Supplemental material for LHCb-PAPER-2022-013

Systematic Uncertainties

The systematic uncertainties from various sources are classified into three categories and are summarized in Tables 1-3. The first systematic uncertainty is associated with the normalization. The second type is point-to-point uncertainties where the uncertainty in each data point moves up or down independently. The uncertainties of the third type are correlated between data points.

Source	Relative uncertainty $(\%)$
Jet reconstruction and identification	1.8
Purity of Z +jet sample	1.6
Sum	2.4

Table 1: Summary of no	rmalization uncertainties
------------------------	---------------------------

Table 2:	Summary	of point-	to-point	uncertainties
----------	---------	-----------	----------	---------------

Source	Relative uncertainty (%)
Track reconstruction efficiency	0.2-8.7
Particle Identification	$0.8 - 15.0 \; (\pi^{\pm}), \; 0.1 - 34.6 \; (K^{\pm}), \; 0.5 - 52.5 \; (p^{\pm})$

Table 3:	Summary	of	$\operatorname{correlated}$	uncertainties
----------	---------	----	-----------------------------	---------------

Source	Relative uncertainty $(\%)$
Jet energy scale	0.4 - 43.4
Jet energy resolution	3.8 - 48.3
Unfolding	1.4

Results of $f(z, j_T)$ at higher jet p_T intervals

The $f(z, j_{\rm T})$ measurements at higher jet $p_{\rm T}$ intervals comparing three different particle species are provided in Fig. 1 and Fig. 2. The trend of distributions for charged kaons and protons is similar to the one shown in charged pions.

Figure 1: Joint distributions of the longitudinal momentum fraction z and the transverse momentum $j_{\rm T}$ of identified charged (left) pions, (middle) kaons and (right) protons in jets with $30 < p_{\rm T} < 50$ GeV. Statistical (systematic) uncertainties are shown in bars (boxes).

Figure 2: Joint distributions of the longitudinal momentum fraction z and the transverse momentum $j_{\rm T}$ of identified charged (left) pions, (middle) kaons and (right) protons in jets with $50 < p_{\rm T} < 100$ GeV. Statistical (systematic) uncertainties are shown in bars (boxes).

Numerical Results

Numerical results are provided in Tables 4 – 15 for unidentified charged hadrons, charged pions, charged kaons, and charged protons. In addition to double differential jet fragmentation functions in z and $j_{\rm T}$, single differential jet fragmentation functions F(z) and $F(j_{\rm T})$ are shown separately in three jet $p_{\rm T}$ intervals as their uncertainties can be correlated between intervals.

z		F(z)					
	$20 < p_{\rm T}^{\rm jet} < 30~{\rm GeV}$	$30 < p_{\rm T}^{\rm jet} < 50~{\rm GeV}$	$50 < p_{\rm T}^{\rm jet} < 100~{\rm GeV}$				
0.003 - 0.005			$26.5 \pm 7.6 \pm 15.8$				
0.005 - 0.007			$81.0 \pm 13.1 \pm 21.1$				
0.007 - 0.009	$5.68 \pm 1.88 \pm 2.13$	$37.7 \pm 5.2 \pm 9.0$	$153 \pm 17 \pm 27$				
0.009 - 0.014	21.3 $\pm 2.7 \pm 3.4$	$79.2 \pm 7.3 \pm 10.4$	$182 \pm 17 \pm 25$				
0.014 - 0.020	$45.1 \pm 3.7 \pm 4.8$	$110 \pm 8 \pm 13$	$159 \pm 14 \pm 22$				
0.020 - 0.028	$67.7 \pm 4.2 \pm 7.5$	$106 \pm 7 \pm 9$	$124 \qquad \pm 11 \qquad \pm 17$				
0.028 - 0.041	$63.5 \pm 3.5 \pm 7.3$	$82.4 \pm 5.0 \pm 8.8$	$88.9 \pm 7.7 \pm 12.3$				
0.041 - 0.058	$47.5 \pm 2.6 \pm 4.4$	$55.1 \pm 3.4 \pm 6.7$	$58.3 \pm 5.0 \pm 7.8$				
0.058 - 0.084	$31.2 \pm 1.7 \pm 2.4$	$33.6 \pm 2.1 \pm 3.6$	$32.7 \pm 2.9 \pm 4.1$				
0.084 - 0.12	19.1 $\pm 1.0 \pm 1.4$	$20.8 \pm 1.3 \pm 1.7$	$18.7 \pm 1.8 \pm 2.5$				
0.12 - 0.17	$10.5 \pm 0.6 \pm 1.0$	$11.4 \pm 0.8 \pm 1.0$	$10.4 \pm 1.1 \pm 1.6$				
0.17 - 0.25	$5.49 \pm 0.35 \pm 0.78$	$6.06 \pm 0.46 \pm 0.58$	$5.13 \pm 0.60 \pm 0.79$				
0.25 - 0.36	$2.42 \pm 0.19 \pm 0.29$	$2.55 \pm 0.23 \pm 0.24$	$2.20 \pm 0.31 \pm 0.35$				
0.36 - 0.52	$0.776 \pm 0.081 \pm 0.101$	$0.947 \pm 0.114 \pm 0.101$	$0.705 \pm 0.125 \pm 0.124$				
0.52 - 0.75	$0.225 \pm 0.036 \pm 0.039$	$0.260 \pm 0.050 \pm 0.032$	$0.141 \pm 0.053 \pm 0.029$				

Table 4: Summary of measured charged-hadron collinear jet fragmentation function F(z) in three jet $p_{\rm T}$ intervals.

