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Chapter 1. Basic Conventions and Notations

1.1 Canonical Variables

Many beam optics programs work on the set of variables

Ap
e, 2, y, vy, As, —. (1.1)
Po
These variables do not form a set of canonical pairs in six-dimensional phase space. For this reason
MAD uses the set of canonical variables

(23, pz/ps)a (ya py/ps)a (_CAta b = AE/psc)' (12)

In earlier versions MAD used p, = po, the design momentum, to normalise the momentum components.
As from Version 8.13, MAD normalises with the average momentum p, = po(1 + §;) = mf,7, of the
particle. The quantity §, = (p, — po)/po can be arbitrarily large and is imposed by the user. This
makes the momentum dependence of the expanded Hamiltonian exact for particles with constant
momentum p,. For particles with variable momentum, there is an additional differential momentum
error p;, whose average over the machine will be close to zero. This should keep the errors due to the
truncation of maps down to an acceptable level.

From the equation of motion in reference [16] one easily derives the relations between the slopes
z’,y’ and the normalised canonical momenta p,, p,:

wl ~ pz(]- ‘|' hm - ptﬁs)a y/ ~ py(]- ‘|’ hw - ptﬁs)a (]—3)

where h is the curvature of the reference orbit in the mid-plane. The relative energy error p; is related
to the relative momentum error Ap/p, by

p: = (E/psc) — (1/Bs) = AE/p,c ~ B,(Ap/p;). (1.4)

The special choice of variables affects those second-order terms in the transfer maps which contain p;.
For constant momentum calculations we have p, = 0, and the momentum dependence is correct.

1.2 Phase Space Vector

MAD normally works on the phase space vector

z1 T
Z3 Dz
Z = Zs = y . (]‘ '5)
Z4 Dy
z5 i
Ze D:

and handles coupling effects by means of full 6 X 6 matrices.



1.3 Auxiliary Functions and Their Integrals

To simplify notations we introduce the abbreviations

c(k, 1) = cos(kl) = cosh(¢kl)
!
s(k,1) = / o(k,t) dt = sin(kl)/k — sinh(ikl)/ik
0
! (1.6)
d(k,1) = / s(k,8)dt = (1= c(k,1))/R?
0
!
fUs 1) = [ d(k,tyde = (1 s(k,D)/8?
0
The quantities in reference [2] are related to the above quantities as follows:
e = c(ky,l), s, = (ks 1), d, = hd(ks, 1), (L.7)
ey = c(ky, 1), sy = s(ky, 1)
For evaluating transfer maps we shall need the integrals:
J = / d(t)dt = (L — s,)/k2,
0
Iy = / E(t)dt = (3L — 4s, + spca)/(2k2),
0
Js = / B(t)dt = (151 — 225, + 9s,¢, — 25,¢2)(6kS),
0
J. = = (c(2ky, s) — c(kz, 8))(k2 — 4kz), (1.8)

J(t)dt = (s(2ky,s) — s(k,, s))(kz — 4kz),

/
Jo= [0t = (d2ky, ) - d(kay )12 - 48)),
/

=

(t)dt = (f(2ky, 5) — f(ksy ) (ks — 4ky).



Chapter 2. Hamiltonian Representations

MAD derives most equations of motion from a Hamiltonian. The Hamiltonian governing particle
motion in magnetic elements has been given in reference [11]. Below the reader can find the forms
used in MAD for different elements.

2.1 Magnetic Field and Vector Potential (Transverse Field, Curved
Reference)

For all mid-plane symmetric elements MAD defines the magnetic field on the mid-plane of a sector
dipole by its Taylor expansion:

2 %3

B,(z,0,s) =0, B,(z,0,s) = B + B1 —|— Bz —|— B3 —|— . B,(z,0,s) = 0. (2.1)

For positive z a positive field coefficient gives a contribution to the field in positive y-direction. The
vector potential has a longitudinal component A, depending on z,y only. Expanded to order four it
takes the form

Az(m,y,s) = 07
Ay(z,y,8) =0,

ha? 1 , h h?
As(w,y,S)——B0<m—m>—B1<§(iL‘ —y)——:z: ‘|‘ (413 _Z’/)‘|‘ >

-B, <%(m3—3zzzy ) — %(J) -y +.. > — B; <21—4(J:4—6J:2y2—|—y4)—|—...> +...
(2.2)
where h is the curvature of the reference orbit. Taking the curl of A, in curvilinear coordinates the
field components are to order three

6 6
1
+ By <E(3Jz2y—y3)—|—...> + ...

h? h®
B,(z,y,s) = +B; <y—|— —y3—|—...> + B, <J:y— —y3—|—...>

h h? 1 h 2.
By(z,y,8) = +Bo + B: <ﬂ3— 5?/24' 7my2+ > + B, <§(“3 -y?) - 5“33/24----) (2:3)
1
+ By <E(1133 — 3a:y2) +.. > + ...

B,(z,y,s) = 0.

2.2 Magnetic Field and Vector Potential (Multipole)

For zero curvature (h = 0) the field coefficients may be complex. The field expansion then takes the
form of a complex Taylor series:

. —|— 1
B,(z,y,s)+ iB,(z,y,s Z Ck y , B,(z,y,s) = 0. (2.4)

The vector potential can still be written with a longitudinal component A, only:

il ’y)w) . (2.5)

A, (z,y,5) =0, Ay(z,y,s)=0, A, (z,y,s) = (Z Cy 1)!

3



2.3 Magnetic Field and Vector Potential (Solenoid Fields)
The magnetic field in a solenoid has the constant value
B,(z,y,s) =0, B,(z,y,s) =0, B,(z,y,s) = Bo. (2.6)

The vector potential requires two transverse components:

1 1
A (z,y,5)= —§B0y, Ay(z,y,8) = —|—§B0113, A (z,y,5)=0. (2.7)

2.4 Electric Field for an RF Cavity

The voltage in a thin cavity is

V = Vsin(¢, — 27 frpt), (2.8)

where V is the peak RF voltage, ¢, is the RF phase relative to a time reference to be defined below,
and fgr is the RF frequency. The field can be derived from a vector potential

A, (z,y,5) =0, Ay(z,y,5)=0, A(z,y,s) = cV sin(¢, — 27 frrt)/ (27 frr). (2.9)

2.5 Electric Field for an Electrostatic Separator
The vertical electrostatic field in a separator has the constant value

E,(z,y,5) =0, E,(z,y,s) = Eo, E(z,y,s)=0. (2.10)
The scalar potential depends on y only:

¢(z,y) = —Eoy. (2.11)

2.6 General Form for the Hamiltonian

The general Hamiltonian in a curved reference system with the curvature h

H = —(1+ ha) (qu /(B = 0 = (me)? — (B2 — 04.)" — (b, - qu) , (2.12)

is expressed using the arc length s as the independent variable. The particle charge is ¢ and the
canonical pairs of variables are

(@, pz)s (9 py)s (B, —1). (2.13)

The Hamiltonian is normalised in MAD by the following transformations:

H Pa p
H, = Z)_s, (231 =T, Pp1 = Z)_s), (y1 =Y, Py1 = p—?:), (E1 = psc’ t, = ct), (2_14)

giving

g4, g¢\* 1 g4:\’ g4, )\’
le_(ml)(ps A1) e (o) (-] e

In the unperturbed machine, and ignoring any momentum change, a reference particle with constant
momentum p, would travel with a constant velocity v, = fB,¢ = p,/m on an orbit of the length




C, = C(14+n4,), where C is the machine circumference and 7 = a—1/72 is the momentum compaction
factor. Hence it would take the time T, = C, /v, to complete one revolution.

The two variables t; and E, can take on large values. To make a perturbation approach feasible,
the two variables must be replaced by their deviations from a fixed reference. To this effect MAD

introduces a time reference frame such that 0t .¢/0s = —T,/C. The generating function

ref
1+ né, 1
F = 21p,s + 11py2 — <t1 + ﬁ’? 3> <Pt + ﬁ_> . (2.16)

generates a canonical transformation with the following properties:
¢ The transverse variables are unchanged.

o For a general particle the time difference relative to the reference frame is

14 né,
ty = t, 4 M0 (2.17)
Bs
¢ The relative energy deviation is defined as
E 1
pp=FE, —F,=———. 2.18
T b B, (2.18)

o The closed orbit has t = 0 before and after one turn, i. e. it also closes in the longitudinal plane.
The average momentum on the closed orbit is approximately p,.

This canonical transformation generates the new Hamiltonian

oF qA,
Hy= -~ _(1+h
2 9 ( + “’2) ,
1\? 1 AN\? A N2
(- P L)l (e ) (- o)
ps B B2v3 s s (2.19)
= p —_— — xr
B ) > p,

- ’”"2)\/<1 TP ?) B <p“” B qf) B <py B qf) B ﬁ?lvf <pt B ?)

In the latter form the Hamiltonian can easily be expanded as a Taylor series.



Chapter 3. Lie Algebraic Maps

3.1 Definitions

Let the functions f(p, ¢) and g(p, ¢) be differentiable functions of the canonical variables p and ¢. The
Poisson bracket of f and ¢ is defined as

N (0F 05 050
[f’g]_,;<3qk3pk 3pk3qk>' (38-1)

The Lie operator associated with f is defined as the Poisson bracket

:fig = 11,91, (32)
Iterated Lie operators are defined recursively:
fihg = [f,: ") (3.3)
and we also use the abbreviations for iterated Lie operators
[fagah]: [fa [gah”a [fagahai]: [fa [ga [hazma etc. (3'4)
The Lie transformation associated with f is defined as the exponential
e = f:k
:0

An arbitrary Lie transformation acting on the components of the phase space vector Z always repre-
sents a canonical transformation, or in other terms, a symplectic map. In MAD, like in the program
MARYLIE, a Lie algebraic map is represented as the composition of Lie transformations

zJ(»z) — gfiigifaigifeigifer . -ZJ(»l), for j=1...6. (3.6)

where each f; is a homogeneous polynomials of order k. The polynomial f, generates the ordinary
transfer matrix. It is normally not stored, but replaced by that matrix. For details refer to [10, 11, 14].

Maps for various elements have been derived in [10, 16]. Note that the signs of energy and time
are inverted in MAD with respect to [10] and to MARYLIE. For most elements MAD carries terms
up to order four in the Hamiltonian.

3.2 Tilted Elements

The effect of the TILT parameter on an element is that the reference system is rotated by the angle
¥ = TILT at element entrance, and by — at element exit. Such a rotation K has been described in
Section 5.12. The transfer map F for the element must be transformed to

F=RFR . (3.7)

3.3 Map Composition

Let us assume that the two maps F = {F, f;} and G = {G, ¢;} occur in this order in a beam line. The
problem is to build their composition as follows:

e:flze:fzze:fsze:f.,:e:fg,:e:fe.: . e:glze:gzze:gsze:g.,:e:gs:e:ge: L e:hl:e:hzze:hsze:h4:e:h5:e:h6: L= H — {H, hz}

(3.8)



with truncation at a predefined order. Formulas valid up to order 6 have been given in Appendix B
of [13]. These formulas have first been implemented in MARYLIE 5.1 and have been copied and
modified for use in MAD. The formulas are listed here for reference; for the theory refer to [13].
Using the exchange formula
elied = g9 e exPimgf: (3.9)

composition is done in three steps. First consider the problem of moving the first-order term g¢; to the

left:

e;fl;e;fz;e;fs;e;h;e;fsze:feze:gl:e:gzze:gsze:g4:e:g5:e:g6: — e:hlze:fz:e:tz:e:tsze:t4ieitsieit616192161931619416195161961 (310)

To move ¢, successively over the polynomials f; we define:

1
=g, m=0,1,...,n, n=6,5,4,3. (3.11)

j(n) —
Jm (n _ m)

and then we regroup the various Lie transformations arising:

@ Lom @ L® @ e, Le e
kY = 0%+ Sl 1Y) - i it + gl a0

1. ) ) ) 1. ) ) ) 1. ) ) )
— 5[153),153),153),153)] — ﬂ[Jf’),Jf?’),Jéa),Jf?’)] + ﬂ[153),153),1§3),153)]

P T 1. (s (3 . 1 () (3 .
B = 50+ §[J§3),Jfa)] — 5[153),J§3),Jf3)] + E[Jéa),Jé?’),Jf?’)]

1o .3 @ o Lo e o o Los (3 (s .
—~ ﬂ[Jé?’),Jé?’),Jéa),Jfa)] —~ ﬂ[Jf’),Jf?’),JS),Jf?’)] + ﬂ[1§,3),]§3),]§3),]§3)]

. 1. . . 1 . .3 . 1 .3 .3) . 1. .3 .8) .3) .
ke = 357+ SisY a8V = Glis 38 87 + gl 08 i + ol 5%, 357, 357

(3.12)

1. ) ) ) 1. ) ) ) 1. ) ) )
- 5[153),J§3),J§3),J§3)] + ﬂ[Jé?’),Jé?’),Jé?’),Jf?’)] + ﬂ[]é?’)uf’),]f’),ﬁ?’)]

1. .3 .3 . 1.3 (3 .3 . 1.3 .3 .3 .
Y = — s 57 00 + g0, 057,087, 350 - 5408753575 057, 01

1. ) ) )
B = ﬂbf’), 7,589, 553

. 1 . .
kY = i+ S0, 1Y)

. 1. .
kg4) = ]§4) + 9 []§4)7]£4)]
1

. 1. . (4) .
kY = 35V + i, 0] + Sl i) (3.13)

. 1 . .
kY = i+ 50, 57
1 .
kY = 3107, 0"
k) =

N (3.14)



and get the final result:

i = fi+ e (g + B+ B + 57 + £

1 1
tr = B R 4 R R+ SR Y o k) (Y, R, k)
to = k) + k§Y + B + B6) + [R§, k5Y + k5]

1 (3.15)
ts = K+ kY + kD + R+ SR, D+ R

ts = kO + kY + kO 4 R - %[kg?’), S, kY],
te = kS
The second step converts £, to a matrix and combines it with the matrices F' and G. We note that
ty = %ZtWZ, W symmetric, (3.16)

is of small order 3, and that

ity:Z = JWZ. (3.17)

Hence, using the approximation tanh(z) ~ ¢ — /6, we define a symplectic matrix T by

exp(ity:) = exp(JW)Z = (I + tanh(JW/2))(I — tanh(JW/2))™"

~ TZ =1+ (W/2-W2¥/24))(I — (W/2 - W?/24))" ' Z. (3:18)
In the third step the remaining problem is to convert
gihiigihaigitisl gitiat pitist pitlal 19t pigai pigsipifel — gihaigihat pihstpihaigihst pihe: (3.19)
Due to the exchange formula the ¢ polynomials are converted to
up = tx(:—92:Z), k =3,4,5,6. (3.20)
The solution is
hs = fs + us
hy = fatus+ %[faa“?r]
hs = f5s +us — [us, fa] — %:fg,:z'u?, + %:U3:2f3 (3.21)
he = fo+ ue — [us, f5] + %:u3:2f4 + %[f‘hu‘l] - i[f‘h fa» ug]
- i[u‘}, fasus] + 11—2:f3:3u3 - é:u?,:?’f?, + %[fg,,u?,, fa, us].
3.4 Reverse Factorisation
MAD requires only the case where f; vanishes and the order is four:
F = efrielsigfe = gi94igi9sii02t (3.22)

where the second-order polynomials are represented by the corresponding matrices. The result is:

G=F,  ¢(2)=fi(FZ), gu(Z) = gs(FZ). (3.23)



3.5 Map Inversion

MAD requires only the case where f; vanishes and the order is four. The inverse of a Lie algebraic
map F is found in two steps. First the factorisation is reversed as shown in the previous subsection.
The second step uses the formula (e:f:)_1 = e77* to find the inverse map:

f_l — @' TI2 i T i gel (3.24)

The matrix of the inverse map is thus F~!, and the polynomials are the negative of the ones found
for the reverse factorisation.

