Supplementary material for LHCb-PAPER-2020-010

The number of VELO hits in like-sign events is compared with that in opposite-sign in Fig. S1. The average is about 13% higher in like-sign events.

Ratios of total cross-section between two pairs in the same category (LS or OS) and different by only one charm hadron, for the reduced rapidity and $p_{\rm T}$ range, compared to the ratios of single charm prompt production in pp collisions [1], are shown in Table S1 and Fig. S2. Good agreement are found up to a factor relevant for the number of charm-quark hadronization paths into charm pairs. The results suggest that charm hadronization is not strongly modified in p-Pb data with respect to pp collisions.

In Figs. S3 and S4, the $D^0 D^0$ and $D^0 \overline{D}{}^0$ pair $p_{\rm T}$ distributions and the distributions of two charm-hadron rapidity difference are shown, without the $p_{\rm T}(D^0) > 2 \,{\rm GeV}/c$ requirement. The distribution is similar between $D^0 D^0$ and $D^0 \overline{D}{}^0$ pairs and is compatible with PYTHIA8 simulation. In Fig. S5, the m_{DD} and $\Delta \phi$ distributions of $J/\psi D^0$ pairs are presented.

The effective cross-section $\sigma_{\text{eff, }p\text{Pb}}$ in bins of rapidity measured using $J/\psi D^0$ and $D^0 D^0$ pair production cross-section is shown in Fig. S6, and is compared with prediction from Ref. [2].

Figure S1: Background subtracted distribution of VELO hits in (open square) like-sign (LS) and (filled triangle) opposite-sign (OS) charm-pair data, for pPb (left) and Pbp (right) data.

Table S1: Ratios of total cross-sections (including charge-conjugate final states) in the range $p_{\rm T}(D^0, D^+, D_s^+) > 2 \,\text{GeV}/c$ for *p*Pb and Pb*p* data, compared to measurements of $\sigma(D^+)/\sigma(D^0)$ and $\sigma(D_s^+)/\sigma(D^+)$ in *pp* collisions [1]. The first uncertainty is statistical and the second systematic for *p*-Pb data. The scale factor is either 1/2, 1, or 2, depending on the numbers of possible hadronization paths in the denominator and numerator.

Pairs	1.7 < y < 3.7	-4.7 < y < -2.7	$Scale \times$ (inclusive ratio)
$D^0 D^+ / D^0 D^0$	$0.78 \pm 0.07 \pm 0.04$	$0.86 \pm 0.08 \pm 0.12$	$2 \times (0.435 \pm 0.043)$
D^+D^+/D^0D^+	$0.25 \pm 0.03 \pm 0.02$	$0.27 \pm 0.04 \pm 0.05$	$1/2 \times (0.435 \pm 0.043)$
$D^0 D^- / D^0 \overline{D}{}^0$	$0.85 \pm 0.04 \pm 0.04$	$0.84 \pm 0.04 \pm 0.08$	$2 \times (0.435 \pm 0.043)$
$D^+ D_s^- / D^0 D_s^-$	$0.47 \pm 0.09 \pm 0.04$	$0.55 \pm 0.11 \pm 0.08$	$1 \times (0.435 \pm 0.043)$
$D^{+}D^{+}_{s}/D^{0}D^{+}_{s}$	$0.38 \pm 0.17 \pm 0.02$	$0.55 \pm 0.26 \pm 0.15$	$1 \times (0.435 \pm 0.043)$
$D^0 D_s^+ / D^0 D^+$	$0.46 \pm 0.11 \pm 0.02$	$0.74 \pm 0.26 \pm 0.06$	$1 \times (0.325 \pm 0.074)$
$D^0 D_s^- / D^0 D^-$	$0.48 \pm 0.06 \pm 0.03$	$0.47 \pm 0.06 \pm 0.01$	$1 \times (0.325 \pm 0.074)$
$J/\psi D^+/J/\psi D^0$	$0.41 \pm 0.07 \pm 0.02$	$0.47 \pm 0.07 \pm 0.06$	$1 \times (0.435 \pm 0.043)$

Figure S2: Ratios of total cross-sections (including charge-conjugate final states) in the range $p_{\rm T}(D^0, D^+, D_s^+) > 2 \,{\rm GeV}/c$ for (red triangle) *p*Pb and (blue circle) Pb*p* data, compared to measurements in (black diamond) *pp* collisions [1], showing (error bars) statistical and (boxes) systematic uncertainties and (black) scaled measurements of inclusive production ratio in *pp* collisions [1]. The scale factor for *pp* data is either 1/2, 1, or 2 depending on the number of possible hadronization paths for the pairs in the denominator and numerator of the ratio.

Figure S3: Distributions of the pair transverse momentum for (red) $D^0 D^0$ and (blue) $D^0 \overline{D}^0$ pairs in (left) *p*Pb, (right) Pb*p* data and (magenta band) PYTHIA8 simulation. Vertical bars (shaded area) are statistical (systematic) uncertainties.

Figure S4: Distributions of the rapidity difference between the two charm hadrons in (red) $D^0 \overline{D}^0$ and (blue) $D^0 \overline{D}^0$ pairs in (left) *p*Pb and (right) Pb*p* data and the (magenta band) PYTHIA8 simulation. Vertical bars (shaded area) are statistical (systematic) uncertainties.

Figure S5: The (left) m_{DD} and (right) $\Delta \phi$ distributions for J/ψ - D^0 pairs for (red) pPb and (blue) Pbp data. Vertical bars (shaded area) are statistical (systematic) uncertainties.

Figure S6: The effective cross-section $\sigma_{\text{eff}, pPb}$ obtained using $J/\psi D^0$ and $D^0 D^0$ pair production. The shaded area corresponds to $\sigma_{\text{eff}, pPb}$ extrapolated from pp data in Ref. [2], which incorporates about a factor of three enhancement for DPS production.

References

- [1] LHCb collaboration, R. Aaij et al., Measurements of prompt charm production crosssections in pp collisions at $\sqrt{s} = 5$ TeV, JHEP **06** (2017) 147, arXiv:1610.02230.
- [2] D. d'Enterria and A. M. Snigirev, Same-sign WW production in proton-nucleus collisions at the LHC as a signal for double parton scattering, Phys. Lett. B718 (2013) 1395, arXiv:1211.0197.