1 Supplementary material for LHCb-PAPER-2019-040

This appendix contains supplementary material that will be posted on the public CDS record but will not appear in the paper.

Figure 1: Measured value of R_{pK}^{-1} in the range $0.1 < q^2 < 6 \,\text{GeV}^2/c^4$ and $m(pK^-) < 2600 \,\text{MeV}/c^2$ (red point), including statistical and systematic uncertainties, compared to unity (dashed line).

Figure 2: Measured value of R_{pK} in the range $0.1 < q^2 < 6 \text{ GeV}^2/c^4$ and $m(pK^-) < 2600 \text{ MeV}/c^2$ (red point), including statistical and systematic uncertainties, compared to unity (dashed line).

Figure 3: Invariant-mass distribution of (top) $\Lambda_b^0 \to pK^-\mu^+\mu^-$, (middle) $\Lambda_b^0 \to pK^-e^+e^-$ L0I and (bottom) $\Lambda_b^0 \to pK^-e^+e^-$ L0E candidates in (left) Run 1 and (right) Run 2 data. The black points represent the data, while the solid blue curve shows the total PDF.

Figure 4: Invariant-mass distribution, with the J/ψ mass constraint applied, of $\Lambda_b^0 \to p K^- J/\psi (\to \mu^+ \mu^-)$ (left) and $\Lambda_b^0 \to p K^- J/\psi (\to e^+ e^-)$ (right) candidates, summed over trigger and data-taking categories. The black points represent the data, while the solid blue curve shows the result of the fit.

Figure 5: $r_{J/\psi}^{-1}$ as a function the A_b^0 transverse momentum, normalised to its average value.

Figure 6: $r_{J/\psi}^{-1}$ as a function of the maximum transverse momentum of the two leptons, normalised to its average value.

Figure 7: $r_{J/\psi}^{-1}$ as a function of $m(pK^{-})$, normalised to its average value.

Figure 8: $r_{J/\psi}^{-1}$ as a function of the opening angle of the two leptons, normalised to its average value.

Figure 9: Background-subtracted distribution of $m(pK^-)$ from $\Lambda_b^0 \to pK^-\mu^+\mu^-$ decays in $0.1 < q^2 < 6.0 \,\text{GeV}^2/c^4$.