3.6 Reflection of a Lie Algebraic Map

Reflection of a transfer map is the transformation needed to simulate traversal through a beam line in
reverse direction. Note that this also reverses asymmetric elements. This transformation is equivalent
to inversion of the transfer map, followed by a change of sign for the variables p,,p, and t.

3.7 Fixed Points

Starting with an arbitrary initial approximation Z,, an iterative procedure can be defined as follows:

1. Define a first-order polynomial ¢, such that
ZO = [g]_, Z]. (3.25)
This polynomial represents a map which sends the origin to the initial approximation.

2. Compose the map F with the “map” g, to get h; according to the composition algorithm. h;
then maps the origin onto the orbit at the end of the system. The matrix H is the Jacobian of
this map and can be used to find a new approximation:

Z]_ = ZO — H_l(:h]_:Z - Zo). (3.26)

3. Repeat, until convergence is achieved.

Note that MAD now finds the fixed point by tracking through each element individually, since the
above procedure may not give good results when high-order terms resulting from concatenation become
important.

3.8 Tracking

When one of the options
METHOD=LIE3|LIE4

occurs on a RUN command, MAD uses the Lie-algebraic tracking method up to f; or f; terms, re-
spectively. For LUMPs it always uses the order specified on their definition. Note that truncating the
exponential series

00 'f'k
elz =" 7 (3.27)
k=0 :



at a finite k does not produce a symplectic map. MAD therefore tracks the linear terms using the
transfer matrix. For the non-linear terms f, it uses a generating function of the form

6

G(q1,p2) = qupa2 + ng(anz)- (3.28)

k=3

This function is set up such that the resulting canonical transformation agrees to the desired order
with the mapping. With the temporary values

B 0fs 0fs
= Z * 3¢, O’

_ 0fs Oty 2 S 0%fs Ofs Ofs
= E * 0¢m OPm - ,z;mzl 8q10qm Opy Opm”’

9fs ot 2 S 8%f, Ofs Of (5.29)
t — 4 4 _I_ 4 _3 3 ,
° Z * 8¢m, OPrm ,z;mEl 0904 Op: Opm
3f3 Ots 2 0%fs Ofs Oty PSS 0% fs 3f3 3f3 0fs
ug = 3 2ty e
° E " 0¢m Opm, ,z:;mz::l 04104 Opi Opm kz::l ,; El 0940910, Ops Opt O’
it can be written as
gz = fs,
gs = fa+ las
_ 1, 0fs0fs (3.30)
g5 = 6 Z 3Qk 3Pk

3533 3434
Eff Eff

1
= —t
9o = fo t 24 ¢ ‘ Oy, 3pk ‘ Oqy, Opy

The generating function is truncated at the order of the Lie transformation given.



Chapter 4. TRANSPORT Maps

4.1 Definition

A TRANSPORT map (see [2, 3]) is the Taylor series for the exact transfer map, truncated at order

two:
6 6

6
zJ(»z) = Az + ZRjkz,(cl) + Z ZTjk,z,(cl)zl(l), for j=1...6. (4.1)
k=1 k=11=1
The T}, array is symmetric with respect to its second and third index. Both indices run from 1 to 6,
and by convention the off-diagonal terms in MAD are half those used in TRANSPORT. Below we list
only non-zero elements for k < [ to save space.

Due to truncation a TRANSPORT map is symplectic only in exceptional cases. TRANSPORT
maps have been derived for many elements in [2]. However, due to different variables, the second-order
terms are changed as explained in [16]. Reference [16] also gives the formula to derive a TRANSPORT
map from a Lie-algebraic map (see Chapter 3):

1 6 6 1 6 6
lel = _5 Z Z F2mankRn17 T2kl = +§ Z Z FlmankRn17
m=1n=1 m=1n=1
1 6 6 1 6 6
T3kl = _5 Z Z F4mankRn17 T4kl = +§ Z Z F3mankRn17 (42)
m=1n=1 m=1n=1
1 6 6 1 6 6
T5kl = - 5 Z FGmankRn17 T6kl = +§ Z Z F5mankRnl'
m=1n=1 m=1n=1

4.2 Tilted Elements

The effect of the TILT parameter on an element is that the reference system is rotated by the angle
¥ = TILT at element entrance, and by — at element exit. Such a rotation K has been described in
Section 5.12. The transfer map F for the element must be transformed to

F=RFR . (4.3)

4.3 Map Composition

Assume that the two maps A = {R*,T°} and B = {R’,T"} occur in this order in the beam. The
transfer matrix for the composition C = BA = {R¢,T°} is

R° = R'R® (4.4)
By substitution of A in B and truncation at second order one finds the second-order terms of C:

6 6 6
Tiw = D RaTi+ D Y TimRis Ring (4.5)
=1

=1 m=1

4.4 Map Inversion

To first order a TRANSPORT map is inverted by inverting its transfer matrix. Since the matrix is
symplectic its inverse can be found by the formula

R™'=-SR"S, (4.6)

11



where the superscript T denotes the transpose and the matrix 5 is the symplectic unit matrix

01 0O0O0OTO

-10 0 0 0 0
000100
S = (4.7)
0 0-10 00
0000O0O0T1

000 0-10

The composition of a map and its inverse must reproduce the identity map. The equations for this
condition may be solved and give:

6 6 6

Tie == D Ri'Tim B Rz, (4.8)

I=1 m=1n=1

4.5 Map Reflection

The reflection 7 = {R,T} of a transfer map 7 = {R,T} represents the traversal of a beam line in
inverse order. Note that this also reverses asymmetric elements like RF cavities. Care must be taken
if such elements occur, since this may not be the desired effect.

To compute the reflection, first the formulas of the previous section are applied. The signs of all
coefficients having an odd number of occurrences of 2, 4, or 5 in their indices must be inverted. The
result is:

Eij = Sisj(R_l)ija T = Sisjsk(T_l)ijk, (4.9)

where s; = 53 = 56 = 1,8, = 84 = 85 = —1.

4.6 Closed Orbit

The closed orbit is the first-order fixed point of the transfer map for one turn around the machine.
MAD searches for the closed orbit along the following steps:

1. Set the initial guess to zero for the transverse phase space coordinates and to the specified energy
error for AE /pyc:

Zo 0
P20 0
Zo=|% |=| ° (4.10)
py0 0
cto 0
8o Ap/poc

2. Find the orbit Z; after one turn and the Jacobian R of the map for one turn.
3. Use the Jacobian to find a correction to the initial conditions. The transverse coordinates must
close.
For dynamic maps (including RF cavities and synchrotron radiation) the flight time is con-
strained such as to give the specified energy error on average. This leads to the conditions
1 = Zo Pz1 = Pzo

N = Yo Py1 = Pyo (411)
CaAp

— 51 = 50
ﬁs PoC

C‘t]_ = C‘to‘l—



where C' is the machine circumference, a is the momentum compaction, and g, is the ratio of the
particle velocity to the velocity of light. The equation for one iteration affects all three degrees
of freedom and reads:

Note that when searching for the closed orbit in an OPTICS command the flight time difference
is always zero. Thus only § = 0 is permitted.

For static maps (constant energy around the ring) there is no condition on the flight time
difference, and the energy error is constant. Thus the equations affect the transverse degrees of
freedom only.

4. Iterate steps 2 and 3 until convergence is achieved.

When the machine is strongly non-linear, the convergence of this algorithm may be bad. In this
case MAD first attempts to find the closed orbit with reduced sextupole strengths. This may still fail
if the RF phase lags are set such that the zero orbit is close to the unstable fixed point.

4.7 Making First-Order Matrix Symplectic

The Jacobian matrix of a TRANSPORT map is only approximately symplectic, whereas the theory
requires an exactly symplectic matrix. An elegant method to make a matrix symplectic has been given
n [14]. A symplectic matrix F' can be written as exp(SM) with a symmetric M. We may rewrite this
as

F = (I + tanh(SM/2))(I — tanh(SM/2))* = (I + W)(I — W)™, (4.13)

where W is symmetric if and only if F is symplectic. Given a matrix F which is approximately
symplectic, we define the matrix

V =S(I-F)(I+F)™. (4.14)

which is approximately symmetric. Using the exactly symmetric matrix W = (V +V7)/2 we generate
an exactly symplectic matrix from the previous equation.

4.8 Tracking

Tracking by the TRANSPORT method is straightforward. It uses the definition of the TRANSPORT
map:
6 6 6
A2 = Az + 3 RV + N TP, for j=1...6. (4.15)
k=1 k=11=1
This method is used by default, or if the option

METHOD=TRANSPORT

is seen on a RUN command. For magnets defined as thin multipoles the thin lens map is used. Note
that the TRANSPORT map tracking is not symplectic; for long-term tracking it most certainly causes
spurious blow up or shrinking. For long-term tracking it is recommended to use the Lie-algebraic
methods, or if CPU time is at premium, thin lens tracking.



Chapter 5. Maps for Physical Elements

5.1 Marker

The MARKER element has no transfer map. It is ignored during optical calculations.

5.2 Drift Space and Similar Objects

There are seven drift-like elements in MAD:
e DRIFT, Ordinary drift space,

e ECOLLIMATOR, Elliptic collimator,

RCOLLIMATOR, Rectangular collimator,

INSTRUMENT, Beam instrumentation,

e MONITOR, Monitor for both planes,

HMONITOR, Monitor for horizontal plane,

VMONITOR, Monitor for vertical plane.

All these element types act as field-free regions. A beam position monitor also stores the position of

the beam in its centre, and a collimator limits the aperture during tracking.

5.2.1 Hamiltonian for a Drift Space

The drift space has no field. Its exact Hamiltonian is

Dt Pt2 775
H=- <1 >—<pg+p2+ >+
\/ B, Yo By? [

5.2.2 Exact Solution for Equations of Motion

The exact solution for the equations of motion is

2
b

Ty + Ps1 /\/ p; +p; + ﬁzfyz)a P2 = Pals
P

U ‘I'pyl +py + ﬂz 2>7 Py2 = Pyi1,

Lné, 2
t, =t + g + P /\/ p:+p;+ ]2);2), Ptz = Pn-

This map is not used in MAD.

Ly

Y2

14

(5.1)

(5.2)



5.2.3 Lie-Algebraic Map for a Drift Space

The Lie-algebraic map is found by the techniques of reference [10]. The linear part is represented by
the transfer matrix

1000 O
01000 O
001LO O
R=100010 0 (5.3)
L
00001 5277
00000 1
and the generators are
1
fi = —ﬁ—Pt,
L p?
fs = 23, <Pi ‘|‘P§‘|‘ 2;2>pt7 (5.4)
L 2 2 P 2 L, 2 P; ’
f4=—ﬁ<pz+py+ 2,7 )P T g Pt Pyt gag)

5.2.4 TRANSPORT Map

The TRANSPORT map for a drift-like element can be derived by differentiation of the exact form, or
from the Lie-algebraic map:

Ty = 1+ Lpy <1 - Z—t> ; Pz2 = Pz
D:
Y2 = 4+ Lpy <1 - ﬁ_> ) Pz2 = Pa1, (5.5)
L775s P L 2 2 3pt21
o =t + 3. + 3272 - 28, <Pz1 + Py + 5782>a Pi2 = Pu-

5.3 Dipoles

Transfer maps for dipoles in MAD are composed of three maps, namely the fringing field at the magnet
entrance (1), the body of the dipole 53, and the fringing field at the magnet exit F(2):

F=FWBFr®, (5.6)

MAD presently (still) treats all dipoles as SBENDs, but for an RBEND it uses an additional pole face
rotation angle equal to half the bend angle.

5.3.1 Dipole Fringing Fields

The TRANSPORT map for a fringing field has been derived in [2], and the required change of variables,
together with an equivalent Lie transformation, is described in [16]. Let the pole-face rotation angles
at entrance and exit be i, and v, respectively, and the curvature of the pole faces be described by
the radii R, and R,. For a dipole of type RBEND half the bend angle is added to each of the ;. If the
fringing fields have a finite extent the vertical focussing angle is changed according to [2]:

¥; = ¥; — hgli(1 4 sin® ;). (5.7)



h is the curvature of the reference orbit within the dipole, g is the full gap height, and I; is the first
fringing field integral

e [T BB, 5.

Lie-Algebraic Maps for Dipole Fringing Fields

For both entrance and exit the transfer matrix is

1 0 0 000
+htant; 1 0 000
70 _ 0 0 1 B 000 ‘ (5.9)
0 0 —htany; 100
0 0 0 010
0

0 0 001

The generator f; has been slightly improved with respect to reference [16]. At the magnet entrance,
using the quadrupole coefficient K; for the magnet body, it takes the value

1/ h
£ = 2 <— sec’® ¢, + 2K tantp; — 2h° tan® ¢1> z’

6 \ R,
1/h _
-3 <R_ sec® 1, + 2K, tan ¢; — h® tan ) (sec® ¢, — tan® ¢1)> zy’ (5.10)
1
+ g tan ¢, (a:zpz tan, — 2zyp, tan%) — gpmy2 sec? ;.

and for the exit it is

1/ h
?Ez) = = <— sec® ¢, + 2K, tan ), + h? tan® ¢2> z®
6 \ R,
-1 <Risec3 s + 2K tan by — h? tan o, tan? ¢—> 2y’ (5.11)
2

— h
~-3 tan ¢, (a:zpz tan, — 2zyp, tan ¢2> + §pmy2 sec? 1.

The generator f, is not used by MAD.

