Bin number	Polar angles	Azimuthal angles
1	$ \begin{array}{l} \theta_p \in [0, \pi/4] \text{ and } \theta_{\Delta^{++}} \in [0, \pi/4] \\ \theta_p \in [\pi/2, 3\pi/4] \text{ and } \theta_{\Delta^{++}} \in [\pi/2, 3\pi/4] \end{array} $	$ \varphi \in [0,\pi/2]$
2	$\theta_p \in [0, \pi/4] \text{ and } \theta_{\Delta^{++}} \in [\pi/4, \pi/2]$ $\theta_p \in [\pi/2, 3\pi/4] \text{ and } \theta_{\Delta^{++}} \in [3\pi/4, \pi]$	$ \varphi \in [0,\pi/2]$
3	$\theta_p \in [0, \pi/4] \text{ and } \theta_{\Delta^{++}} \in [\pi/2, 3\pi/4]$ $\theta_p \in [\pi/2, 3\pi/4] \text{ and } \theta_{\Delta^{++}} \in [0, \pi/4]$	$ \varphi \in [0,\pi/2]$
4	$\theta_p \in [0, \pi/4] \text{ and } \theta_{\Delta^{++}} \in [3\pi/4, \pi]$ $\theta_p \in [\pi/2, 3\pi/4] \text{ and } \theta_{\Delta^{++}} \in [\pi/4, \pi/2]$	$ \varphi \in [0,\pi/2]$
5	$\begin{array}{l} \theta_p \in [\pi/4, \pi/2] \text{ and } \theta_{\Delta^{++}} \in [0, \pi/4] \\ \theta_p \in [3\pi/4, \pi] \text{ and } \theta_{\Delta^{++}} \in [\pi/2, 3\pi/4] \end{array}$	$ \varphi \in [0,\pi/2]$
6	$ \begin{aligned} \theta_p &\in [\pi/4, \pi/2] \text{ and } \theta_{\Delta^{++}} \in [\pi/4, \pi/2] \\ \theta_p &\in [3\pi/4, \pi] \text{ and } \theta_{\Delta^{++}} \in [3\pi/4, \pi] \end{aligned} $	$ \varphi \in [0,\pi/2]$
7	$\theta_p \in [\pi/4, \pi/2] \text{ and } \theta_{\Delta^{++}} \in [\pi/2, 3\pi/4]$ $\theta_p \in [3\pi/4, \pi] \text{ and } \theta_{\Delta^{++}} \in [0, \pi/4]$	$ \varphi \in [0,\pi/2]$
8	$\theta_p \in [\pi/4, \pi/2] \text{ and } \theta_{\Delta^{++}} \in [3\pi/4, \pi]$ $\theta_p \in [3\pi/4, \pi] \text{ and } \theta_{\Delta^{++}} \in [\pi/4, \pi/2]$	$ \varphi \in [0,\pi/2]$
9	$\theta_p \in [0, \pi/4] \text{ and } \theta_{\Delta^{++}} \in [0, \pi/4]$ $\theta_p \in [\pi/2, 3\pi/4] \text{ and } \theta_{\Delta^{++}} \in [\pi/2, 3\pi/4]$	$ \varphi \in [\pi/2,\pi]$
10	$\theta_p \in [0, \pi/4] \text{ and } \theta_{\Delta^{++}} \in [\pi/4, \pi/2]$ $\theta_p \in [\pi/2, 3\pi/4] \text{ and } \theta_{\Delta^{++}} \in [3\pi/4, \pi]$	$ \varphi \in [\pi/2,\pi]$
11	$\theta_p \in [0, \pi/4] \text{ and } \theta_{\Delta^{++}} \in [\pi/2, 3\pi/4]$ $\theta_p \in [\pi/2, 3\pi/4] \text{ and } \theta_{\Delta^{++}} \in [0, \pi/4]$	$ \varphi \in [\pi/2,\pi]$
12	$\theta_p \in [0, \pi/4] \text{ and } \theta_{\Delta^{++}} \in [3\pi/4, \pi]$ $\theta_p \in [\pi/2, 3\pi/4] \text{ and } \theta_{\Delta^{++}} \in [\pi/4, \pi/2]$	$ \varphi \in [\pi/2,\pi]$
13	$\theta_p \in [\pi/4, \pi/2] \text{ and } \theta_{\Delta^{++}} \in [0, \pi/4]$ $\theta_p \in [3\pi/4, \pi] \text{ and } \theta_{\Delta^{++}} \in [\pi/2, 3\pi/4]$	$ \varphi \in [\pi/2,\pi]$
14	$\theta_p \in [\pi/4, \pi/2] \text{ and } \theta_{\Delta^{++}} \in [\pi/4, \pi/2]$ $\theta_p \in [3\pi/4, \pi] \text{ and } \theta_{\Delta^{++}} \in [3\pi/4, \pi]$	$ \varphi \in [\pi/2,\pi]$
15	$\theta_p \in [\pi/4, \pi/2] \text{ and } \theta_{\Delta^{++}} \in [\pi/2, 3\pi/4]$ $\theta_p \in [3\pi/4, \pi] \text{ and } \theta_{\Delta^{++}} \in [0, \pi/4]$	$ \varphi \in [\pi/2,\pi]$
16	$\theta_p \in [\pi/4, \pi/2] \text{ and } \theta_{\Delta^{++}} \in [3\pi/4, \pi]$ $\theta_p \in [3\pi/4, \pi] \text{ and } \theta_{\Delta^{++}} \in [\pi/4, \pi/2]$	$ \varphi \in [\pi/2,\pi]$