Table 5: Summary of measured charged-hadron momentum transverse to the jet axis $F(j_{\rm T})$ in three jet $p_{\rm T}$ intervals.

$j_{ m T}$		$F(j_{ m T})$	
	$20 < p_{\rm T}^{\rm jet} < 30~{\rm GeV}$	$30 < p_{\rm T}^{\rm jet} < 50~{\rm GeV}$	$50 < p_{\mathrm{T}}^{\mathrm{jet}} < 100 \ \mathrm{GeV}$
0.010 - 0.016		$1.99 \pm 0.75 \pm 0.50$	
0.016 - 0.025	$1.95 \pm 0.51 \pm 0.53$	$2.70 \pm 0.88 \pm 0.60$	$4.38 \pm 1.27 \pm 0.90$
0.025 - 0.040	$3.41 \pm 0.59 \pm 0.86$	$4.23 \ \pm 0.67 \ \pm 0.59$	$4.84 \pm 1.30 \pm 0.79$
0.040 - 0.063	$5.14 \pm 0.57 \pm 1.01$	$7.30 \pm 0.87 \pm 0.57$	$6.92 \pm 1.07 \pm 0.95$
0.063 - 0.10	$7.70 \pm 0.62 \pm 1.07$	$9.84 \pm 0.87 \pm 0.85$	$10.0 \pm 1.2 \pm 0.9$
0.10 - 0.16	$10.5 \pm 0.6 \pm 0.8$	$13.4 \pm 0.9 \pm 1.6$	$13.1 \pm 1.2 \pm 1.0$
0.16 - 0.25	$12.0 \pm 0.6 \pm 0.9$	14.7 $\pm 0.8 \pm 1.4$	$15.2 \pm 1.2 \pm 1.5$
0.25 - 0.40	$9.35 \pm 0.44 \pm 0.81$	$11.5 \pm 0.6 \pm 0.9$	$13.2 \pm 1.0 \pm 1.6$
0.40 - 0.63	$5.06 \pm 0.25 \pm 0.46$	$6.36 \pm 0.35 \pm 0.55$	$7.44 \pm 0.57 \pm 0.98$
0.63 - 1.0	$1.64 \pm 0.10 \pm 0.23$	$2.40 \pm 0.15 \pm 0.16$	$3.06 \pm 0.26 \pm 0.40$
1.0 - 1.6	$0.250 \pm 0.024 \pm 0.071$	$0.510 \pm 0.046 \pm 0.077$	$0.759 \pm 0.082 \pm 0.108$
1.6 - 2.5	$0.018 \pm 0.005 \pm 0.011$	$0.056 \pm 0.008 \pm 0.022$	$0.126 \pm 0.021 \pm 0.041$

$j_{ m T}$ / z						f($z, j_{\mathrm{T}})$						
	20 <	$< p_{\mathrm{T}}^{\mathrm{je}}$	$\frac{1}{2}$ < 30) G	eV	30 < 7	$p_{\rm T}^{\rm jet} < 50$) GeV	50 < p	$p_{\mathrm{T}}^{\mathrm{jet}}$	< 100	Ge	V
0.01 - 0.03						93.3	± 33.3	± 38.9					
0.007 - 0.015													
0.01 - 0.03	41.7	±	13.3	±	17.6	65.1	± 21.6	± 17.4					
0.015 - 0.033													
0.01 - 0.03	11.4	\pm	4.0	\pm	3.8								
0.033 - 0.072													
0.03 - 0.07									208	\pm	55	±	121
0.003 - 0.007													
0.03 - 0.07	82.9	\pm	16.8	±	19.8	198	± 33	± 41	305	±	66	\pm	89
0.007 - 0.015													
0.03 - 0.07	104	\pm	13	±	27	128	± 18	± 17	110	±	23	\pm	16
0.015 - 0.033													
0.03 - 0.07	36.1	\pm	5.5	±	10.5	39.5	± 6.9	± 4.2	27.9	±	8.5	\pm	5.3
0.033 - 0.072													
0.03 - 0.07	7.57	±	2.00	±	1.36	7.37	7 ± 1.90	$) \pm 1.12$					
0.072 - 0.16													
0.03 - 0.07	1.46	\pm	0.48	\pm	0.29								
0.16 - 0.34													
0.07 - 0.19									361	\pm	62	± 1	136
0.003 - 0.007													
0.07 - 0.19	110	\pm	13	\pm	19	340	± 30	± 52	519	±	55	\pm	93
0.007 - 0.015													
0.07 - 0.19	225	\pm	15	±	19	255	± 19	± 29	195	±	21	\pm	21
0.015 - 0.033													
0.07 - 0.19	80.6	\pm	5.8	±	7.5	83.0	± 6.8	± 12.6	66.3	±	8.9	\pm	10.1
0.033 - 0.072													
0.07 - 0.19	18.2	\pm	1.6	±	2.1	18.5	± 2.0	± 2.1	12.1	±	2.1	\pm	1.8
0.072 - 0.16													
0.07 - 0.19	3.03	±	0.38	±	0.48	3.02	2 ± 0.49	0 ± 0.42	1.53	$3\pm$	0.46	ΰ±	0.26
0.16 - 0.34													
0.07 - 0.19	0.270) ±	0.086	ΰ±	0.067								
0.34 - 0.75													