TRANSPORT Map for Dipole Fringing Fields
For both entrance and exit the transfer matrix is

1 0 0 000
+htany; 1 0 000

0 0 1 000
R = _ . (5.12)
0 0 —htany; 100
0 0 0 010
0

0 0 001




The second-order terms for the entrance are

h
Ti11 = Thsa = Tha = —— tan’ P,

2
h 2
Ts12 = Ta1s = —|—§tan P1,
h
T]_33 = +§ SeC2 ¢17
h .,
Tizs = g sec ¥1, (5.13)
h
T211 = —I_ﬁ SeC3 ¢1 -I— K]_ tan¢1,
1
h h?
Tozs = ———sec®y); — Ky tant; + — tan; (1 + sec? ¢ ),
2R, 2
h 3
T4]_3 = _ﬁ sec ¢1—K1tan¢1.
1

and for the exit

h
Ti11 = Thsa = Tha = —|—§tan2 )3,

h
Ty = Ta13 = —5‘53112 P,
h
T]_33 = — 5 SeC2 ¢2,
b,
Tys3 = ‘|‘§ sec” g, (5.14)
h h?
Ton = +ﬁ sec® ¥y + Ky tan e, — > tan® 1),
2
h h?
T233 = _2—R2 SeC3 ¢2 — K]_ tan¢2 — ? tan3 ¢2,
h h?
Tys = T sec® 1y — K, tanp, + 5 tan ¥y sec® y.
2

5.3.2 Body of a Sector Dipole
Hamiltonian for the Body of a Sector Dipole

Inserting the proper vector potential, the expanded Hamiltonian for a sector dipole has the terms

b,
H]_ = (KO - h)$ ‘I‘ %pt,
1 s 1, 1/, , p
1 , 1 , 1 PN {2, 2, P}
Hy = ((K; + 20K )e® — (K + hE ey’ + 5 <h:1: - ﬂ—> <pz +p;+ 272) : (5.15)
1 1 1
H4 — ﬂ(K’?’ + 3hK2):B4 — Z(Kg, + 2hK2)$2y2 + ﬂ(K?: + hK2 - thl)y4_

2
Pt Pt Y 1 < 2, 2, P} >

he — 2t - .
35 (= 5 <pz+py+ﬂzvz> TR\ TR gy

We note the following differences with respect to reference [16]:

1. There is a term H,, generated by h # Ky, and by p, # po.



2. The relativistic parameters 3, = v/c and 4, = E/m are evaluated for the velocity and energy
corresponding to p,.

3. For the term in z?y? we have corrected a mis-print in the numeric factor.

Lie-Algebraic Map for a Sector Dipole

The Lie algebraic map of order three for a sector dipole has been derived in [16]. At present MAD
knows only terms up to f; for dipoles. For notations refer to Section 1.3. The transfer matrix for the
body of the dipole is

h
Cp Sz 0 00 —d,
Bs
h
—k2s, ¢, 0 00 — 8z
Bs
R = 0 0 cy Sy 0 0
0 0 —klsy c, O 0
h h L h?
—Esz —Edz 0 01 ﬁ272 - Ejl
0 0 0 00 1

The generator f; for the constant term and f; for the non-linear terms are

the latter has the coeflicients

F111 =

F112

F116

F122

F126

Figs =
F134 =
F144 =

F166 -

1
—3 (K3 + 2hK1)s.(2 + ¢3) — hkss;

zz’

1
—|—§(K2 + 2hK,)(d, + s2c,) — hk2s2e,,

h h?
—a(K2 + 2hK,)(3J, — 3s,d, +282) + Ekﬁsi + 2ﬁs K,(L
—%(Kz + 2hK,)s3 — hs,c2,
h
+a(K2+2hK1)di(1+2Cz) ES Cz 2ﬂsK18
‘|‘2K1K2(k:'sz']d + ¢ ) + (K2 + hKy)s,,
—Kz(kzszjs ‘I‘Cch),
‘|‘2K2(kzsz']d + cz']s) - hsza
h? R, h
3ﬂ2(K2+2hK1)( d —2J2) ﬂz z_ﬁ K]_(J]_‘I—S d )

Szcz)a

2
s

2:1)7

$s

(5.16)

(5.17)

(5.18)



1
F222 = -I—g(Kz -I— 2hK1)di(2 -I— Cz) -I— h(dz -I— Sicz),

2

h
Fye = _3ﬂs (K2 + 2hK1)(3zdi + Js) — 28,

Foss = +2K1Ky(cpdy — 5.J,) — (K2 + hKy)d,,
Fozq = —Kz(Cst - Sz']c)a
Foyy = 2Ky(cpdq — 8:J5) + hd,,

h2 h® h h
F266 = 3ﬁ2 (Kz + 2hK1)d3 — E.Szd - E i - @dza
2h h 1
Fag6 = +ﬁ K\ Ky(J; +d,J, — Ssz)‘Fﬁ—(Kz‘FhKl)Jl—ﬁKl(L—
h 1
F346 = ——Kz(Jd -I— d J J ) —K]_Sz,
Bs 20,
2h h? 1
Fue = +ﬁ Ky(J; +d,J, — s,Jq) — ﬂ_Jl + 28, — (L + sycy),
h3 h4 ) 2
F666 = —E(K2+2hK1)J3— E(S d -I—Jz) 2ﬁ3(J1+8 d )-I— ﬁf’/‘yf

TRANSPORT Map for a Sector Dipole

<J1 + s,d, (1 + 2cz)) + 2;

(L — h2Jy).

(5.19)

The TRANSPORT map for bending magnets has been derived in [16], based on the work in [2]. For

notations, refer to Chapter 1.3. The dipole changes the time reference by

Lné,
At = 210,
Bs
The transfer matrix for its body is
h
Cx Sz 0 00 —d,
Bs
h
—k2s, ¢ 0 00 — 8,
Bs
R = 0 0 cy Sy 0 0
0 0 —klsy c, O 0
h h L h?
—Esz —Edz 0 01 ﬁ272 — Ejl

(5.20)

(5.21)



and the non-zero terms of second order:

T111

1
= —E(Kz + 2hK1)(82

h

h

h

= — (K2—|-2hK1)(38zJ1

12,
h

124,

hz
= 6ﬁ2(K2 + 2hK,)(d2 -

= K K,J; +

= §K2Jsa

h

= Kz']d - §dza

3

125,
h

128,

2
6ﬁ2
K, K,J, +

T233 =
1
T234 = §K2Jca

T244 =

1

2
1

1

2,

2,

2s Jz) Jl -

1
—_(K2 + 2hK1)Szdz —
(K2 -I— 2hK1)(3CzJ]_ -I— Szdz) —
1

(K3 + 2hK1)(s4

= §K2(Cyc]c

—K,(syJ:. —2¢,J,) +

iKz(Cst

iKz(Sst
h

2 Ka(e, T

h
—Kz(.sde

| &

2,2
2k:l>8:l:7

Schlﬁ

c:l)dflﬁ

h2
—d)+gg st
a5,

2

4ﬁs
— 2CzJ2) + m
h® h

— L
2p2° 2p;

(K2 + hK,)d,,

1
—E(Kz -I— 2hK1)Sz(1 -I— 2Cz),

1

h
§5z7

1
40,

K]_LSZ,

K]_(S

$s

h

d —2CzJ2) 2ﬂ2

1
§(K2 + hKl)Sza

h
— 2K18y¢]s) + §K]_sty,

SzCyy

2

h
— 2K18de) + §K1d28y,

h
— 2¢,Jq) + §dzcy,

— 2K]_Syc]f) + —

—2¢,J) + —

(Szdz ‘I’ cz'—’l)

z_m 9

(Czjl -

K]_LSZ,

(sz + Le,), (5.22)

40,

h
d

§ Is

z ch)a

(5.23)

h

zdz) 2ﬂ2 Py Sz

(5.24)



1 1
Tys = §K1K2(2cy']s — sy J.) + §(K2 + hK1)s,cy,

1 1
Tsa = §K2(2K18y']s —cyJ.) + §(K2 + hK;)s, 58y,
1 1
T423 = §K1K2(2Cy¢]d — Sst) -I— 5([{2 -I— hKl)dzcy,
1 1 (5.25)
Tyz4 = §K2(2K15y']d —c,J)+ §(K2 + hK,)d,s,,
h h 1
T436 = ﬁK1K2(2chf — Sde) —|— 2—ﬂs(K2 —|— hKl)J]_Cy —|— 4—ﬂsK1(Sy — Lcy),
h h 1
T446 = 2ﬂsK2(2K18ny — Cde) + 2—ﬂs(K2 + hKl)J]_Sy — 4—ﬁsK1LSy,
Ton = — (K, + 2hKy)(s0da + 301) — ——K(L — s,c0)
511 — 128, 2 1)\ Sz 0z 1 48, 1 SzCx )y
h 1
Ts515 = 128, (K2 + 2hK1)di + mKlsia
T " (K, 20K, — L K0y — s.dy)
= — a5 Sz — o — 850z),
522 6ﬁs 2 1 2 2ﬁs 4:ﬁs 1 1
R K (3d h h
Ts516 = 12ﬂ2(K2 + 2hK,)(3d,J, — 4J5) + 4—ﬁ2K1Jl(1 +e¢) + 2573 Sz
= w h a3 o ——d
T526 = 12ﬁ2 (K2 -I— 2 K]_)( z 282J2) 4ﬁ2K182J1 ‘I‘ ﬁs'ys T (5.26)
= we h dy P d2 3 h?
T566 = 6ﬁ3(K2 -I— 2 K]_)(?)Jg, 2 Jz) 6ﬁ3 ( — J2(1 -I— 2Cz)) -I— 2ﬁ373( J]_ — L),
h h
T533 = ﬂsKlejf ﬁ (Kz-l—hKl)Jl-l—mKl(L—CySy),
h
Ts3q = 255K2Jd 4ﬂsK18
h h? 1
T544 = ﬁ K2Jf + ﬁsJ E(L + CySy).

5.3.3 Body of a Rectangular Dipole
Hamiltonian for the Body of a Rectangular Dipole

For a rectangular Dipole with a straight reference one may set the curvature h = 0, and the expanded
Hamiltonian for a sector dipole has the terms

4,
H, = K0$+77ﬂ Dty
1 1 p?
H, = §K1(a}2 _ yz) + 5 <pi —I—pf, + 2;2> s
1 3 2 pt2
H3 = E(Kzfn — 3:3:1/ ) 2ﬂs pz —I_py —I_ 272 bl (5'27)
1
H, = 24(1{3:1: — 6z%y® + yH)+
2 2 2
pt 2 2 Py 1/, 2 Py
207 R 373> b (2 eal s 373> ‘

At this time the maps for this case have not been worked out yet.



5.4 Quadrupole

The transfer map for a quadrupole is the limit obtained by setting h = K, = K3 = 0 in the map for
a combined function dipole. We use the two quantities

k2 = K, = (¢By1)/(psc), kl = —K;. (5.28)

For other definitions refer to Section 1.3.

5.4.1 Hamiltonian for a Quadrupole

The expanded Hamiltonian for a quadrupole is

&
H, = nﬁ_spta
1 1 p2
H, = §K1(a}2 _ yz) + 5 <pi -|-P32, + 2;2> s
pe (4 p? (5.29)
H3I _2ﬁs <pz+py+ 272>7
2 2 2\ 2
_ b 2 2 by L/, 2 by
H, = ﬁ <Pz + Py + 272> + 3 <Pz + Py + 272> .
5.4.2 Lie-Algebraic map for a Quadrupole
The transfer matrix for a quadrupole is
Cr Sy 0 00 O
—kisz ¢, O 00 0
0 0 ¢ 50 0
F= 0 0 —klsyc, 0 0 (5.30)
L
0 0 0 01 51,7
0o 0 o0 00 1
The generators for the quadrupole are [10]:
Lné,
fi = _%pta
D 2 2 2
fs = 13 (+K1(L — spep)e® + 2K s.2p, + (L + syc.)ps
P (5.31)

~Ky(L — sycy)y2 - 2K1512;ypy + (L + Sycy)pz) +

1.8, 6 6 6
fo = EZZZEEjklZiZjZkZI

263y2’



and f, has the coefficients

F2266

2

K
F]_]_]_]_ = +6—41 <—8(4:kz, L) + 4:8(2kz, L) - 3L>,

K3
Fii1p = —?134(19“[/),
3K
Fii39 = + 321 (8(4kzaL) - L), (5.32)

— 1 4
Fiazs = ‘|‘§<C (kzy L) — 1>a
1
F2222 = _6_4 <8(4:kz, L) + 4:8(2kz, L) + 3L>,

K?

F3333 = +—<—8(4ky,L) + 4:8(2ky,L) - 3L>,
64
K3

Fy334 = ‘|‘?154(kya[’)’

3K,
F3340a = — 3 (8(4ky,L)—L>, (5.33)

1
F3q44 = ‘|‘§ <C4(kyaL) - 1>a
1
F4444 = _6_4 (8(4:ky, L) -I— 4:8(2ky, L) -I— 3L>,

RS <_s(2ky,L)<2 ~ c(2ks, L)) — 5(2hksy L) (2~ e(2k, L)) + 2L>’

VK

32 ¢(2ky, L) (2 — c(2ks, L)) — 4Ky 5(2ks, L)s(2ky, L) — 1),

Es(%z, L)(2 + c(2ky, L)) — s(2ky, L) (2 — (2k,, L)) - 2L>,
<c(2kz,L)<2 — c(2ky, ) + 4K15(2k,, L)s(2k,, L) - 1),

(s(2kes L)e(2ky, L) — (2ks, L)s(2ky, L)) (5.34)
<c(2kz, L)(2 + e(2ky, L)) — 4K 5(2ks, L)s(2k,, L) - 3),
_E <.s(2ky, L)(2 + e(2k,, ) — s(2ka, L) (2 - e(2k,, L)) — 2L>,
+3i2 <c(2ky, L)(2 + e(2k,, L)) + 4K 5(2ks, L)s(2k,, L) - 3),

1

<s(2kz, L)(2 + c(2ky, L)) + s(2ky, L) (2 + (2k,, L)) + 2L>,

(£ - s(2k,, 1)) + 12‘;3 (35(2ka, L) + L(c(2ks, L) — 1)),
K,

= g (B2, D) + (2= 55 (hes 1), (5.35)

- -|-%<L + 5(2ks, L)) —

T <5s(2kz, L)+ L(6 + c(2k., L))),



Fise6 = —%(L — 5(2ky, L)) — fﬂlz (35(2ky, L) + L(e(2k,, ) — 4)),
Fisee = +f;2 (Ls(2ky, L) + (2 — B2)s*(ky, L)), (5.36)
Fiss = —|—é<L + 5(2k,, L)) — wlﬁz <55(2ky,L) +L(6+ c(2ky,L)>>,

Feeoe = +8ﬂ§73 (1 - %) (5.37)

5.4.3 TRANSPORT Map for a Quadrupole
The complete TRANSPORT map for a quadrupole is:

1
Ty = Cp®1 + SzPz1 T 28 (+K1Lsyz1pe — (8 + Leg )peipen),
K
Pz2 = _Klszml ‘I’ CePz1 ‘I’ ﬁ(_(sz - ch)mlptl ‘I’ Lszpzlptl)a
1
Yz = CylY1 + SyPy1 + ﬁ(—KlLSyylptl — (8y + Ly )py1Pe1)s
K
Pyz = ‘|’K15yy1 ‘|’ cypyl ‘|’ ﬁ(‘l‘(sy - Lcy)ylpyl - Lsypylptl)a
Lné, L 5.38
tp =1+ 3, _Wptl (5-38)
1 1 1
_4ﬁs K]_(L — szcz)a}f —I— 2ﬁs K]_Siﬁ]_pz]_ — m([/ -I— Szcz)pil
1 2 1 2 1 2
+4ﬁ K (L — sycy)yi — ﬁKlsyylpyl - E(L + 546y )P
3L,
TapEt
Pt2 = Pri-

5.5 Sextupole

The transfer map for a sextupole is the limits obtained by setting h = K; = K3 = 0 in the map for a
combined function dipole.

