Supplementary material for LHCb-PAPER-2019-010

This appendix contains supplementary material that will posted on the public CDS record but will not appear in the paper.

Figure 1: Sketch of the $\Lambda_b^0 \to \Lambda \gamma$ decay topology. The solid lines show the particle trajectories that are directly reconstructed from the detector information. The dashed lines represent trajectories that are derived from certain assumptions: the photon direction is computed from the position of the calorimeter cluster and the origin of the LHCb coordinate system, under the assumption that the photon originated there; the Λ_b^0 direction is reconstructed from the sum of the Λ and photon momenta and the trajectory built assuming it originates at the PV. The dotted line describes the distance of closest approach (DOCA) between the Λ_b^0 and Λ trajectories, exploited in this analysis to reject combinatorial background.

Figure 2: Profile of the Negative Log Likelihood along the $\mathcal{B}(\Lambda_b^0 \to \Lambda \gamma)$ value. The significance is obtained using Wilks' theorem [1] and the value of the profile at zero.

Figure 3: Background-subtracted distribution of the $p\pi$ invariant mass of the $\Lambda_b^0 \to \Lambda\gamma$ signal component in data (black dots) compared to that in simulation (red histogram).

Figure 4: Background-subtracted distribution of the $\gamma - \pi^0$ separation variable of the $\Lambda_b^0 \to \Lambda \gamma$ signal component in data (black dots) compared to that for the $B^0 \to K^{*0}\gamma$ one (red histogram), after a tight selection in the kaon helicity angle of the second. The $\gamma - \pi^0$ separation variable is the output of a neural network classifier described in detail in Ref. [2]

		$\mathcal{B}(\Lambda_b^0 \to \Lambda \gamma) \; (\times 10^{-6})$
Light-cone Sum Rules - twist 6 Heavy quark limit QCD Sum Rules - Ioffe current Relativistic quark model	[3] [4] [5] [6]	$7.3 \pm 1.5 \\ 7.7^{+2.2}_{-1.9} \\ 0.61^{+0.14}_{-0.13} \\ 10$
This letter		7.1 ± 1.7

Table 1: Comparison of the value of $\mathcal{B}(\Lambda_b^0 \to \Lambda \gamma)$ measured in this paper, including both statistical and systematic uncertainties, to theoretical predictions.

References

- S. S. Wilks, The large-sample distribution of the likelihood ratio for testing composite hypotheses, Ann. Math. Stat. 9 (1938) 60.
- [2] M. Calvo Gomez *et al.*, A tool for γ/π^0 separation at high energies, LHCb-PUB-2015-016, 2015.
- [3] Y.-M. Wang, Y. Li, and C.-D. Lü, Rare decays of $\Lambda_b^0 \to \Lambda \gamma$ and $\Lambda_b^0 \to \Lambda \ell^+ \ell^-$ in the light-cone sum rules, Eur. Phys. J. C59 (2009) 861, arXiv:0804.0648.
- [4] T. Mannel and Y.-M. Wang, *Heavy-to-light baryonic form factors at large recoil*, JHEP 12 (2011) 067, arXiv:1111.1849.
- [5] L.-F. Gan, Y.-L. Liu, W.-B. Chen, and M.-Q. Huang, Improved light-cone QCD sum rule analysis of the rare decays $\Lambda_b^0 \to \Lambda\gamma$ and $\Lambda_b^0 \to \Lambda l^+ l^-$, Commun. Theor. Phys. 58 (2012) 872, arXiv:1212.4671.
- [6] R. N. Faustov and V. O. Galkin, Rare $\Lambda_b^0 \to \Lambda l^+ l^-$ and $\Lambda_b^0 \to \Lambda \gamma$ decays in the relativistic quark model, Phys. Rev. **D96** (2017) 053006, arXiv:1705.07741.