Table 6: Summary of measured charged-hadron transverse momentum dependent jet fragmentation function $f(z, j_T)$ in three jet p_T intervals.

Continued on next page

$j_{ m T}$ / z					f([z, j	T)							
	$20 < p_{\mathrm{T}}^{\mathrm{je}}$	5 < 30	Ge	V	30 <	$p_{\mathrm{T}}^{\mathrm{jet}}$	5 < 50	Ge	V	50 < p	jet T	< 100 C	GeV	
0.19 - 0.52										32.3	±	9.8	±	9.4
0.003 - 0.007														
0.19 - 0.52					59.9	\pm	8.5	\pm	10.2	278	±	26	±	49
0.007 - 0.015														
0.19 - 0.52	$91.9 \pm$	5.8	\pm	10.9	185	\pm	11	\pm	20	218	\pm	18	\pm	31
0.015 - 0.033														
0.19 - 0.52	$87.8 \pm$	4.4	\pm	9.1	87.5	±	5.1	±	11.3	76.4	±	6.7	\pm	10.0
0.033 - 0.072														
0.19 - 0.52	$26.0 \pm$	1.4	\pm	1.8	25.6	\pm	1.7	\pm	2.4	21.5	\pm	2.2	\pm	3.1
0.072 - 0.16														
0.19 - 0.52	$5.88 \pm$	0.40	±	0.66	5.73	±	0.49	±	0.56	4.19	±	0.56	±	0.67
0.16 - 0.34														
0.19 - 0.52	$0.576 \pm$	0.079) ±	0.094	0.445	ó±	0.077	$7 \pm$	0.047	0.080) ±	0.032	$2\pm$	0.012
0.34 - 0.75														
0.52 - 1.4										3.33	\pm	1.17	±	0.67
0.007 - 0.015														
0.52 - 1.4					5.63	\pm	1.19	±	0.49	27.7	±	3.3	±	4.5
0.015 - 0.033														
0.52 - 1.4	$6.68 \pm$	0.62	\pm	1.44	15.2	±	1.2	±	1.5	23.3	±	2.2	\pm	3.7
0.033 - 0.072														
0.52 - 1.4	$6.84 \pm$	0.42	±	0.80	8.06	±	0.56	±	0.68	8.25	±	0.85	±	1.14
0.072 - 0.16														
0.52 - 1.4	$2.16 \pm$	0.15	±	0.29	2.47	±	0.20	±	0.22	2.00	±	0.25	±	0.33
0.16 - 0.34												0.01		
0.52 - 1.4	$0.287 \pm$	0.032	$2\pm$	0.036	0.291	. ±	0.037	$7 \pm$	0.028	0.049)±	0.014	ł±	0.009
0.34 - 0.75										0.404		0.40		0 1 0 1
1.4 - 3.7										0.481	. ±	0.137	´±	0.121
0.033 - 0.072					0.4.04		0.040		0.001	0.40		0.100		0 1 1 5
1.4 - 3.7					0.191	. ±	0.040)±	0.061	0.497	±	0.103	$3\pm$	0.145
0.072 - 0.16	0.040	0.011		0.004	0.000		0.01	- 1	0.000	0 1 9 1		0.000		0.044
1.4 - 3.7	$0.040 \pm$	0.011	. ±	0.024	0.092	$2\pm$	0.015) ±	0.036	0.131	ι±	0.032	$2\pm$	0.044
0.10 - 0.34	0.014	0.00-	r 1	0.000	0.001	I	0.007	э. Г	0.000	0.014		0.00	1 1	0.004
1.4 - 3.7	$0.014 \pm$	0.005) 土	0.006	0.021	. ±	0.006) ±	0.006	0.01]	ι±	0.004	ł±	0.004
0.34 - 0.75														