5.5.1 Hamiltonian for a Sextupole

The expanded Hamiltonian for a sextupole is

4,
H, = nﬂ—spta
1 1 p2
H2 = EKl(m3_3a3y2)—|—§ <pi-|—P§‘|‘ 2;2>7
e , , Pt2 (5.39)
H3 = _2ﬁs <pz+py+ 272>7
2 2 2 2
_ P 2 2 Py 1/, 2 Py
H, = 237 <pz + Py + 5373> + 3 <pz + Py + 373> .



5.5.2 Lie-Algebraic Map for a Sextupole

A sextupole has the same transfer matrix as a drift space

1L000 O

01000 0

001LO0 0
F=(o0o0010 o (5.40)

L

00001ﬁ373

00000 1

L is the sextupole length. The sextupole strength K,, defined as for a combined function dipole,
produces the generators [10]:

Lné,
L= _ﬁ—pta
L p2 L Lz
fo= g (P A+ g ) o I~ 8207) ¢ L (@~ ¥~ 2eam) -
I? I*
L3 2 2 2\2 L4 2 2 2
fo = —Kj(z° +y°) — - K;(2° + y°)(2ps + ypy )+
pt 24 (5.41)
5053 (@ +92)(02 + 8)) + 14(eps + yp,)) -
LG 2 2 2 L7 2 2 232
o6 K2 (2pe +ypy )0z + 2y) + o Ko (P +7,)°—
I? I*

2 2 3 2
TS (2(p2 = p2) - 2p.ypy ) pu + 5 K2(Pz — 3pap; Jpe—

2

L 2 2 pt2 s L, 2 pt2
g3 (7003 o) 5 (e nd e gag)

$s $s

5.5.3 TRANSPORT Map for a Sextupole
The complete TRANSPORT map for a thick sextupole is

L L3 Lt L
z, = a1+ L <1 - ]ﬂ> Pa1 — Ko <—(wf —12) + = (@1Pe1 — Y1py1) + (P21 — p§1)> — —Pe1Pi1,

Bs 4 12 24 20
L L? L®
Pz2 = Po1 — K> <§(l’f - 3/12) + I(ﬁlpm - ylpyl) + ?(pil —P§1)> ’
P L’ I’ I L
Y2 =+ L <1 — %) py1 + K> <Zm1y1 + ﬁ(wlpyl + y1Pe1) + ﬂpzlpyl - ﬁpylptla
L L? L®
Py2 = Py1 + Ko <§w1y1 + Z(mlpyl + 11P21) + szlpy1> )
Lné, L L 3p?
tho= gt Gl " 55 <pil +pl, + ﬁz;;) ,
Pt2 = Pri-

(5.42)



5.6 Octupole

The transfer map for an octupole is limit obtained by setting h = K; = K, = 0 in the map for a
combined function dipole.

5.6.1 Lie-Algebraic Map for an Octupole

In the Lie algebraic formalism an octupole can be handled as a lens of finite length. It has the same
transfer matrix as a drift space

1L000 O
01000 0
001LO0O O
F=lo00010 0 (5.43)
L
00001 5
00000 1
L is the octupole length. The generators are [10]:
L 2
fs = T35 <pi+pf,+ €t2>pt,
’ or (5.44)
L p? L 2\ K '
o= 35 <pi +py+ zfyz>pf -3 <pi +p, + 2;2> - 5 (" =627y + ¢,

5.6.2 TRANSPORT Map for a Thin Octupole

In TRANSPORT form an octupole is treated as a thin lens placed between two drifts of half the
octupole length. The map for the thin lens with strength K3;L = (¢B3)/(psc), evaluated with respect
to the actual orbit produces a kick

1 1
Prz = Pz1 — EK3L(:1:3 — 3azy2), Dy2 = Py1 + EK3L(3$2:I/ — y3). (5.45)

Hence the transfer matrix for the thin lens with respect to a given orbit is the unit matrix augmented
with the terms

1
— Ry = +Rys = §K3L(:132 - ?/2), +Rys = +Ry = KLy, (5.46)
and the second-order terms around that orbit are

1 1
—To11 = 41553 = +T415 = +T4s1 = §K3Lm7 +To15 = +T931 = +T411 = Tz = EK?,L?/- (5.47)

5.7 Thin Multipole

A thin multipole affects the reference system like a dipole, i. e. the reference direction changes by the
bend angle of its nominal dipole component. The total dipole strength thus generates dispersion only;
but a dipole error, if present, also changes the orbit.



5.7.1 Lie-Algebraic Map for a Thin Multipole

A thin multipole affects the reference system like a dipole, i. e. the reference direction changes by the
bend angle of its nominal dipole component. The total dipole strength thus generates dispersion only;
but a dipole error, if present, also changes the orbit with respect to the reference.

With Lie algebraic maps truncated at order of f,, field components can be represented up to the
octupole. The multipole deflects the orbit according to the complex kick

R (z + )"
Z = AKoL — KoL+ ) K, L-———. (5.48)
s n=1 n.
The geometric terms of the transfer matrix are found by differentiation:
— Py = +F;3 = RZ, +Fy = +Fy = SZ'. (5-49)
The total dipole strength creates the dispersive terms
1 1
-I— F26 - —F5]_ - ﬁ_%(KOL)’ _F46 - +F53 - ﬁ_%(KOL)' (5.50)

From the equation for Z one may derive the generators

fi= R(AKLe i), fo= g R(Eal(e - )),  fi= g

E@%(K},L(m —iy)*t). (5.51)
5.7.2 TRANSPORT Map for a Thin Multipole

The multipole deflects the orbit according to the complex kick

P: al (z 4 y)"
P=AKoL - KoL+ K, [~—~"

5.52
s n=1 n! ’ ( )
i. e. it produces the orbit change
Ty = Ty, Px2 = p,1 — RP
y2 = y17 py2 = pyl —I_ %P (5‘53)
o =t — ﬁ_%(KO (z + 1y)), P2 = P
The transfer matrix can be obtained by differentiating the kick. Defining
n—1
ZK L +’y)) (5.54)
the geometric terms of the transfer matrix are
— Ry = +Rys = NP, +Rys = +Ryy = SP. (5.55)
The total dipole strength creates the dispersive terms
1 1
‘|‘ Rze - —R51 - ﬂ_%(KOL), R46 - ‘|‘R53 - ﬁ—\F(KoL) (556)

The second-order terms are due to components K, and higher. They are obtained by differentiating
the kick twice. Defining

EK L “y)) i (5.57)

these terms become

1 1
— T3 = +Tos33 = +T415 = +T4s1 = 5%})”, +To15 = +T931 = +T411 = Tz = 5%1_-,//- (5.58)



5.8 Solenoid

5.8.1 Hamiltonian for a Solenoid

The expanded Hamiltonian is

b
H, = nﬁs s
_ 1 2 2 P;
H2 - 9 (pfl)—l_ky) —I'(py_kw) —I_ 24,2 ?
2 Crek
p p? (5.59)
_ t 2 2
Hy = = (0 + k) + (0, — ko) + 55 ).
P 2 2 P 1 2 2 P ’
Hy = (pz + ky)* + (py — ke) t5,7) T3 (pz + ky)* + (py — k) + Go7)
5.8.2 Lie-Algebraic Map for a Solenoid
Solving the Hamiltonian by the techniques of [10] gives the transfer matrix
1 1
c? =SC SC =S*0 0
k k
-kSC C* —kS* SC 0 0
-5C —15’2 C? lSC’ 0 0
F = k k , (5.60)
kS? —-SC —-kSC C* 0 0
L
0 0 0 0 1 5177
0 0 0 0 0 1
where B
k=10 ©=cos(kL), § = sin(kl). (5.61)

- 2p,’
The third- and fourth-order parts of the Hamiltonian are invariant under the linear transformation.
Hence the non-linear generators take a particularly simple form:

Lné,

L= Wpta
L 2 2 pt2

fs = +2ﬁs <(pz + ky)* + (py — kz)* + 272>pt, (5.62)
L 2

_ ky)? — kz)? P; 2_£ k) ~ kz)? P;

22 29 8 25

Two effects should be considered at the ends of the solenoid. First, the field lines cannot end abruptly
at the ends; and second, the vector potential is zero outside the solenoid and finite inside. The first
effect can be estimated by assuming that the magnetic flux lines bend sharply and concentrate in a
radial plane at each end of the solenoid. The second effect causes the transverse canonical momentum
to jump by the value of eA /Bp. Both transformations are non-symplectic, but fortunately they cancel
in the approximation used.



5.8.3 TRANSPORT Map for a Solenoid

A solenoid changes the time reference by

(5.63)

(5.64)

L
T146 = _2ﬁs Sin(2kL),
T246 = _;ﬁl—; COS(2I€L),

T346 = —22 COS(2I€L),

$s

kL

$s

sin(2kL),

T446 =

Lné,
At = ——.
Bs
Its Lie transformation is easily transformed to the TRANSPORT map with the transfer matrix
1 1
2 1 1o
C kSC SC kS 0 0
—kSC C* —kS* SC 0 0
1_, , 1
R -5C —kS C kSC 0 0
kS —SC —kSC C* 0 0
L
0 0 0 0 1 EE
0 0 0 0 0 1
The second-order terms become:
kL L kL
T116 = 2ﬂs Sln(2kL), T126 = _2ﬁs COS(2I€L), T136 = _2ﬁs COS(2I€L),
k2L kL kL
T216 = 2ﬁs COS(2I€L), T226 = 2ﬁs Sln(2kL), T236 = ﬁ Sln(2kL),
T316 = kL COS(2I€L), T326 = 2; Sin(2kL), T336 = I;L Sin(2kL),
kil . kL 2
T416 = — 2ﬂs Sln(2kL), T426 = 2ﬂs COS(2I€L), T436 = : COS(2I€L),
k2L kL L
T511 = _2—55, T514 = ﬁa Ts4q = ﬁa
kL kL L
Ts3s = _2—55, Tsas ﬁa Ts32 ﬁa
3L
Tses = — .
0T 222

5.9 Orbit Correctors

(5.65)

An orbit corrector is modelled as a zero-length dipole between two drifts of half the corrector length.
The reference system is not changed by the corrector. The effect of the thin dipole is simply

Pz2 = Pz1 ‘I’ KOz/(]- ‘I’ 55)7

Py2 = Py1 + Koy /(1 + 6,),

(5.66)

where K, and K, are the given kicks in the respective plane. There are no non-linear terms.

5.10 RF Cavity

An RF cavity is treated in the impulse approximation. The length of a cavity is simulated by placing
the accelerating gap between two drifts of half the cavity length. The voltage of the thin cavity is

V = Vsin(¢, — wt/c).

(5.67)



The phase lag of the cavity is defined as the RF phase seen by a particle arriving with a time difference
of zero relative to the time frame. V' is the peak RF voltage, frr = hrr/T, is the RF frequency, and

hgr is the harmonic number. The circular frequency of the RF cavity is

271'th
w =
T,

5.10.1 Exact Solution for a Thin RF Cavity

The general particle sees an RF phase of

¢ = ¢, — wt/c.
Hence the cavity causes an accelerating kick of
v
Ptz = P + . sm .

$s

Higher-order terms are obtained easily by differentiation of this expression.

5.10.2 Lie-Algebraic Map for a Thin RF Cavity

The cavity produces an accelerating kick of

6, =61 + v sin(¢ — wt).
pe

With respect to the actual orbit it has the transfer matrix

1000 0 0
0100 0 0
0010 0 0
F=1]10001 0 0
0000 1 0
OOOO—wicosqﬁl

pe

and the generators [10]:

w? eV

I
fl = —|—itsin¢, f3 = ———t3 Sin¢7 f4 = —I_"‘J_'it4 COS¢‘
pe 4! pc

3! pe
5.10.3 TRANSPORT Map for a Thin RF Cavity

Using the definitions in Section 5.10, we find the accelerating kick:

v sin ¢.
c

Pi2 = Pa +

$s

By differentiation one finds that the transfer matrix is

1000 0
0100 0
0010 0
R=10001 0
0000 1

o o o o O

i
0000 -2  cosep 1
¢ pe

(5.68)

(5.69)

(5.70)

(5.71)

(5.72)

(5.73)

(5.74)

(5.75)



and one non-zero second-order term
sin ¢. (5.76)

5.10.4 Electrostatic Separator
By convention an electrostatic separator does not change the reference orbit. We use the definition

9k,
PoC

k= (5.77)

5.10.5 Hamiltonian for an Electrostatic Separator

The exact Hamiltonian for a separator is

H= —\/<ﬂi +p + ky>2 - ﬂ2172 - (pi +p§) i1 ;"5 <pt + %) : (5.78)

$s $s

5.10.6 Exact Solution for an Electrostatic Separator

The Hamiltonian is an integral of motion, and is constant on any orbit. It is easily verified that the
exact solution for the equations of motion is

S

s =21+ |H|pz17
pz2 :pzla
ks 1 ks 1 ks
= h (| — —sinh | — — h{— ) -1|F
Y2 cos <|H|>y1+ksm <|H>Py1-|-k<cos <|H|> > 13 5.19
ks ks ks :
= ksinh | — h{— inh| — | F
Py2 sin <|H>y1+cos <|H|>py1+sm <|H|> 1
Lné, . ks 1 ks 1 . ks
t2 = gs — sinh <ﬁ> Y1 — E <COSh <ﬁ> — 1> Py1 + t]_ - E sinh <ﬁ> E]_,
Pi2 = P

5.10.7 Lie-Algebraic Map for an Electrostatic Separator

The Lie algebraic map for a separator can be derived from the TRANSPORT map listed below. We
use the abbreviations

C = cosh(kL), S = sinh(kL). (5.80)
The transfer matrix is
1L 0
01 0
kL 1 1 L
00 C_ﬁfs ES OE(C_l)_ﬂ_fS
F = kL kL . 5.81
00 k& <S - C> C 0 5 — C ( )
; B:
kL 1 1 L
00—<S— 520> _E(C_l)l _ES—I_ﬁ_fC




The generators are

Lné, 1 EL 1
f= -0 pt+—<5— >y+ (C —1)py,

Bs Bs B: kg,
fs = %pi (C(ky-l—Pt y) + < 6ﬁL5 28, 2> (C(ky+pt) - Spy>3
kL?

