Supplementary material for LHCb-PAPER-2020-038

This appendix contains supplementary material that will be posted on the public CDS record but will not appear in the paper.

Figure 1: Distributions of the charged and neutral BDT classifiers for the $B_s^0 \to K^- \mu^+ \nu_{\mu}$ signal and various background components.

Table 1: Absolute branching fractions with uncertainty split according to the sources. The signal yield uncertainty $\sigma(N_K)$ and the experimental systematic uncertainty (exp. syst.) are uncorrelated. The uncertainty from the normalization yield, $\sigma(N_{D_s})$, and all other sources are fully correlated between low and high q^2 bins. The external sources (ext.) combine the uncertainties on $\mathcal{B}(D_s^- \to K^+ K^- \pi^-)$, τ_{B_s} , $|V_{cb}|$ and FF_{D_s} .

Baseline $(\times 10^{-4})$	$\mathcal{B}(B^0_s \to K^- \mu^+ \nu_\mu)$	$\sigma(N_K)$	$\sigma(N_{D_s})$	exp. syst.	ext.
All q^2	1.06	0.04	0.03	0.04	0.07
$q^2 < 7 \mathrm{GeV^2/c^4}$	0.36	0.01	0.01	0.02	0.02
$q^2 > 7 \mathrm{GeV}^2/\mathrm{c}^4$	0.70	0.04	0.02	0.04	0.05

Table 2: Efficiency ratio $\epsilon_K/\epsilon_{D_s}$ and fitted yields.

MILC2019, A. Bazavov <i>et al.</i> [1]	$\epsilon_K/\epsilon_{D_s}$	$B_s^0 \to K^- \mu^+ \nu_\mu$ Yield
All q^2	0.670 ± 0.008	13895 ± 491
$q^2 < 7 \mathrm{GeV}^2/\mathrm{c}^4$	1.160 ± 0.021	7497 ± 325
$q^2 > 7 \text{GeV}^2/\text{c}^4$	0.517 ± 0.008	6398 ± 368

Table 3: Efficiency ratio $\epsilon_K/\epsilon_{D_s}$ and fitted yields.

HPQCD2015, C. Bouchard <i>et al.</i> [2]	$\epsilon_K/\epsilon_{D_s}$	$B_s^0 \to K^- \mu^+ \nu_\mu$ Yield
All q^2	0.820 ± 0.011	13249 ± 467
$q^2 < 7 \mathrm{GeV}^2/\mathrm{c}^4$	1.104 ± 0.017	6712 ± 285
$q^2 > 7 \mathrm{GeV}^2/\mathrm{c}^4$	0.606 ± 0.010	6537 ± 370

Table 4: Efficiency ratio $\epsilon_K/\epsilon_{D_s}$ and fitted yields.

UKQCD2014, J. M. Flynn et al. [3]	$\epsilon_K/\epsilon_{D_s}$	$B_s^0 \to K^- \mu^+ \nu_\mu$ Yield
All q^2	0.704 ± 0.010	13726 ± 482
$q^2 < 7 \mathrm{GeV}^2/\mathrm{c}^4$	1.150 ± 0.020	7307 ± 313
$q^2 > 7 \mathrm{GeV}^2/\mathrm{c}^4$	0.539 ± 0.009	6419 ± 366

Table 5: Efficiency ratio $\epsilon_K/\epsilon_{D_s}$ and fitted yields.

LCSR, Khodjamirian and Rusov [4]	$\epsilon_K/\epsilon_{D_s}$	$B_s^0 \to K^- \mu^+ \nu_\mu$ Yield
All q^2	0.795 ± 0.011	13412 ± 466
$q^2 < 7 \mathrm{GeV}^2/\mathrm{c}^4$	1.120 ± 0.018	6922 ± 294
$q^2 > 7 \mathrm{GeV}^2/\mathrm{c}^4$	0.602 ± 0.010	6490 ± 362

Figure 2: Fits to the $K^+K^-\pi^+$ mass in intervals of $m_{\rm corr}$ (in MeV/ c^2), in preparation to the fit to the $B_s^0 \to D_s^-\mu^+\nu_\mu$ normalization channel.

Figure 3: Projections of the $B_s^0 \to K^- \mu^+ \nu_{\mu}$ fit on control variables for (left) low and (right) high q^2 ranges.

Figure 4: $|V_{ub}|^{-2} \frac{d\Gamma(B_s \to K\mu\nu)}{dq^2}$ distribution for different LQCD [1–3] and LCSR [4] models.

Figure 5: PDG averages [5] (based on exclusive $B \to \pi \ell \nu$, $B \to D^* \ell \nu$ and inclusive $B \to X_{u,c} \ell \nu$ results) and measurements of $|V_{ub}|/|V_{cb}|$ shown in the $(|V_{cb}|, |V_{ub}|)$ plane.

References

- [1] Fermilab Lattice, MILC collaborations, A. Bazavov *et al.*, $B_s \to K\ell\nu$ decay from *lattice QCD*, Phys. Rev. **D100** (2019) 034501, arXiv:1901.02561.
- [2] C. M. Bouchard *et al.*, $B_s \to K\ell\nu$ form factors from lattice QCD, Phys. Rev. **D90** (2014) 054506, arXiv:1406.2279.
- [3] J. M. Flynn et al., B → πℓν and B_s → Kℓν form factors and |V_{ub}| from 2+1-flavor lattice QCD with domain-wall light quarks and relativistic heavy quarks, Phys. Rev. D91 (2015) 074510, arXiv:1501.05373.
- [4] A. Khodjamirian and A. V. Rusov, $B_s \to K\ell\nu_\ell$ and $B_{(s)} \to \pi(K)\ell^+\ell^-$ decays at large recoil and CKM matrix elements, JHEP **08** (2017) 112, arXiv:1703.04765.
- [5] Particle Data Group, P. A. Zyla et al., Review of particle physics, Prog. Theor. Exp. Phys. 2020 (2020) 083C01.