		F(z)	
	$20 < p_{\rm T}^{\rm jet} < 30~{\rm GeV}$	$30 < p_{\rm T}^{\rm jet} < 50~{\rm GeV}$	$50 < p_{\rm T}^{\rm jet} < 100 {\rm ~GeV}$
0.003 - 0.005			$22.9 \pm 6.5 \pm 13.7$
0.005 - 0.007			$66.0 \pm 10.7 \pm 17.6$
0.007 - 0.009	$6.11 \pm 2.02 \pm 2.30$	$35.3 \pm 4.9 \pm 8.8$	$119 \pm 13 \pm 22$
0.009 - 0.014	$22.7 \pm 2.9 \pm 3.9$	$69.7 \pm 6.5 \pm 10.5$	$132 \qquad \pm 13 \qquad \pm 19$
0.014 - 0.020	$49.2 \pm 4.1 \pm 6.5$	90.1 $\pm 6.3 \pm 11.9$	$111 \pm 10 \pm 16$
0.020 - 0.028	72.9 $\pm 4.7 \pm 10.4$	$85.9 \pm 5.7 \pm 8.3$	$85.2 \pm 7.7 \pm 11.7$
0.028 - 0.041	$63.5 \pm 3.6 \pm 8.8$	$64.9 \pm 4.1 \pm 7.2$	$62.6 \pm 5.8 \pm 8.7$
0.041 - 0.058	$44.2 \pm 2.5 \pm 4.8$	$42.4 \pm 2.7 \pm 5.2$	$39.8 \pm 3.6 \pm 5.3$
0.058 - 0.084	$26.9 \pm 1.5 \pm 2.3$	$25.0 \pm 1.6 \pm 2.7$	$23.3 \pm 2.3 \pm 2.9$
0.084 - 0.12	$15.6 \pm 0.9 \pm 1.2$	$14.9 \pm 1.0 \pm 1.2$	$12.5 \pm 1.4 \pm 1.7$
0.12 - 0.17	$8.58 \pm 0.56 \pm 0.81$	$7.70 \pm 0.58 \pm 0.72$	$7.42 \pm 0.83 \pm 1.23$
0.17 - 0.25	$4.34 \pm 0.30 \pm 0.62$	$4.19 \pm 0.37 \pm 0.44$	$4.08 \pm 0.51 \pm 0.73$
0.25 - 0.36	$2.00 \pm 0.18 \pm 0.26$	$2.00 \pm 0.20 \pm 0.23$	$1.92 \pm 0.29 \pm 0.39$
0.36 - 0.52	$0.723 \pm 0.087 \pm 0.115$	$0.827 \pm 0.106 \pm 0.119$	$0.690 \pm 0.127 \pm 0.160$
0.52 - 0.75	$0.241 \pm 0.045 \pm 0.052$	$0.256 \pm 0.050 \pm 0.045$	$0.149 \pm 0.056 \pm 0.039$

Table 7: Summary of measured charged-pion collinear jet fragmentation function F(z) in three jet $p_{\rm T}$ intervals.

Table 8: Summary of measured charged-pion momentum transverse to the jet axis $F(j_T)$ in three jet p_T intervals.

j_{T}		$F(j_{ m T})$	
	$20 < p_{\rm T}^{\rm jet} < 30~{\rm GeV}$	$30 < p_{\rm T}^{\rm jet} < 50~{\rm GeV}$	$50 < p_{\mathrm{T}}^{\mathrm{jet}} < 100~\mathrm{GeV}$
0.010 - 0.016		$2.02 \pm 0.77 \pm 0.51$	
0.016 - 0.025	$2.24 \pm 0.64 \pm 0.64$	$2.60 \pm 0.88 \pm 0.58$	$3.08 \pm 0.90 \pm 0.70$
0.025 - 0.040	$3.87 \pm 0.68 \pm 1.00$	$3.87 \pm 0.64 \pm 0.55$	$3.46 \pm 1.01 \pm 0.61$
0.040 - 0.063	$5.27 \pm 0.61 \pm 1.06$	$6.12 \pm 0.74 \pm 0.50$	$4.98 \pm 0.80 \pm 0.71$
0.063 - 0.10	$7.64 \pm 0.65 \pm 1.12$	$8.20 \ \pm 0.75 \ \pm 0.77$	$7.85 \pm 0.98 \pm 0.69$
0.10 - 0.16	$10.4 \pm 0.6 \pm 1.0$	$10.8 \pm 0.7 \pm 1.3$	$10.5 \pm 1.0 \pm 0.8$
0.16 - 0.25	$11.9 \pm 0.6 \pm 1.3$	$12.0 \pm 0.7 \pm 1.3$	$12.1 \pm 1.0 \pm 1.2$
0.25 - 0.40	$8.69 \pm 0.43 \pm 0.87$	$9.27 \pm 0.51 \pm 0.80$	$9.97 \pm 0.77 \pm 1.26$
0.40 - 0.63	$4.15 \pm 0.22 \pm 0.40$	$4.64 \ \pm 0.27 \ \pm 0.41$	$5.17 \pm 0.42 \pm 0.71$
0.63 - 1.0	$1.27 \pm 0.08 \pm 0.19$	$1.58 \pm 0.11 \pm 0.12$	$1.85 \pm 0.17 \pm 0.25$
1.0 - 1.6	$0.211 \pm 0.024 \pm 0.061$	$0.320 \pm 0.034 \pm 0.051$	$0.400 \pm 0.050 \pm 0.059$
1.6 - 2.5	$0.019 \pm 0.007 \pm 0.012$	$0.038 \pm 0.007 \pm 0.016$	$0.061 \pm 0.012 \pm 0.020$