( (ky + p:) — SPy) (S(ky +pi) — pr>2.
(5.82)

(C(ky + pt) Spy)2 (5 (ky + pe) pr)

- 2p38 28,

The generator f, is ignored, because its coefficients are all small of order one.

5.10.8 TRANSPORT Map for an Electrostatic Separator

The TRANSPORT map is the expansion of the exact map to second order. We use the abbreviations
C = cosh(kL), S = sinh(kL). (5.83)
The TRANSPORT map becomes

L
zy =z + Lpy — ﬁ_le(k?/l + Pi1),

pz2 = pzla
kL
Y2 :kﬁs < >y1+k5py1+k<0—1—ﬁ—35>pt1
3
+2ﬂs S(p2, +151) - 255 Clkys + p)py + 53 258 <kLC + 7—35> (kyy + pu)?,
1 kL kL
Dy2 = ﬂ_S +k <S - ﬁ_0> y1+ Cpy1 + <S - EC> Pn (5.84)
kL kL 3
+2ﬁ50(p“2” +p5) - 2ﬁ55(ky1 + P )Py + 5 o3 2ﬂ3 <kL5 + 7—30> (ky1 + pu)’,
Lné, kL 1 1 kL
6 =5 (5- %) ‘E(C‘l)pyl“l‘E( 7 )
L L
~55 Ot + i)+ 35Sk + palpys = 555 (RS + 55C) (b + )’
Pt2 = Pri1-

5.11 Misalignments

Misalignments are defined by three displacements and three angles:

Az Horizontal displacement,
Ay Vertical displacement,

As Longitudinal displacement.
0 Rotation about the s-axis,
1) Rotation about the z-axis,
P Rotation about the y-axis.

Lie algebraic maps for misalignments have been derived in [14] as separate maps for each of the six
components of the misalignment. In practice misalignments are not known to high precision. For this
and for speed reasons, MAD uses a linear approximation of its effects. The six transformations are
also combined into one map.



5.11.1 Exact Map for Misalignments

The three translational components can be composed to form a vector

o Az
V=]|v, | =| Ay |. (5.85)
Vs As

and the three rotational components are represented by an orthogonal matrix

Wy Wiz Wis
W = Wy Way Wag
W31 W3y W33

(5.86)

+cosfcost) —sinfsinpsiny — cosfsiny — sin 6 sin ¢ cos Y sin b cos ¢
= cos ¢ sin v cos ¢ cos sin ¢
—sinfcos?y) — cosfsingsiny + sinfsiny — cosfsin @siny cos b cos @
The misalignment pivot, i. e. the point around which the rotation takes place, is the origin of the
reference system at element entrance. The misalignment generates a canonical transformation. With

the abbreviations
82 = w13(:131 - ’01) + w23(y1 - ’02) — WggUs,

2044 . (5.87)
Psi = \/1 + gt + P —Ph — Py i=1,2
the transformation for the entrance can be written as
DPrz = W11Pe1 + War1Py1 + W31Ds1)s
Dy2 = Wi2Pg1 + WaoPy1 + W32Ds1), (5.88)
Pt2 = Pra2-
Pzz
Ty = ’w11(331 - ’01) + wzl(yl - ’02) — W31V3 — p_sza
$2
Pyz
Y2 = ’w12(331 - ’01) + wzz(yl - ’02) — W3aV3 — p_sza (5,89)
$2
—1
t2 — t]_ —I— ﬁs ‘|’pt282‘
Psz
5.11.2 Linear Approximation for Misalignments
The linear part for defines the transfer matrix
w w w w
_|_ﬁ _|_ﬁ5 _12 2000 0
W33 W33 W33 W33
0w 0wy 0 2
11 21
Bs
w w w w
o TRy 7 o0 0
R = W3z  Wsaa W3z  Waa , (5.90)
0 W19 0 Waoo 0 Ws2
Bs
W3 W3 s Wiz Wiz s 1 s
Bswss Bswss B,wss [, wss B2y

0 0 0 0 0 1



where

83 = —W13V; — WazVy — W33Vs, (5.91)
The Lie-algebraic map contains a first-order generator
fi=— <w13(:13 — 8Pz) + Wwas(y — 5Py)> Jwsz + (v1ps + vapy + B; tvsp:), (5.92)
which gives rise to the kick, to be used for the TRANSPORT map:
Az = —(’wzz’vl - wlzvz)/waaa Ap, = Way,
Ay = —(w11v2 - w21v1)/w337 Apy = Wga, (5-93)
At - 0 Apt - 0.

5.11.3 Misalignment at Exit

For the misalignment at element exit the displacement and rotation must be transformed to the new

reference system as follows:

V=W V+WV,-V,), W=w'"ww,,

(5.94)

where V, and W, are the displacement vector and rotation matrix describing the change of reference

when proceeding through the element. The inverse transformation has the transfer matrix

Waz Wy

W3

W1 ———8 W21 _—8 —3$
W33 W33 BsWss
0 D= _Bu, T
W33 W3z3 BsWss
_ Wi w1y Wa3
Wy —8 Wiy ——380 ————s
F = Was W33 BsWss , (5.95)
0 -2z g o, Ui
W33 W33 BsWss
Way W3z s
0 0
Bs Bs Biv:
0 0 0 0 0 1
were
s = (w13v1 + Wa3vs + W3a3Vs)/Was. (5.96)
The Lie-algebraic map contains the generator
fl = —(E.?,lm + ﬁazy) - <(+E2251 — E]_zﬁz)pz + (_E2151 + E]_]_ﬁz)py> /E33, (5-97)
For the TRANSPORT map the orbit kicks are
Az = (w22’01 - ’w12’02)/’w33a Ap, = —Wgi,
Ay = (w21v2 - w21v1)/w337 Apy = —Wgg, (5-98)
At = —B1s, Ap;, = 0.



5.12

Rotation of Reference about the s-Axis

A rotation about the s-axis by an angle % is a linear map K. It is completely described by the transfer

matrix

5.13 Rotation of Reference About y-Axis

cos v
0
—sin)
0
0
0

0

cos
0
—siny
0
0

sin 2
0
cos
0
0
0

0 00
siny 0 0
0 00
cosy 00
0 10
0 01

: (5.99)

A rotation about the y-axis is a special case of a misalignment, derived in [14]. With the rotation

angle ¢ we have the transfer matrix

and only the first-order generator

cos ¢
0

—sin ¢

$s

0

1
1/cos¢p 000 —ﬁ—tanqﬁ

000

100

010

0 001
0 000
ry = —xsin @

0

0
0

0

1

is considered. For the TRANSPORT map this represents a kick

Ap,

5.14 Beam-Beam Interactions

5.14.1

— tan ¢.

Lie-Algebraic Map for Beam-Beam Interaction

(5.100)

(5.101)

(5.102)

The beam-beam interaction is not yet implemented in MAD for the Lie algebraic formalism.

5.14.2 TRANSPORT Map for Beam-Beam Interactions

For a two-dimensional Gaussian particle distribution a closed formula for the electric field has been
given in [1]. It uses the following parameters:

o The horizontal standard deviation of the opposite beam,

oy The vertical standard deviation of the opposite beam,

Az The horizontal displacement of the opposite beam with respect to the ideal orbit.
Ay The vertical displacement of the opposite beam with respect to the ideal orbit.

q The number of unit charges per particle in the beam under consideration.



q The number of unit charges per particle in the opposite beam.

N’ The number of particles per unit length in the opposite beam, or the number of particles
per bunch in the opposite beam.

7, The classical particle radius.

E The energy per particle.

Note that the electric field can be computed from a scalar potential ¢. The kick acting on the particle
can be computed as

qq' N’ i 2/mr.N’
FE

(w(zl) — exp(z2 — zf)w(z2)>. (5.103)

w is the complex error function

2i [*
w(z) = exp(—2z2 <1—|——/ exp(z? dt>, 5.104
(z) = exp(—27) N p(z°) (5.104)
and

(=24 Az, n=y+ Ay, r=,/2(c2-072), z1:§_|_iﬁ, z2:%+iazn. (5.105)

r r o, o,r

For a round beam the above formula produces 0/0, and must be replaced by the limit

. N’ _ 2ir,N'1—ex 24 %) /202

Vs £+zn

For optical calculations we need the transfer matrix with respect to the actual orbit. It is the identity
matrix except for the elements

/N/
R21 = qq ¢zza Rza = R41 = qq ¢zya R43 = %‘ﬁyy (5-107)
and the second-order coeflicients
'N’
T211 = qq ¢zzza T213 = T231 = T411 — qq ¢zzya
5.108)
/N/ /N/ (
T233 = T413 = T431 — qq ¢zyya T433 = qq ¢yyy
which are found by differentiation of the kick. For an elliptic beam we find
2 oy z? y?
2
¢zy = T_z(_(m()by - y¢z))7
2 Oy z? y?
¢yy = 7‘_2 (‘|‘(m¢z + y¢y) — Po (]— - Eexp (_ 20_3 - r‘_;))) )
1 2ty 5.109
¢zzz = 7”_2 (_¢z (m()bzz + y¢zy) + Po—eXP ( 20_3 - 2#‘_5)) ) ( ) )
1

¢zzy = 7‘_2 (_¢y - (m()bzy - y¢zz))7
¢zyy = lz (+¢z - (w(ﬁyy - y¢zy))7

1 Yo, 22 y?
Pyyy = ) (+¢y + (2hay + ydyy) — Po~ 5 €XP (_E - 2#0‘3 ,

Y



and for a round beam

v = ————(1-E)+ ————FE
¢ Po < (mz_l_yz)z( )+ >
2zy
¢zy = Po <_(m2_|_y2)2(1_E)‘|‘ E>
2? — g
z® — 3zy? z® — 3J:y z? >
= 1-F E - FE
¢zzz Po <+ 22 + y2)3( ) 20_2( +y ) 20.4(1132 + y2) ’
32’y —y® 32’y —y® 2’y
= — 2 ¢ (1—-E)- — E
Pazy = Po <+ (22 + y2)3( ) 20%(2? + y2)? 20%(2? + y?) > ’
z® — 3zy? z® — 3zy? zy?
= — 1—-F — E
Payy pPo < (132 + yz)a( )+ 20.2(132 n yz)z 20.4(132 n yz) > ’
3m2y _ y3 3m2y _ y3 y3
= — 1—-F — E
Pyyy pPo < (132 + yz)a( )+ 202(132 + yz)z 204(132 n yz) > ’
where 2 1y
E = .
exp < 557 >
It is easy to check that
Jp Jp
¢zz + ¢yy = P, ¢zzz + ¢zyy = 3_137 ¢zzy + ¢yyy = 3_3/

where p is the relevant “space charge”.

(5.110)

(5.111)

(5.112)



Chapter 6. Uncoupled Linear Optics

In MAD lattice functions are always computed with respect to the computed closed orbit. Coupling
is always ignored in OPTICS and ignored by default in TWISS. For a description of coupling effects
refer to Chapters 7 and 8. The methods used for uncoupled calculations are described in [2, 6]. In
the commands TWISS and 0PTICS MAD uses TRANSPORT maps except for thin multipoles, where
the exact thin multipole maps are used. When the closed orbit deviates from the design orbit, MAD
uses the Jacobian of the TRANSPORT map for the linear transfer matrix. For thick elements this
may perturb the symplecticity of the map. For this reason the Jacobian is by default made symplectic
according to Section 4.7. Symplectification is controlled by the option SYMPLEC.

6.1 Courant-Snyder Lattice Functions

By default the TWISS and OPTICS commands track the lattice functions for periodic initial conditions.
Any initial conditions specified (except 8, and §,) override the periodic initial conditions.

However, if an initial condition is specified for at least one of 3, and f3,, the closed orbit is not
computed, and MAD tracks the lattice functions for the initial conditions specified. Unspecified initial
conditions are set to zero in this case. Unwary users may fool MAD into thinking that a value has
been given for 3,. The most frequent case is entering the CENTRE flag on an OPTICS command in the
American spelling:

OPTICS, CENTER ! should read OPTICS, CENTRE

The decoder assumes in this case that CENTRE is the name of an undefined global parameter, sets it
to zero, and stores it in the slot for the initial value of 3,.

6.1.1 Initial Conditions for the Periodic Case

When the COUPLE option is not set, MAD computes the lattice functions as defined in [6]. Note that
the integer parts of the betatron phases may be wrong when a beam line contains LUMP elements,
or when it contains negative element lengths, as in these cases an incorrect branch of the arctangent
function may be taken.

For the functions 3, a, g MAD uses the relevant diagonal blocks of the transfer matrix, denoted

below as
R R
R:( 11 12) (6.1)
Ry Ry,

For optimal numeric precision MAD uses the following formulas for the tunes:

cosp = (Ri1 + R22)/2,

sing = sign Ry, - \/R12R21 — (Ri1 — R2)?/4, (6.2)
Q = — arctan el
27 cos [

and the following for the initial lattice functions:

Bo = R12/ sin u,

ag = (Ry1 — Ry,)/(2sinp). (6.3)

The way sin g is computed greatly improves the numerical accuracy for p when its value is close to
1/2.
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6.1.2 Tracking the Lattice Functions

The formulas for advancing through an element are well known:

B = i ((R11ﬁ1 - R12011)2 + sz) )
Oy = _ﬁi ((Rllﬁl - Rlzal)(R2151 - Rzzal) + R12R22)7 (6-4)

R12

= + arctan —.
Ha H Rllﬁl — Ry

They are valid for both planes.

6.2 Dispersion

MAD computes the dispersion only for static machines, i. e. for machines whose momentum is con-
stant.

6.2.1 Initial Values for Dispersion

Knowing the TRANSPORT map with respect to the closed orbit for one turn enables us to find
two derivatives of the closed orbit with respect to p;, named the first- and second-order dispersions.

