | 0.20        | 0.07           | 0.05        | 0.04         | 0.04         |

# Table 10: Systematic uncertainties for $B^+$ and $B^-$ magnitudes.

|                                                  |              |                 |             | Component        |             |              |              |
|--------------------------------------------------|--------------|-----------------|-------------|------------------|-------------|--------------|--------------|
| $B^+$ phase: $\delta^+$                          | $K^{*}(892)$ | $K_0^*(1430)^0$ | Single pole | $\rho(1450)^0$   | $f_2(1270)$ | Rescattering | $\phi(1020)$ |
| Statistical uncertainty                          | 0 [fixed]    | 10              | 7           | 10               | 11          | 12           | 23           |
| $B^{\pm}$ mass fit                               |              |                 |             |                  |             |              |              |
| Maximum value                                    | _            | 1.13            | 2.6         | 1.48             | 0.18        | 0.98         | 3.56         |
| Minimum value                                    | _            | 0.47            | 0.07        | 1.04             | 1.65        | 2.07         | 1.56         |
| Efficiency model                                 |              |                 |             |                  |             |              |              |
| Simulation sample size                           | _            | 0.72            | 0.55        | 0.7              | 0.92        | 1.06         | 1.75         |
| PID                                              | _            | 1.58            | 1.38        | 1.12             | 1.12        | 1.1          | 1.07         |
| L0 trigger correction                            | _            | 0.66            | 0.58        | 0.49             | 0.42        | 0.43         | 0.58         |
| Finer binning                                    | _            | 0.39            | 0.4         | 0.9              | 1.17        | 1.74         | 1.3          |
| Coarse binning                                   | _            | 0.38            | 0.74        | 0.27             | 0.35        | 0.24         | 0.36         |
| <i>B</i> production and detection asymmetry      | _            | 0.01            | 0.0         | 0.01             | 0.02        | 0.01         | 0.02         |
| MC truth requirement                             | _            | 0.04            | 0.04        | 0.04             | 0.04        | 0.05         | 0.08         |
| Background models                                |              |                 |             |                  |             |              |              |
| Combinatorial background                         | _            | 2.57            | 1.66        | 3.03             | 3.09        | 3.04         | 3.16         |
| Peaking background                               | _            | 0.52            | 0.32        | 0.41             | 0.48        | 0.53         | 0.55         |
| Isobar model                                     |              |                 |             |                  |             |              |              |
| Fit bias                                         | _            | 0.07            | 0.3         | 0.06             | 0.34        | 0.06         | 0.08         |
| Blatt Weisskopf radii set in 3 GeV <sup>-1</sup> | _            | 0.95            | 1.35        | 0.28             | 6.01        | 0.97         | 4.81         |
| Blatt Weisskopf radii set in 5 GeV <sup>-1</sup> | _            | 0.41            | 0.62        | 0.17             | 3.32        | 0.3          | 3.48         |
| Mass and width variation                         | _            | 14.37           | 2.7         | 6.78             | 4.92        | 6.94         | 10.55        |
| $\phi$ background level                          |              |                 |             |                  |             |              |              |
| Upward                                           | _            | 0.13            | 0.0         | 0.22             | 0.55        | 0.75         | 0.37         |
| Downward                                         | _            | 0.12            | 0.01        | 0.28             | 0.66        | 0.92         | 0.55         |
| $\rho(1450)$ free to float in the fit            | _            | 4.72            | 1.91        | 12.39            | 1.41        | 15.87        | 29.02        |
| Total systematic uncertainty                     | -            | 15.55           | 5.10        | 14.66            | 9.51        | 17.96        | 31.95        |
| $B^-$ phase: $\delta^-$                          | $K^{*}(892)$ | $K_0^*(1430)^0$ | Single pole | $\rho(1450)^{0}$ | $f_2(1270)$ | Rescattering | $\phi(1020)$ |
| Statistical uncertainty                          | 0 [fixed]    | 11              | 6           | 13               | 11          | 14           | 33           |
| $B^{\pm}$ mass fit                               |              |                 |             |                  |             |              |              |
| Maximum value                                    | _            | 2.15            | 0.85        | 2.94             | 3.36        | 3.85         | 2.25         |
| Minimum value                                    | _            | 1.0             | 0.48        | 2.52             | 2.75        | 3.51         | 4.94         |
| Efficiency model                                 |              |                 |             |                  |             |              |              |
| Simulation sample size                           | _            | 0.61            | 0.41        | 0.71             | 0.74        | 0.88         | 1.16         |
| PID                                              | _            | 0.13            | 0.09        | 0.11             | 0.1         | 0.11         | 0.12         |
| L0 trigger correction                            | _            | 0.48            | 0.42        | 0.2              | 0.15        | 0.15         | 0.19         |
| Finer binning                                    | _            | 0.06            | 0.34        | 0.44             | 0.77        | 0.33         | 2.07         |
| Coarse binning                                   | _            | 0.54            | 0.59        | 0.17             | 0.24        | 0.31         | 0.99         |
| B production and detection asymmetry             | _            | 0.0             | 0.0         | 0.02             | 0.02        | 0.02         | 0.04         |
| MC truth requirement                             | _            | 0.03            | 0.02        | 0.01             | 0.01        | 0.01         | 0.02         |
| Background models                                |              |                 |             |                  |             |              |              |
| Combinatorial background                         | -            | 2.26            | 1.48        | 4.46             | 3.96        | 4.35         | 5.56         |
| Peaking background                               | -            | 0.55            | 0.27        | 0.64             | 0.62        | 0.67         | 0.85         |
| Isobar Model                                     |              |                 |             |                  |             |              |              |
| Fit bias                                         | -            | 0.8             | 0.02        | 0.89             | 0.07        | 1.42         | 0.11         |
| Blatt Weisskopf radii set in 3 $\text{GeV}^{-1}$ | _            | 0.83            | 0.94        | 3.16             | 8.64        | 4.99         | 6.69         |
| Blatt Weisskopf radii set in 5 $GeV^{-1}$        | _            | 0.5             | 0.49        | 1.07             | 4.57        | 2.11         | 4.8          |
| Mass and width variation                         | -            | 20.99           | 3.62        | 9.81             | 8.37        | 9.26         | 11.87        |
| $\phi$ background level                          |              |                 |             |                  |             |              |              |
| Upward                                           | -            | 0.31            | 0.11        | 0.66             | 0.85        | 1.27         | 1.34         |
| Downward                                         | -            | 0.3             | 0.1         | 0.75             | 0.95        | 1.4          | 2.15         |
| $\rho(1450)$ free to float in the fit            | -            | 0.49            | 1.69        | 15.9             | 0.78        | 7.47         | 37.67        |
|                                                  | _            | 21.31           | 4.59        | 19.95            | 14.28       | 14 96        | 41 28        |

# Table 11: Systematic uncertainties for $B^-$ and $B^-$ phases (in degrees).