$j_{ m T}$ / z	an jet an G. M.	$f(z, j_{\mathrm{T}})$	
	$20 < p_{\rm T}^{\rm jet} < 30 { m ~GeV}$	$30 < p_{\rm T}^{co} < 50 { m ~GeV}$	$50 < p_{\rm T}^{\rm ev} < 100 { m ~GeV}$
0.01 - 0.03		$85.3 \pm 30.6 \pm 35.7$	
0.007 - 0.015			
0.01 - 0.03	$52.1 \pm 17.3 \pm 22.6$	$65.6 \pm 22.7 \pm 17.7$	
0.015 - 0.033			
0.01 - 0.03	$13.7 \pm 5.0 \pm 4.8$		
0.033 - 0.072			
0.03 - 0.07			$170 \pm 45 \pm 99$
0.003 - 0.007			
0.03 - 0.07	$84.1 \pm 17.0 \pm 20.4$	$167 \pm 28 \pm 36$	$211 \pm 47 \pm 61$
0.007 - 0.015			
0.03 - 0.07	$109 \pm 14 \pm 29$	$109 \pm 15 \pm 15$	$75.1 \pm 18.3 \pm 12.6$
0.015 - 0.033			
0.03 - 0.07	$39.5 \pm 6.3 \pm 11.8$	$34.2 \pm 6.6 \pm 3.7$	$22.6 \pm 7.2 \pm 4.9$
0.033 - 0.072			
0.03 - 0.07	$7.63 \pm 2.16 \pm 1.38$	$6.16 \pm 1.66 \pm 0.96$	
0.072 - 0.16			
0.03 - 0.07	$1.28 \pm 0.47 \pm 0.26$		
0.16 - 0.34			
0.07 - 0.19			$307 \pm 53 \pm 118$
0.003 - 0.007			
0.07 - 0.19	$118 \pm 14 \pm 21$	$307 \pm 27 \pm 52$	$424 \pm 46 \pm 78$
0.007 - 0.015			
0.07 - 0.19	$239 \pm 16 \pm 27$	$207 \pm 16 \pm 26$	$144 \pm 16 \pm 16$
0.015 - 0.033			
0.07 - 0.19	$79.0 \pm 6.0 \pm 8.7$	$65.1 \pm 5.6 \pm 10.0$	$53.2 \pm 7.6 \pm 8.7$
0.033 - 0.072			
0.07 - 0.19	$15.8 \pm 1.5 \pm 1.9$	$14.2 \pm 1.7 \pm 1.6$	$9.80 \pm 1.94 \pm 1.53$
0.072 - 0.16			
0.07 - 0.19	$2.50 \pm 0.36 \pm 0.41$	$1.96 \pm 0.36 \pm 0.29$	$1.19 \pm 0.41 \pm 0.22$
0.16 - 0.34			

Table 9: Summary of measured charged-pion transverse momentum dependent jet fragmentation function $f(z, j_{\rm T})$ in three jet $p_{\rm T}$ intervals.