Defining

D = d/dp, (6.5)
the first derivative of the closed orbit
Lo
sz
Yo
pyO
to
Pio

the first-order dispersion is its first derivative with respect to p;:

dz /dp, Dz Dz
dp, /dp, Dp, Dz,
D7, — dy/dp, _ Dy _ Dz, - (6.7)
dpy/dpt Dp, Dz,
0 0 Dz
dpso/dp; 1 Dz

The second derivative of the closed orbit with respect to p, is the second-order dispersion:

D?*z d*z/dp? D%z
D222 dzpz/dp? szz
Dz — D?z, B d*y/dp? B D%y
| Dz | | &p,/dp2 | T | D? (6.8)
Z4 py/dp; Py
D?z; 0 0

D2z6 0



The dispersions are computed following a method developed in [20]. With respect to the closed orbit
the orbit behaves as

2
Z =Zy+p-DZo+ % - D*Zo + o(p?) (6.9)
The vectors DZ, and D?Z, are found by substitution of this expression in the TRANSPORT map

and by separation of like powers of p;. Substitution produces

2 6 2
zy +pe- Dz + % Dz, = ZRkl(zl +p:- Dz + % -D?z)+

=1

6 6 (6.10)
p: 2 P; 2 3
Z Z Trim(z1 +p: - Dz + 5 D*z)(2m + pt - Dz + by - D*2z) 4 o(p;)-
=1 m=1
The terms in p; are:
8
Dzk = ZRHDZ[ (611)

=1
Using Dzs = 0, Dzg = 1 and defining
Ry Ris Riz Ris
Roy Ryy Roz R
A 21 ftay figg ftog , (6.12)
R31 Rz Raz Raa

R41 R42 R43 R44

we obtain
DZl R16
Dz R
l=@-D| *]. (6.13)
Dz R
DZ4 R46
The terms in p? give
6 6 6
Dzzk = ZRlezzl + 22 Z TklmDZlDZm, (614)
=1 I=1 m=1
thus
6 6
Y>> TumDzDzy,
=1 m=1
Dz 6 6
o 33 TunDaDz,
z =1 m=
L =204a-D) 1| = : (6.15)
D2z, 6 6
D, ;m; Tsim Dz Dz,
6 6
Z Z T4lszlDzm
I=1 m=1

6.2.2 Tracking the Dispersion

The first-order dispersion is tracked through an element as follows:
Dz — RDz. (6.16)
By differentiation we find for the second-order dispersion:

D?z — RD?*2 + DRDz. (6.17)



The total derivative DR = dR/dp, of the transfer matrix must take into account the displacement of
the orbit due to the dispersion. The particle orbit can be related to the dispersion orbit Dz by

2
Z =Zo+ps Dzt %Dzz. (6.18)

It transforms according to the equation

6 6

6
zp+pe-Dzg+... — ZRk,(zl—l—pt-Dzl—l—. . )—I—Z Z Tom(zi+pe-Dz+. . )(Zm+pe-Dzm+...). (6.19)

=1 =1 m=1
The total derivative of the transfer matrix is found by partial differentiation as

dRy,

DRy = dp
t

6
=2 ThmDzm. (6.20)
m=1

6.3 Chromatic Effects

The chromatic effects are computed for the uncoupled case only.

6.3.1 Initial Values for Chromatic Functions

Using the total derivative of the transfer matrix for one turn we find the following equations:
1 .
§(DR11 + DRy,;) = D(cosp) = —Dpusing,
DR, = D(Bsinp) = DPsinp — BDpcos p, (6.21)

1
§(DR11 — DRy;) = D(asinp) = Dasinp — aDpcos p.

The derivative DR = dR/dp; of R has been given in Section 6.2.2. From these we derive the chro-
maticity

D DRy, + DRy,
b= " osing
> s p (6.22)
7
DQ = —
Q=5
and the initial values for the chromatic functions
DBy = (DRyz+ BoDpcos p)/ sin p,
Dag = (DRy; — DRy + 209D pcos p) /(2 sin ),
B, = DﬁO/ﬁOa
Ao = (DaoBo — DBoco)/Po, (6.23)
WO =V Bg + A(2)7
®, = arctan(Aq/Bo).
6.3.2 Tracking the Chromatic Functions
The derivative of the phase advance by p; is found easily:
R.DR,» — R,,DR — Ri5(R1. DB — Ri3Dax
Dps = Dy = Dpy + (R11DRy, 12DR11)p: 12(R11 DB 12 ) (6.24)

(R118 — Ri20)? + R%,,



Given the values W, and ®, one may write

A]_ =
B,
Dﬁl =
Da1 =

B2 -

A2 -

W2 -

@2 =

Wi cos &,

= Wi sin &,

Blﬁla
A+ Bioy,

51152 <<(R11ﬁ1 - Buea)’ - Rf?) B — 2(Ru1f1 — R12a1)R12A1>

2
ﬂ_<(R11ﬁ1 - Rlzal)DRll - (R11a1 - R12’71)DR12>a
2

1
P12

1
ﬁ_ ((Ruﬂl - R12a1)(DR11a2 + DR21ﬂ2) - (Rllal - R12’)’1)(DR12(12 + DRzzﬁz)
2

(6.25)

<<(R1151 - R12a1)2 - Rﬂ) A+ 2(R1151 - Rlzal)R12B1>

—|—(R11DR12 - R12DR11)> bl

VBE+ 43,

t Az
arctan —.
B,

Note that the “partial” chromaticity Dy, — Dy, for a piece of the ring depends not only on the transfer
map, but also on the initial values D3, and Da;.



Chapter 7. Transverse Coupling (Method by Edwards
and Teng)

7.1 Initial Values

When the COUPLE option is set, the TWISS command uses a method similar to reference [22]. Consider
the linear transfer map M in two degrees of freedom partitioned into four 2 x 2 blocks:

MM11 Mg Mg Mg

M1 Maz Maz Mag | A B
~\¢bD)

M = (7.1)

Mgy Migo Migg 1MM3a

Mg Mgy Mgz Mya

The 4-dimensional phase space vector shall also be partitioned according to the horizontal and vertical
planes. Edwards and Teng introduce a “symplectic rotation”

R = ( Icoiw,zﬁ Rsinqﬁ) (7.2)
—Rsin¢ Icos¢

R is a 2 X 2 matrix with unit determinant, and R denotes its symplectic conjugate:

ab ab _ d —b
R = , |R| = =1, R = . (7.3)
cd cd —c a

This leaves three free parameters for the elements of R, and a fourth parameter ¢. Edwards and Teng
then determine R such that M conjugated with R becomes block diagonal:

) (E 0)
RMR™! = (7.4)
0 F

If |B + C| < 0 both ¢ and all elements of R become imaginary. This may be avoided by redefining

R — 1 I R .5
_,/1+|R|(—RI)' (7:5)

where all four elements of R are free parameters. The solutions is:

R

-1
- (%(TrA — Tr D) +sign(|B + 6|)\/|B + O+ i(TrA - TrD)z) (B+0), (76)
E = A— BR, F=D+RC.
The block diagonal matrix can be parametrised as usual. From the eigenvectors of the conjugated
system
VB 0 VB2 0
i = oy 1 ’ V, = e 2 (7.7)
VB VB VB VB

one may find the eigenvectors of the coupled system:

1 Vi 1 —RV,
Vie ——o | ), Vo= —— . (7.8)
V1+|R] \ RV, VI+IRI\ W,
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7.2 Tracking the Edwards-Teng Functions

For tracking the coupled lattice functions we assume that the transfer matrix for one element is

Ae Be
(g ) (1.9)
C. D.

partitioned as above:

The symplectic rotation at element entrance changes the diagonal blocks to

E. = (A. — B.R))/\/|A. — B.R:|, F,=(D.+ R,C.)/\/|A. — B.R,|, (7.10)

and the new coupling matrix at exit becomes
R2 = _(Ce - DeRl)(Ae - BeRl)/|Ae - BeR1|- (711)

We may track the decoupled lattice functions using the matrices E, for mode 1 and F, for mode 2.



Chapter 8. Fully Coupled Motion

Throughout this chapter we make the assumption that all eigenvalues A, of a real symplectic matrix
M are distinct. This implies that the eigenvectors v are all linearly independent and form a basis in
2N-dimensional space. Most facts derived remain valid when this condition is relaxed, but the proofs
become much more difficult.

8.1 Eigenvectors of a 2N x 2N Symplectic Matrix

An eigenvector of a general matrix M obeys the relation
MVk = )\kvk. (81)

where ); is the corresponding eigenvalue. If all eigenvalues A, are distinct the eigenvectors vy are all
linearly independent and form a basis in 2/V-dimensional space. Thus an arbitrary vector z can be
uniquely decomposed in terms of the eigenvectors:

2N

z = Z cx vy = Vg, (8.2)
k=1
where the eigenvectors are arranged as the column vectors of a matrix V. The vector
¢1
c=| . [=Vig (8.3)
Can

is unique. Using the diagonal matrix formed from the eigenvalues

A1
A= , (8.4)
}\211,
the linear transformation for z can be written as
Mz = MVec = (MV)c = (VA)(V 'z) = VAV 'z (8.5)
Since z was arbitrary, there must hold an identity
M = VAV, (8.6)

This representation is known as the Jordan normal form of the matrix. By definition two eigenvectors
v and v; obey the equations

MVk = )\kvk, MVZ = }\lvl' (87)
The bilinear form
(ka)TS(MVZ) = ()\kvk)TS()\lvl), (88)
built using the matrix
01
-1 0
S = (8.9)
01
-1 0
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is asymmetric, therefore it vanishes identically for £ = [. Evaluation of both sides of the equation and
use of the symplecticity of the transfer matrix M leads to

vf(MTSM)v, = viSv; = M\ Vi Svi. (8.10)

This equation can only be true if either A\;\; = 1 or if vi Sv; = 0.

It is well known that a symplectic matrix with all eigenvalues distinct has N pairs of eigenvalues
for which Az A; = 1. If the motion is stable, these eigenvalue and the corresponding eigenvectors also
form complex conjugate pairs. Due to the asymmetry of the bilinear form for all &

vi Svi = 0. (8.11)

For all k the vector v}, is an eigenvector with the eigenvalue Aj. Inserting the eigenvectors v; and vj
in equation 8.10 one gets an identity, and

v; Sv; = arbitrary. (8.12)

where the arbitrary quantity on the right-hand side can be chosen freely. For all other pairs, Ay A; # 1,
and therefore equation 8.10 leads to the identities

viSv; =0, viSv; = 0. (8.13)

8.2 Everything is Real ...

Since the transfer matrix is real, the eigenvalues and eigenvectors form complex conjugate pairs.
Decomposing the eigenvalues and eigenvectors into their real and imaginary parts:

vy — ai Tt ibyg, Ap = cos g & 7 sin py,. (8.14)

For stable motion the y; are real, but the following formulae are also valid if this is not the case. The
definitions of the eigenvectors become

Mv; = M(a, + ibg) = (cos prax — sin pi by ) + 3(cos gy by + sin prag). (8.15)

The “real eigenvector matrix”

a1 b1,1 Gy1 b2,1 an1 bN,l
Qa2 b1,2 Gy 2 bz,z an,2 bN,z

W= ) ) ) ) ) ) ) (8.16)
Q12N b1,2N Ay 2N bz,zN aN 2N bN,zN

is built by arranging the real and imaginary parts of the eigenvectors as alternating columns of the
matrix. From Equation 8.15 and 8.16 it is obvious that the matrix W transforms like

MW = WR, (8.17)

where R is the matrix
cos iy  sin gy
—sinpy; cospy
R= , (8.18)

cospuy sinpuy
—sinuy cospuy



which rotates the phase space coordinates pairwise. Again an arbitrary vector z can be written
uniquely as
z=Wd, = d=Wz (8.19)

In the same way as for the complex form one finds
Mz = MWd = (MW)d = (WR)(W 'z) = WRW 'z (8.20)
and, since z is arbitrary, the transfer matrix M has the real representation
M= WRW ' (8.21)

This is real equivalent to the Jordan normal form. The linear transformation for one turn around the
machine can be written as

z(C) = Mz(0) = WRW 'z(0), (8.22)

Pre-multiplying with W~ gives
W™'z(C) = RW™'z(0). (8.23)

Now define the vector of normalised coordinates

Uy
Uy

u=Wlz= : , (8.24)

UaN -1
UaN

and partition this vector into pairs of coordinates. Each pair is transformed under the action of R like

uge-1(C) \ _ Usp—1(0) cos .+ uar(0) sin yy
( ug(C) ) B ( —Ugp_1(0)sing 4+ uze(0) cos ) (8.25)

Thus the quantities I, = 1(u3,_, + u3;) are invariant under the motion.
In Section 8.1 we introduced the bilinear form

VZ'SVZ = (ak + ibk)TS(a, + Zbl) = (a;‘:Sa, - bZSbl) + z(a;‘:Sb, + b;‘:Sa,) (826)

For various choices of k£ and [ it has the values

vISv, = (alSa, —b.Sb;) + i(+alSby+blSa;) = 0,

vISv: = (alSa, +b.Sby) + i(—alSby+blSa,) = -2i (8.27)
viSv, = (afSa,—b;‘:Sb,) + i—l—a{Sb,—l—b;‘:Sal) = 0, )
viSv; = (afSa, +b,Sb;) + i(-alSb;+b;Sa) = 0,

where the right-hand side of the second equation has been chosen so as to achieve a simple normali-
sation of the eigenvectors. Note that this still leaves us free to multiply each eigenvector by a phase
factor exp(p) which will be determined later. Solving equations 8.27 for k = [ we obtain:

alSa, = b;Sb, =0, alSb, = —b;Sa; = 1. (8.28)

and for k # I:
alSa; = alSb; = b} Sa; = b, Sh; = 0. (8.29)

These results can be combined in matrix form and result in the condition for W

WTSW = S. (8.30)



It turns out that with W is symplectic under the normalisation chosen. Since W is symplectic, its
inverse is

a1 Q1,2 - Q12N
bii bz o biaw
Gz1 Q22 -+ Q22N
W =8TWTS =87 | bs1 bap - baav |8, (8.31)
ay1 an,2 ' GN2N
by1 by 0 byaw
The components of u = W'z are
U1 = b;‘:Sz, Ugy = —ar Sz, (8.32)
and the invariants become
. . N 2 N 2
I, = 3 ((bZSz)2 + (asz)2> = 3 ((E(ak,zi—lzzi - ak,zizzi—l)) + (Z(bk,zi—lzzi - bk,2izzi—1)) ) :
i=1 i=1
(8.33)

8.3 Linear Invariants

Cutting the ring in two positions 1 and 2 produces two pieces with the matrices M;_., and M,_;.
The one-turn matrices for the two positions are

M; = M,_.,M;_., = W,R,W; ", M, = M;_,M,_, = W,R,W; . (8.34)
The two matrices are similar to each other:
M, = M,_,M,M[",, (8.35)
Therefore they have the same eigenvalues, and R; = R,. Also,
M, = W,R,W;' = M, _,W, R, W;'M; .. (8.36)

One sees easily that

W2 - M]__,QW]_. (8-37)
The transformation for u from position 1 to 2 is
u; = Wz_lzz = W2_1M1—>221 = W2_1M1—>2W1111 = (M1—>2W1)_1(M1—>2W1)u1 = u;. (8-38)

Obviously the invariants are conserved. For each mode the motion can be written as

z;, = V2LR (vi(s)e?), (8.39)
or expressed in real quantities

zr = 21} (a5 (s) cos g + bi(s) sinyy ), (8.40)

where ¢, is the initial phase of the motion. For a given value of the invariant the particle is found
on an ellipse in 2/N-dimensional phase space. The plane of the ellipse can have any orientation with
respect to the 2NV coordinate axes. Note that there is no plane of motion in physical space. However,
the projections of this ellipse onto a plane spanned by two phase space coordinates can be easily
determined, as we shall see below.



