Supplementary material for PAPER-2020-012

This appendix contains supplementary material to be sent to CDS, but not to the journal. Figure 1 shows the invariant-mass spectra of the $p K^{-}$system of the signal and normalization modes, obtained from background-subtracted data and from the simulation based on a uniform phase-space model. Figure 2 shows the one-dimensional fit projection of $m(p \bar{p})$ on a linear scale. Figure 3 shows the one-dimensional projections of $m\left(p \bar{p} p K^{-}\right)$ for the selected candidates with $m(p \bar{p})$ in the η_{c} or J / ψ signal region. Figure 4 shows the one-dimensional fit projection of $m(p \bar{p})$ for the selected candidates with $m\left(p \bar{p} p K^{-}\right)$in the Λ_{b}^{0} signal region. Figure 5 shows the background-subtracted $\eta_{c} p$ mass spectrum and the fit projection which includes the contribution from a $P_{c}(4312)^{+}$resonance. Figure 6 shows the profile likelihood ratio, which is used to estimate the upper limit on the $P_{c}(4312)^{+}$ yield in the background-subtracted data displayed in Fig. 5.

Figure 1: The invariant-mass spectra of the $p K^{-}$system of (a) the $\Lambda_{b}^{0} \rightarrow \eta_{c} p K^{-}$decays, and of (b) the $\Lambda_{b}^{0} \rightarrow J / \psi p K^{-}$decays. The black points represent the background-subtracted data and the red points correspond to the expectation from a simulation generated according to a uniform phase-space model.

Figure 2: Distribution of $m(p \bar{p})$ for the selected candidates. The data are shown as black circles, while the blue solid line shows the fit result. Individual components are given in the legend.

Figure 3: Distributions of selected candidates for $m\left(p \bar{p} p K^{-}\right)$with (a) $m(p \bar{p}) \in[2935,3031] \mathrm{MeV} / c^{2}$ and (b) $m(p \bar{p}) \in[3066,3126] \mathrm{MeV} / c^{2}$. The data are shown as black circles, while the blue solid line shows the fit result. Individual components are given in the legend.

Figure 4: Distribution of selected candidates for $m(p \bar{p})$ with $m\left(p \bar{p} p K^{-}\right) \in[5590,5650] \mathrm{MeV} / c^{2}$. The data are shown as black circles, while the blue solid line shows the fit result. Individual components are given in the legend.

Figure 5: Fit projection of $m\left(\eta_{c} p\right)$ including the contribution from a $P_{c}(4312)^{+}$resonance, compared to the distribution of the background-subtracted data. The data are shown as black circles, while the blue solid line shows the fit result. The red dashed line line shows the contribution from the $P_{c}(4312)^{+}$resonance, and the magenta dashed line shows the contribution from $\Lambda_{b}^{0} \rightarrow \eta_{c} p K^{-}$decays without the $P_{c}(4312)^{+}$intermediate state.

Figure 6: The profile likelihood ratio as a function of the yield of the $P_{c}(4312)^{+}$resonance. The red dashed line indicates the ratio as determined from the fit to the data. The blue line indicates the ratio after it has been convolved with a Gaussian function to account for systematic uncertainties on the yield.