Continued on next page

$j_{ m T}$ / z						f(z	z, j_{T}	·)							
	20 < p	jet T ≦	< 30 0	GeV	7	30 < p	$p_{\mathrm{T}}^{\mathrm{jet}}$	< 50	Ge∖	V	50 < 100	$p_{\mathrm{T}}^{\mathrm{jet}}$	< 100	GeV	Ι
0.19 - 0.52											23.9	±	7.3	±	7.1
0.003 - 0.007															
0.19 - 0.52						50.3	\pm	7.2	\pm	9.4	194	\pm	19	\pm	35
0.007 - 0.015															
0.19 - 0.52	98.1	±	6.4	±	15.5	152	±	9	±	18	159	±	14	±	23
0.015 - 0.033															
0.19 - 0.52	82.5	±	4.3	\pm	10.0	72.5	±	4.4	±	9.5	60.1	\pm	5.5	±	7.9
0.033 - 0.072															
0.19 - 0.52	21.4	±	1.2	±	1.5	19.3	±	1.3	±	1.8	16.4	±	1.8	±	2.3
0.072 - 0.16															
0.19 - 0.52	4.65	±	0.35	±	0.53	4.07	±	0.40	±	0.43	3.43	±	0.49	±	0.61
0.16 - 0.34															
0.19 - 0.52	0.532	: ±	0.089) ±	0.097	0.346	5 ±	0.064	ł±	0.047	0.081	l±	0.034	ł±	0.015
0.34 - 0.75															a (
0.52 - 1.4						3.06	±	0.82	±	0.27	14.5	±	2.0	±	2.4
0.015 - 0.033	4.0.4	1	0 59	I	1 10	0.00	1	0.00		0.01	10.0	1	1 0	I	0.1
0.52 - 1.4	4.94	±	0.53	±	1.10	9.28	±	0.83	±	0.91	12.8	Ŧ	1.3	±	2.1
0.055 - 0.072	5 26	_	0.28	_L	0.64	5 20	_	0.41	_	0.45	5 26	_L	0.62	_L	0.75
0.32 - 1.4 0.072 - 0.16	0.30	1	0.30	1	0.04	5.29	1	0.41	-	0.49	0.00	1	0.05	1	0.75
0.572 - 1.4	1 74	+	0.13	+	0.24	1 77	+	0.16	+	0.18	1 65	+	0.22	+	0.32
$0.02 1.1 \\ 0.16 -0.34$	1.11	<u> </u>	0.10	<u> </u>	0.21	1.11	-	0.10	-	0.10	1.00	-	0.22	<u> </u>	0.02
0.52 - 1.4	0.277	′ ±	0.034	1 ±	0.045	0.256	$3\pm$	0.035	δ±	0.033	0.047	7 ±	0.014	l ±	0.011
0.34 - 0.75	0.211	_			0.0.00	0.200			. —		0.0 -		0.01		0.011
1.4 - 3.7											0.174	$1\pm$	0.060) ±	0.044
0.033 - 0.072															
1.4 - 3.7						0.109	$9 \pm$	0.02	$7\pm$	0.035	0.21	$6\pm$	0.053	$3\pm$	0.063
0.072 - 0.16															
1.4 - 3.7						0.059	$9\pm$	0.012	$2\pm$	0.023	0.079	$9\pm$	0.02	$1 \pm$	0.027
0.16 - 0.34															
1.4 - 3.7	0.018	±	0.006	$5\pm$	0.007	0.022	$2\pm$	0.007	$^{7}\pm$	0.006	0.009)±	0.003	$3\pm$	0.003
0.34 - 0.75															

z		F(z)	
	$20 < p_{\rm T}^{\rm jet} < 30~{\rm GeV}$	$30 < p_{\rm T}^{\rm jet} < 50~{\rm GeV}$	$50 < p_{\mathrm{T}}^{\mathrm{jet}} < 100~\mathrm{GeV}$
0.009 - 0.014			$11.8 \pm 3.2 \pm 3.4$
0.014 - 0.020		$5.53 \pm 1.39 \pm 1.93$	$12.2 \pm 2.6 \pm 2.8$
0.020 - 0.028	$2.89 \pm 0.52 \pm 1.05$	$7.12 \pm 1.14 \pm 1.66$	$13.5 \pm 2.5 \pm 2.6$
0.028 - 0.041	$4.66 \ \pm 0.67 \ \pm 1.13$	$7.31 \pm 1.18 \pm 1.13$	$11.8 \pm 2.2 \pm 2.1$
0.041 - 0.058	$4.71 \ \pm 0.61 \ \pm 0.60$	$6.52 \pm 1.01 \pm 0.84$	$10.9 \pm 2.2 \pm 1.9$
0.058 - 0.084	$3.92 \pm 0.44 \pm 0.31$	$4.76 \ \pm 0.66 \ \pm 0.54$	$5.15 \pm 0.99 \pm 0.92$
0.084 - 0.12	$2.76 \pm 0.33 \pm 0.21$	$3.22 \pm 0.45 \pm 0.34$	$3.30 \pm 0.66 \pm 0.77$
0.12 - 0.17	$1.52 \pm 0.19 \pm 0.18$	$1.72 \pm 0.25 \pm 0.27$	$1.28 \pm 0.31 \pm 0.39$
0.17 - 0.25	$0.678 \pm 0.092 \pm 0.125$	$0.622 \pm 0.099 \pm 0.122$	
0.25 - 0.36	$0.247 \pm 0.047 \pm 0.049$	$0.174 \pm 0.047 \pm 0.041$	
0.36 - 0.52	$0.044 \pm 0.012 \pm 0.009$		

Table 10: Summary of measured charged-kaon collinear jet fragmentation function F(z) in three jet $p_{\rm T}$ intervals.

Table 11: Summary of measured charged-kaon momentum transverse to the jet axis $F(j_T)$ in three jet p_T intervals.

$j_{ m T}$		$F(j_{ m T})$	
	$20 < p_{\rm T}^{\rm jet} < 30~{\rm GeV}$	$30 < p_{\rm T}^{\rm jet} < 50~{\rm GeV}$	$50 < p_{\rm T}^{\rm jet} < 100 {\rm ~GeV}$
0.063 - 0.10	$0.409 \pm 0.108 \pm 0.073$	$0.365 \pm 0.126 \pm 0.046$	
0.10 - 0.16	$0.596 \pm 0.104 \pm 0.081$	$0.713 \pm 0.144 \pm 0.117$	
0.16 - 0.25	$0.793 \pm 0.095 \pm 0.106$	$0.891 \pm 0.134 \pm 0.135$	$1.02 \ \pm 0.19 \ \pm 0.20$
0.25 - 0.40	$0.884 \pm 0.089 \pm 0.113$	$1.09 \pm 0.13 \pm 0.15$	$1.23 \pm 0.20 \pm 0.24$
0.40 - 0.63	$0.693 \pm 0.062 \pm 0.081$	$0.863 \pm 0.090 \pm 0.113$	$1.04 \pm 0.15 \pm 0.20$
0.63 - 1.0	$0.238 \pm 0.028 \pm 0.042$	$0.380 \pm 0.050 \pm 0.054$	$0.621 \pm 0.103 \pm 0.133$
1.0 - 1.6	$0.040 \pm 0.009 \pm 0.013$	$0.087 \pm 0.018 \pm 0.020$	$0.161 \pm 0.036 \pm 0.043$
1.6 - 2.5		$0.008 \pm 0.003 \pm 0.003$	