8.4 Phase Factors

We found u(s) = u(0), which seems to imply that the phases u; are constant, but we also found
u(C) = Ru(0). This is only an apparent contradiction, since the eigenvectors contain the phase
advances.

In general the projections of an eigenmode onto the 2N axes of phase space all have different phases
relative to the initial phase ;. However, all projections advance by the same phase difference, known
as the tune, when moving once around the ring. For one degree of freedom [6] it is customary to force
b;,1 = 0 along the ring by multiplying with a phase factor exp(u(s)). To generalise to N degrees of
freedom we associate each eigenvector v, with one coordinate direction g;. We then multiply it in all
positions s by a factor exp(u(s)) such that its component along that direction is real:

bk,2k—1(5) = 0, k= ]_, .o .,N. (84:1)

Usually the k** eigenvector has a largest component whose magnitude is its largest extent along the
k" axis of physical space. This a natural association of eigenvectors to directions, but it may also be
made simply by arbitrary numbering. The re-normalisation does not affect the invariants. It merely
causes the components of u to proceed around the ring with a phase advance which reaches 27Qy
after one turn. In the case of an uncoupled machine these phases become the usual Courant-Snyder
phase functions.

The representation of one eigenmode along s takes the final form

zr = V2LR (vi(s) exp(ity + i (s))), (8.42)
or expressed in real quantities
z, = v/ 2I; (ax(s) cos(v + pr(s)) + be(s) sin(¢r + pr(s))). (8.43)

The ellipse generated by one mode varies with the position s, and the eigenvectors v, are re-normalised
at each s such that
bk,2k—1(5) = 0, k= 1,...,N. (84:4)

8.5 TRANSPORT Sigma Matrix

It is easily seen that the particle motion for mode k generates the second moments
Omn = (ZmZn) = QkmQn + Ok, mbrn = Vg, mbg - (8.45)
They can be assembled to form a matrix
T = vVl (8.46)

The ¥ matrix has been introduced in TRANSPORT [2] for the first time. For a given value of I; the
largest extents of the eigenmode in each direction of phase space are

_ _ _ 2 2
Oam—1 = MMaX(rm = MaXZkam-1 = \/2Ik(ak’2m_1—|—bk,2m_1),

(8.47)

_ _ 2 2
Tam maxpg, = IMaXZkm = \/2Ik(ak’2m—|—bk’2m).

The correlations between phase space coordinates are

41,1,
Tm,n = (ak,mak,n + bk,mbk,n)' (848)
\/ max z,, max z,



If one assumes a Gaussian distribution of /21, each mode represents a Gaussian distribution in a
plane with the density function

1 1
N(u) x exp(—1I;) = exp <—§uTu*> = exp <—§ZTE,:1Z> . (8.49)

The three modes can be superposed and give a 2/N-dimensional Gaussian distribution with the ¥ ma-
trix
3
%= E%:. (8.50)
k=1

where FE is the emittance belonging to the mode k, and the distribution is

N(u) x exp <—%sz—1z> . (8.51)

8.6 Coupling Angles

Since the canonical variables do not all have the same units, it is not possible to talk about an
orientation of the ellipsoid in 2/V-dimensional phase space. However, we can project the ellipsoid
onto the planes (z,y), (z,t), and (y,t). The momenta are conserved by this operation. They can be
extracted as the relevant components from the phase space vector and the ¥ matrix. The projection
is then given by the equation

1

2(02,20y,y — 02, 9%)

(0yy@* — 201 22y + 0, ,y°) = constant, (8.52)

where we have denoted the selected phase planes by ¢ and y. For each plane one has the situation of
Fig. 8.1.
Analysing equation 8.52 gives the maximum extents

Or = \/Os 2> Oy = \/Oyy- (8.53)

The correlation is as before
Toy = Ozy/(050y). (8.54)

The points where the ellipse touches the circumscribed rectangle are indicated with their coordinates
in figure 8.1. If and only if the units for both axes are the same, one may computed the principal axes
a,b and the angle ¢ between the principal axes and the coordinate axes:

a’ = % (Uz,z + oy + \/(Uz,z — 0yy)? + 40’3,;,) )
2 = 1 (Uz,z + 0y — \/(crm — 0y 4)? + 4034}) , (8.55)
tan2¢ = (20,4)(00,0 — Oyy)-

Note that for o, , = 0, , the angle ¢ is not defined.

8.7 Implementation

8.7.1 EMIT Command

All commands described in the following sections must be preceded by the EMIT command. This fills
in the RF frequencies using the revolution frequency and the harmonic number. Note that the RF lag
must be set close to the stable phase, i. e. above the transition energy it should be close to 0.5.
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Figure 8.1: Projection of the phase space ellipsoid onto one plane

8.7.2 Eigenvectors

MAD lists them in selected position in the command EIGEN. They can be used to find the invariants.

8.7.3 Linear Invariants

The invariants can be built easily as shown above from the eigenvectors:

1

N 2 N 2
((b;':SZ)2 + (asz)2> =3 ((Z(ak,zi—ﬂzi - ak,zizzi—l)) + (Z(bk,zi—ﬂzi - bk,zizzi—l)) ) .

=1 =1
(8.56)

123:

N | =

8.7.4 Phase advances

MAD prints the phase advances in the commands TWISS3 and EIGEN. They are defined as described
above; i. e. as the phase factors which re-normalise the principal components of the eigenvectors and
makes them real.

8.7.5 Envelopes

The ENVELOPE command (must be preceded by EMIT !) computes the TRANSPORT ¥ matrix
from the eigenvectors. It is computed and listed in selected positions.



8.7.6 Mais-Ripken Lattice Functions

This method is due to H. Mais and G. Ripken [18, 21]. It is used in the TWISS3 command (which
must be preceded by EMIT !), which computes the projections of the ellipses of motion onto the
phase planes. The extents are expressed in the form similar to the Courant-Snyder parameters. The
command lists these parameters along with the phases in selected positions. The projection of the
Courant-Snyder lattice functions on the three planes (z,p,), (y,p,), and (¢, p;) are:

Br; = Gr2j-10k25-1 + br2j_1br2-1,
Vrg = Gr20k,2 + br,2ibr,2), (8.57)
Qi = Qg2;-10k,25 + bg,2ibr,25-1

The index k refers to the eigenmode, and the index j to the plane. MAD prints the functions 3 ;,
ag,j, and 7 ;. It also prints the phase advances py ; of the projections onto the three planes. Note
that we have the equations

dux ;i \? dug, 5
ﬁk,j’yk,j — a,zw» = <ﬁk,j /;Z’]> ) but ﬁk,j /;’;’J # 1. (858)

Note that it is easy to convert the eigenvectors to the Mais-Ripken functions, but that this does not
reduce the redundancy in information. A conversion in the opposite direction has not been found, it
may well be impossible.

8.8 Transformations between Representations of Beam

8.8.1 Eigenvectors to Internal Sigma Matrix

Given the eigenvectors and the emittances for the three eigen-modes the beam ellipsoid ¥ [2] can be

computed as
Y1 oo Yia

3
¥ = : : = ZEk%(VkTVk*). (8.59)
k=1
241 to 244

Assuming a Gaussian distribution, the particle distribution is then
1
N(Z) x ea:p(EZTE_lZ). (8.60)

8.8.2 Internal Sigma Matrix to TRANSPORT Notation

Given the ¥ matrix of the previous section the standard deviation of z; is [2]:

O = v/ Ekka (861)
and the correlations between z; and z,, as

2km

OrOm

Tem =

(8.62)

MAD prints beam envelopes in this form.



8.8.3 TRANSPORT Notation to Internal Sigma Matrix

The formulas of the previous section can be inverted as:
Y = 08, k=1...4, (8.63)
and the off-diagonal elements are
Yim = PkmOkOm,kym=1...4,k # m. (8.64)

MAD wuses this formula to find the internal ¥ matrix from a SIGMAO command.



Chapter 9. Survey

9.1 Global Reference System

The reference orbit of the accelerator is uniquely defined by the sequence of physical elements. The
local reference system (z,y, s) may thus be referred to a global Cartesian coordinate system (X,Y, Z)
(see Figure 9.1). The positions between beam elements are numbered 0,...,7,...,n. The local ref-
erence system (&;,y;, z;) at position , i.e. the displacement and direction of the reference orbit with
respect to the system (X,Y, Z) are characterised by three displacements (X;,Y;, Z;) and three angles
(6:, ¢:,%;) The above quantities are defined more precisely as follows:

A
Y
reference
Y
pitch angle 7 o
¢ projection of s
- [/ onto ZX -plane
azimut X
roll angle /) N Z
intersection of
zy and ZX planes

Figure 9.1: Global Reference System

Displacement of the local origin in X -direction.
Displacement of the local origin in Y -direction.

Displacement of the local origin in Z-direction.

S NN

Angle of rotation (azimuth) about the global Y-axis, between the global Z-axis and
the projection of the reference orbit onto the (Z, X )-plane. A positive angle 8 forms a
right-hand screw with the Y -axis.

¢ Elevation angle, i.e. the angle between the reference orbit and its projection onto the
(Z, X )-plane. A positive angle ¢ correspond to increasing Y. If only horizontal bends
are present, the reference orbit remains in the (Z, X')-plane. In this case ¢ is always
zero.

P Roll angle about the local s-axis, i.e. the angle between the intersection of the (z,y)
and (Z, X )-planes and the local z-axis. A positive angle ¢ forms a right-hand screw
with the s-axis.
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The angles (6, ¢, 1) are not the Euler angles. The reference orbit starts at the origin and points by
default in the direction of the positive Z-axis. The initial local axes (z,y, s) coincide with the global
axes (X,Y, Z) in this order. The six quantities (Xo, Yo, Zo, 0o, ¢o, ¥0), thus all have zero initial values
by default. The program user may however specify different initial conditions.

Internally the displacement is described by a vector V, and the orientation by a unitary matrix
W. The column vectors of W are the unit vectors spanning the local coordinate axes in the order
(z,y,s). V and W have the values

X
V=|Y|, W =0¢VY, (9.1)
7Z
where
cosf 0 sinf 1 0 0 cosy —siny 0
0= 0 1 0 , =10 cos¢ sing |, ¥ =| sinyy cosyp 0 |. (9.2)
—sinf 0 cosf 0 —sin¢ cos¢ 0 0 1

The reference orbit should be closed and it should not be twisted. This means that the displacement
of the local reference system must be periodic with the revolution frequency of the accelerator, while
the position angles must be periodic (modulo 27) with the revolution frequency. If ¢ is not peri-
odic (modulo 27), coupling effects are introduced. When advancing through a beam element, MAD
computes V; and W; by the recurrence relations

Vi=W,_1R, + V_q, W, = W;_.5,. (9.3)
The vector R; is the displacement and the matrix .5; is the rotation of the local reference system at
the exit of the element ¢ with respect to the entrance of the same element. The values of R and § are
listed below for each physical element type.
9.2 Single Elements

9.2.1 Markers

Marker elements do not affect the reference orbit. They are ignored for geometry calculations.

9.2.2 Straight Elements

The reference system for all straight elements is shown in Figure 9.2. It is valid for:

e DRIFT e RCOLLIMATOR e ECOLLIMATOR e INSTRUMENT
e MONITOR e HMONITOR e VMONITOR e QUADRUPOLE
e SEXTUPOLE e OCTUPOLE e SOLENOID e RFCAVITY

o ELSEPARATOR o KICKER o HKICKER e VKICKER

e MONITOR e HMONITOR e VMONITOR

The corresponding R and § are

100
R=|o0|, sSs=]o0o10]. (9.4)
L 001

A rotation of the element about the s-axis has an effect on R and § only for dipoles, since for all other
elements the rotations of the reference system before and after the element cancel.
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Figure 9.2: Reference System for Straight Beam Elements

9.2.3 Dipoles

Bending magnets affect the reference orbit due to their curvature. For both rectangular and sector
bending magnets

p(cosa — 1) cosa 0 —sina
R= 0 . os= 0o 1 o |, (9.5)
psina sina 0 cosa

where a is the bend angle. A positive bend angle represents a bend to the right, i.e. towards negative
¢ values. For sector bending magnets, the bend radius is given by p = L/a, and for rectangular
bending magnets it has the value p = L/(2sin(c/2)).

The reference system for type SBEND is shown in Figure 9.4, for type RBEND it is shown in Figure 9.3.

e an
1)
e I
AN

>
-

Figure 9.3: Reference System for a Rectangular Bending Magnet; the signs of pole-face rotations are
positive as shown.

If the magnet is rotated about the s-axis by an angle ¥, R and § are transformed by

R=TR, S=TST (9.6)
where T is the rotation matrix
cosyp —siny 0
T=|siny cosyp 0 [. (9.7)
0 0 1

The special value ¢ = 7 /2 represents a bend down.



Figure 9.4: Reference System for a Sector Bending Magnet; the signs of pole-face rotations are positive
as shown.