$j_{ m T}$ / z		$f(z, j_{\mathrm{T}})$	
	$20 < p_{\rm T}^{\rm jet} < 30~{\rm GeV}$	$30 < p_{\rm T}^{\rm jet} < 50~{\rm GeV}$	$50 < p_{\rm T}^{\rm jet} < 100 {\rm ~GeV}$
0.07 - 0.19	$6.88 \pm 1.63 \pm 2.37$	$10.2 \pm 2.8 \pm 2.9$	$13.7 \pm 4.2 \pm 2.4$
0.015 - 0.033			
0.07 - 0.19	$5.42 \pm 1.07 \pm 0.71$	$5.65 \pm 1.37 \pm 0.86$	
0.033 - 0.072			
0.07 - 0.19	$1.81 \pm 0.37 \pm 0.21$	$1.80 \pm 0.58 \pm 0.21$	
0.072 - 0.16			
0.19 - 0.52			$20.5 \pm 5.3 \pm 6.3$
0.007 - 0.015			
0.19 - 0.52	$5.27 \pm 0.97 \pm 1.85$	14.5 $\pm 2.1 \pm 3.9$	$20.8 \pm 3.8 \pm 4.3$
0.015 - 0.033			
0.19 - 0.52	$8.54 \pm 0.94 \pm 1.36$	$8.69 \pm 1.35 \pm 1.24$	$9.53 \pm 2.05 \pm 1.63$
0.033 - 0.072			
0.19 - 0.52	$3.45 \pm 0.42 \pm 0.24$	$3.28 \pm 0.49 \pm 0.32$	$2.53 \pm 0.58 \pm 0.51$
0.072 - 0.16			
0.19 - 0.52	$0.673 \pm 0.106 \pm 0.089$	$0.512 \pm 0.107 \pm 0.074$	
0.16 - 0.34			
0.19 - 0.52	$0.039 \pm 0.014 \pm 0.008$		
0.34 - 0.75			
0.52 - 1.4			$4.76 \pm 1.39 \pm 1.01$
0.015 - 0.033			
0.52 - 1.4	$1.06 \pm 0.21 \pm 0.24$	$2.91 \pm 0.49 \pm 0.35$	$6.03 \pm 1.12 \pm 1.22$
0.033 - 0.072			
0.52 - 1.4	$1.20 \pm 0.15 \pm 0.15$	$1.53 \pm 0.22 \pm 0.21$	$1.57 \pm 0.31 \pm 0.40$
0.072 - 0.16			
0.52 - 1.4	$0.250 \pm 0.038 \pm 0.052$	$0.266 \pm 0.049 \pm 0.060$	
0.16 - 0.34			
0.52 - 1.4	$0.012 \pm 0.004 \pm 0.003$		
0.34 - 0.75			

Table 12: Summary of measured charged-kaon transverse momentum dependent jet fragmentation function $f(z, j_{\rm T})$ in three jet $p_{\rm T}$ intervals.

z		F(z)	
	$20 < p_{\rm T}^{\rm jet} < 30~{\rm GeV}$	$30 < p_{\rm T}^{\rm jet} < 50~{\rm GeV}$	$50 < p_{\rm T}^{\rm jet} < 100 {\rm ~GeV}$
0.014 - 0.020			$10.2 \pm 3.8 \pm 1.4$
0.020 - 0.028			$13.0 \pm 4.4 \pm 1.8$
0.028 - 0.041	$2.31 \ \pm 0.84 \ \pm 0.27$	$6.77 \pm 1.32 \pm 1.07$	$9.60 \pm 2.27 \pm 1.32$
0.041 - 0.058	$2.84 \pm 0.72 \pm 0.31$	$6.21 \pm 1.01 \pm 0.93$	$6.02 \pm 1.82 \pm 0.84$
0.058 - 0.084	$3.34 \pm 0.48 \pm 0.33$	$4.32 \pm 0.66 \pm 0.57$	$3.43 \pm 0.78 \pm 0.52$
0.084 - 0.12	$2.00 \pm 0.28 \pm 0.21$	$2.59 \pm 0.45 \pm 0.36$	$2.55 \pm 0.62 \pm 0.61$
0.12 - 0.17	$1.10\ \pm 0.17\ \pm 0.11$	$1.58 \pm 0.27 \pm 0.29$	$1.54 \pm 0.48 \pm 0.54$
0.17 - 0.25	$0.658 \pm 0.117 \pm 0.107$	$0.857 \pm 0.146 \pm 0.221$	$0.854 \pm 0.284 \pm 0.409$
0.25 - 0.36	$0.238 \pm 0.043 \pm 0.040$	$0.237 \pm 0.058 \pm 0.091$	$0.307 \pm 0.103 \pm 0.168$
0.36 - 0.52	$0.068 \pm 0.019 \pm 0.013$		

Table 13: Summary of measured charged-proton collinear jet fragmentation function F(z) in three jet $p_{\rm T}$ intervals.

Table 14: Summary of measured charged-proton momentum transverse to the jet axis $F(j_{\rm T})$ in three jet $p_{\rm T}$ intervals.

$j_{ m T}$		$F(j_{ m T})$	
	$20 < p_{\rm T}^{\rm jet} < 30~{\rm GeV}$	$30 < p_{\rm T}^{\rm jet} < 50~{\rm GeV}$	$50 < p_{\rm T}^{\rm jet} < 100 {\rm ~GeV}$
0.10 - 0.16	$0.217 \pm 0.070 \pm 0.022$	$0.305 \pm 0.109 \pm 0.038$	$0.298 \pm 0.115 \pm 0.043$
0.16 - 0.25	$0.457 \pm 0.093 \pm 0.038$	$0.460 \pm 0.091 \pm 0.057$	$0.499 \pm 0.169 \pm 0.071$
0.25 - 0.40	$0.611 \pm 0.089 \pm 0.053$	$0.624 \pm 0.101 \pm 0.085$	$0.768 \pm 0.187 \pm 0.110$
0.40 - 0.63	$0.429 \pm 0.057 \pm 0.058$	$0.740 \pm 0.098 \pm 0.143$	$0.836 \pm 0.154 \pm 0.114$
0.63 - 1.0	$0.290 \pm 0.036 \pm 0.058$	$0.481 \pm 0.060 \pm 0.081$	$0.610 \pm 0.123 \pm 0.106$
1.0 - 1.6	$0.052 \pm 0.011 \pm 0.017$	$0.143 \pm 0.029 \pm 0.033$	$0.178 \pm 0.048 \pm 0.052$
1.6 - 2.5			$0.043 \pm 0.015 \pm 0.023$

$j_{ m T}$ / z		$f(z, j_{ m T})$	
	$20 < p_{\rm T}^{\rm jet} < 30~{\rm GeV}$	$30 < p_{\rm T}^{\rm jet} < 50~{\rm GeV}$	$50 < p_{\rm T}^{\rm jet} < 100~{\rm GeV}$
0.07 - 0.19	$0.879 \pm 0.308 \pm 0.139$		
0.072 - 0.16			
0.07 - 0.19	$0.181 \pm 0.064 \pm 0.029$		
0.16 - 0.34			
0.19 - 0.52		$5.53 \pm 1.74 \pm 0.89$	$13.3 \pm 4.7 \pm 1.9$
0.015 - 0.033			
0.19 - 0.52	$5.51 \pm 1.08 \pm 0.58$	$6.40 \pm 1.25 \pm 1.00$	$4.88 \pm 1.50 \pm 0.65$
0.033 - 0.072			
0.19 - 0.52	$1.89 \pm 0.30 \pm 0.13$	$1.95 \pm 0.35 \pm 0.22$	$1.89 \pm 0.56 \pm 0.33$
0.072 - 0.16			
0.19 - 0.52	$0.600 \pm 0.116 \pm 0.070$	$0.641 \pm 0.139 \pm 0.158$	
0.16 - 0.34			
0.19 - 0.52	$0.050 \pm 0.016 \pm 0.010$		
0.34 - 0.75			
0.52 - 1.4			$8.33 \pm 2.42 \pm 1.41$
0.015 - 0.033			
0.52 - 1.4	$1.09 \pm 0.31 \pm 0.28$	$4.12 \pm 0.65 \pm 0.64$	$4.05 \pm 0.99 \pm 0.67$
0.033 - 0.072			
0.52 - 1.4	$1.22 \pm 0.16 \pm 0.20$	$1.52 \pm 0.25 \pm 0.26$	$1.08 \pm 0.32 \pm 0.26$
0.072 - 0.16			
0.52 - 1.4	$0.280 \pm 0.049 \pm 0.053$	$0.328 \pm 0.062 \pm 0.101$	$0.317 \pm 0.115 \pm 0.155$
0.16 - 0.34			
0.52 - 1.4	$0.021 \pm 0.007 \pm 0.005$	$0.024 \pm 0.009 \pm 0.013$	
0.34 - 0.75			
1.4 - 3.7		$0.028 \pm 0.010 \pm 0.011$	
0.16 - 0.34			

Table 15: Summary of measured charged-proton transverse momentum dependent jet fragmentation function $f(z, j_T)$ in three jet p_T intervals.