9.2.4 Rotation of Reference System about s-Axis

The reference system for the SROT element which rotates the local reference system about the longi-
tudinal axis is shown in Figure 9.5. SROT has no effect on the beam, but it causes the beam to be
referred to the new coordinate system

Ty = &, cOsY + Yy sinp, Y2 = 21 8iny + y; cos . (9.8)

A positive angle means that the new reference system is rotated clockwise about the s-axis with respect
to the old system. The reference system is changed using

costy —siny 0
R=1]0], S = sinyy cosyp 0. (9.9)
0 0 1

9.2.5 Rotation of Reference System about y-Axis

The reference system for a rotation by an angle 6 about the vertical axis (YROT) the reference system
is shown in Figure 9.6. YROT has no effect on the beam, but it causes the beam to be referred to the
new coordinate system

Zy = @1 cosf — s, sin b, 89 = ¢y sinf + s; cos b, (9.10)

A positive angle rotates the reference system clockwise about the local y-axis with respect to the old
system:
cosf 0 —sind

R=|0]|, Ss=[ 01 0o |[. (9.11)

sind 0 cosf
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Figure 9.5: Reference System for a Rotation Around the s-Axis
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Figure 9.6: Reference System for a Rotation Around the y-Axis

9.3 Sequences of Elements

The displacement and rotation of the reference system due to an element sequence can be accumulated
by the recurrence relations given above:

1/,' = I/I/i—lRi + 1/,'_1, m = I/V,»_l,S'i, 1=1...n. (912)
Accumulating these quantities in beam order one finds for the sequence the values

R=V,  §=W.. (9.13)



Chapter 10. Closed Orbit and Dispersion Correction

This chapter describes the algorithms used for orbit and dispersion correction. The data structures
used are documented in the MAD Programmer’s Manual.

10.1 Influence of a Kick in a Plane on the Orbit

The betatron motion [6] with the initial conditions ¢(so) and p(so) is

q(s) = % (cos®p + aso) sineh) q(so) + +/B(s)B(s0) sinyp(so),
_ (1+ a(s)a(so))siny + (as) — a(so)) cosyp . B(s0) s — als) sin .
B(s) = o d(s0) + |/ =) (cos 6 = a(s) sin ) plso)

(10.1)
where ¢ = p(s) — p(so) is the phase difference. The position ¢ must be replaced by z or y, the
transverse momentum p by p, or p,, and the optical functions must be taken for the plane in question.

The influence of a kick with the strength Ap at an azimuth s, in the ring by setting

q(s0) = ¢(s0 +C),  p(s0) = p(s0+C) + Ap (10.2)

in equation 10.1. It produces a closed orbit with the transverse position

_ V/B(5)B(s0) cos(pu(s0) — p(s) —7Q), s < 30,
a(s) = 2sin(w Q) 8 { cos(p(s) — u(so) — 7Q), s> so. (103)
This can be rewritten as
0(6) = o cos(lu(se) = )] - 7Q). (10.4)

Note that taking the absolute value of the phase difference produces the proper jump in transverse
momentum at position s = s, while leaving the transverse position unaffected.

If the machine is symmetric, MAD assumes that there is a second kick at the symmetric point
s = —so with the phase g = —pu(so), and the postion of the orbit becomes

VB(s)B(%0)
2sin(7Q)

Note that the second cosine term has no absolute value, since the symmetric kick falls outside the

q(s) = (cos(|p(s) — p(s0)| — 7Q) + cos(p(s) + p(s0) — 7Q)). (10.5)

computation region.
The influence matrix for the orbit displacements at monitor positions as a function of corrector
strengths is found by using the set of corrector azimuths for sq and the set of monitor azimuths for s.

10.2 Orbit Correction by MICADO Algorithm

The algorithm for solving the normal equations for the correctors is described in [4] as an Algol

procedure.
*¥¥kx* section to be filled in *****

10.3 Influence Matrix for Orbit and Dispersion for a Plane
kXAEX section to be filled in *****
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10.4 Orbit and Dispersion Correction by MICADO Algorithm

*¥¥kx* section to be filled in *****



Chapter 11. Synchrotron Radiation and Equilibrium
Emittances

Synchrotron radiation effects are optional in MAD:
o If RADTATE on the BEAM command is false, synchrotron radiation is ignored in all commands.

o If RADIATE is true, all commands apply synchrotron radiation as a systematic effects. The energy
loss due to radiation changes the closed orbit, and the instantaneous momentum on the closed
orbit affects the optics. In all magnetic elements MAD tracks the closed orbit in a three-step
process:

1. Compute the local magnetic field on the closed orbit where it enters the magnetic element.
Assume that this field acts for half the length of the element on the particle, and use it to
compute the energy radiated at the entrance of the element.

2. Track the particle through the element, leaving its momentum unchanged.

3. Compute the local magnetic field on the closed orbit where it leaves the magnetic element.
Assume that this field acts for half the length of the element on the particle, and use it to
compute the energy radiated at the exit of the element.

The TRACK command has two additional flags, DAMP and QUANTUM:

o If DAMP is false, the value of QUANTUM is ignored, and all particles loose energy as described
above, the radiation being determined by the curvature of the closed orbit. Hence tracking uses
the optics defined by the instantaneous momentum on the closed orbit and the particles see no
damping. However, the saw-tooth like energy variation due to synchrotron radiation exists.

e If DAMP is true and QUANTUM is false, the local curvature of the actual particle orbit determines
the systematic component of the radiation loss. The orbits are damped but there is no quantum
excitation. This causes all trajectories to be attracted to the closed orbit, and allows to verify
the damping times computed in EMIT.

e If both DAMP and QUANTUM are true, the local curvature of the actual particle orbit determines
the radiation damping and quantum excitation. This is the most realistic model for the particle
behaviour.

11.1 Local Curvature for Different Elements

11.1.1 Dipole

For radiation effects MAD ignores the dipole fringing fields. The reason is that the fringing field acts
like a thin lens, it changes only the orbit angles but not its position. To determine the local curvature,
the orbit must first be related to the mid-plane of the possibly rotated dipole:

z, = x cosv + ysiny, Y, = —xsin + ycos 1, (11.1)

where 9 is the roll angle of the dipole. The total curvature h is then computed from the curvature in

both planes:
h, = Ko+ K1z, + Ky(22 — y2)/2 — KoK1y?2/2,

hy = —Kiy, — Kyz,y,, (11.2)
h = \/hZ+h2.
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11.1.2 Quadrupole, Sextupole, Octupole

The total local curvature is
h = K,(2® + y*)/?, (11.3)

where n = 1 for a quadrupole, n = 2 for a sextupole, and n = 3 for an octupole.

11.1.3 Thin Multipole

For thin multipole the change in orbit direction is instantaneous, hence the energy loss would be
infinite. To avoid this problem, MAD defines a fictitious length L., 4 as a parameter for the multipole,
which is used for the radiation loss calculation. The local curvature is then A = |P|/L
the total kick of the multipole. The value of P can be found in Section 5.7.

rad> Where P is

11.2 Systematic Energy Loss by Synchrotron Radiation

The total relative energy lost over half the element length by a particle is

27, 1
AE/(2p,) = G W 5L, (11.4)
where the local curvature is evaluated separately for the entrance and the exit. r, is the classical
radius for the particle in metres. The particle momentum vector is then changed at the entrance and

at the exit by

Pz2 = Pu1 — AE [p(1 4+ pe1)Pars Pyz2 = Py1 — AE [p,(1 + pe1)py1, Pia = p — AE/p(1 + pa )’
(11.5)

11.3 Quantum Excitation by Synchrotron Radiation in Tracking

The algorithm for quantum excitation is based on [17]. The first step is to determine the mean number
of photons emitted over half the length of the element as

1 5V3r. 1
“(N)y=>2"°p h= 11.6
and the actual number N of photons generated over half the length is selected from the Poisson
distribution with average (V). The critical energy, divided by p;,, is computed as

3he |,

= h. 11.
U./p; o, 1o (11.7)

The local curvature is evaluated separately for the entrance and the exit. r, is the classical radius for
the particle in metres, and m, is its mass in GeV. The second step is to sample N photons from the
distribution

3 (11.8)
and to sum up the energies of the photons, divided by p,:

N
AE[p, = U./p.&. (11.9)
k=1

Finally the particle momentum vector is changed by

Pz2 = Pu1 — AE [p(1 4+ pe1)Pars Pyz2 = Py1 — AE [p,(1 + pe1)py1, Pia = p — AE/p(1 + pa )’
(11.10)



11.4 Equilibrium Emittances

The algorithm for damping is based on [5]. ***** section to be filled in *****



Chapter 12. HARMON Module

The HARMON calculations are based on a program originally written by M. Donald and linked to
MAD by D. Schofield [8]. Various changes and improvements have been made later in this module.

12.1 General Organisation of HARMON

HARMON ignores all coupling effects. It uses thin lens approximations for all computations. Inte-
grations around the ring are replaced by summations over the elements; all functions appearing in
the integrands are approximated by their average over the element. Thus, for example, the integral

JV/Bzds over the length of an element is replaced by L/(8,).

When the HARMON module is started by the command HARMON, it sets up a table containing the
averaged lattice functions for all dipoles, quadrupoles, sextupoles, and thin multipoles. It stores the
averaged lattice functions

B.) = [Buds/L,  (a) = [auds/T,  (w) = [dsL,
(Dz) = /Da:ds/L, (Dp,) = /Dpzds/L,
B) = [Bds/L, (o) = [agds/L, () = [mds/L,

(Dy) = / D,ds/L,  (Dp,) = / Dp,ds/L

(12.1)

in this table. In subsequent print-outs HARMON lists these averaged functions for all active elements.

HARMON evaluates multiple integrals in a very efficient way. Applying addition theorems for
trigonometric functions it separates functions of different positions. This makes it possible to evaluate
a double integral as a double sum whose outer sum runs over partial sums of the inner sum, which
may be evaluated in a single loop. A similar method applies to triple integrals.

12.2 First-Order Chromaticity

The linear chromaticity is found according to a formula given by Jager and Md&hl [15]. Defining

d dar d
D D’n /

_a _ _° 12.2
dp;’ dp?’ ds (12:2)

the chromaticities can be written as:

dQ 1 c c c c
=2 = _ (—/ (K, + h*)B,ds —I—/ hDz(2K 15, + 7z)ds — 2/ hDz'a,ds —I—/ KzDazﬁzds) ,
dp; 4r 0 0 0 0
Q, 1 c c c c
%y _ L +/ K,B.ds + / hDz(~K.B, +7,)ds + / 1 Dz'8,ds - / KzDa:ﬁyds) ,
dp; 4r ( 0 0 0 0

(12.3)
These authors have shown the importance that the term containing A’ is not omitted. The first-order
chromaticities are evaluated by exact integration, and the results agree very well with the results found

from TWISS (see6.3.1).
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12.3 Higher-order Chromaticities

The second- and third-order chromaticities consider only the effects of quadrupoles and higher-order
multipoles. We introduce the functions

far(s) = Ba(s)(Ku(s) — Ka(s)Da(s)),
fi(s) = By(s)(Ku(s) — Ka(s)Da(s)),

for() = —fur — Bals) (Ka(5)D7a(s) + 3 Ko(s)(D(s))?)

1 (12.4)
fia(s) = —fua = By(s) (Ka(s)D%(s) + 5 Ko(s)(Da(s))?),
Foo(s) = —fua = Buls) (Ka()D%2(s) + Ka(s) D(5)D%(s) + £ Ka(s)(D2(s))"),

fus(s) = —Fy2 — By(s) (Ka(s)D?a(s) + Ks(s)Da(s)D%(s) + §K4<s><Dw<s>>3)-

The second-order and third-order chromaticities can be found by the methods given in reference [6]
as the following integrals:

d2 z 1 C
Q2 = —E/O fzz(s)ds

dp;
1 C psy
T drsin(270.) sin(27Q, ) /0 /0 fa1(81) far(82) X
X Sin(:u‘z(82) - #2(81)> Sin<27TQz + pa(s1) — #z(32)> dsyds,

szy 1 C
— d
=t | faeyis

]_ C psa1
_m/o ) For(s1)Fy1(s2) %
X sin(#y(sz) - ,Uy(81)> sin<27rQy + /J‘y(sl) B #y(82)> ds,ds,

Q. 1 f°
dp} _E/ faals)ds
m/ /81 f“ 51) fa2(s2) + fzz(sl)fz1(52)>
X sm(,uz(82) — ,uz(sl)> sm<27er + po(81) — #z(32)> ds,ds,

—I_m/oc/os1 Oszle(sl)le(sz)fm(sa)><
X sin<#z(83) - #z(82)> sin(#z(éiz) - #1(81)> sin<27er + pa(81) — #2(83)> dssds,ds,

d3Qy B 1 r¢
dpt —I—E/ fys(s)ds
m// For(s1) fya(s2) + fy2(51)fy1(52)>

X sm(,uy(sz) - ,uy(sl)> sm<27rQy + py(s1) — ,uy(sz)> ds,ds;

1 C ps1pss
R Y A UG ACRE

x sin (g (s3) — oy (52)) sin iy (52) — 1y (51)) sin (27Qy + pry (1) — pry (35) ) dssdsdsy
(12.5)




12.4 Variation of the Dispersion with Energy

The variation of the dispersion with energy can be found by the method given in Section 10.1. The
closed orbit due to a distributed kick is

2(0) = m /OC V/Bo(0)8.(5) cos (7Qu — o)) k(s)ds (12.6)

Expanding the orbit as
(p.) = ¢ + Dep, + D*zp? + D3ep} + ... (12.7)

and separating like powers of p; one gets the differential equations

d*Dz

ds? + K]_DiB = —hz,
d’D? 1

5+ KiD* =+ — K\Dz + SKy(Da)’, (12.8)
&' + K;D?z = —h* — K;Dz + 1K (Dz)* — K;D*z + K;DaD?z + 1K (Dz)?

d83 1 - 1 2 2 1 2 6 3 .

The first-order dispersion Dz = dz/dp, is already known in the table of averaged values. At the origin
of the ring the second-order dispersion D?z is:

1 c 1
D*2(0) = —Da:(O)—l—m/o \/B2(0)Ba(s) cos (7Q, — 1o (5)) (K () Da(s) - S Ka(s)(Da(s))”) ds.
(12.9)
The integral is evaluated as two sums to facilitate computation of D?z around the ring:

1

Se = Z Mcos(@uﬁ) <K1<D:L'> — §K2<D113(8)>2> ds,

elements
1

s, = ¥ \/@sin(<yz>)(K1<Dm>—§K2<D:c(s)>2)ds, (12.10)
elements
v/ B2(0)

D?z(0) ~ —D=z(0) + Ssin(rQ.) (Sc cos(7Q,) + S, sin(wa)>

One may now proceed from one element to the next as follows:

(D*z;) ~ —(Da;) + rvniig) (8 cos(rQu + (1a)) + 5, sin(x Qs + (1)) (12.11)

After each element one has to step the sums by

S — 8o+ 1B} (Ku(De) — SK.((D2))) cos(27Qu + (1)), o)
S, — 8.+ (.} (Ka(De) — SK,({D2))") sin(2r Q. + (1))

Once the value of D?z(s) is known, D*z(0) is found from the integral:

D%4(0) = ~D%(0) + 5o [ /B0 c05(10u — na(s)(9)

. (12.13)
X <<K1(s) — K(s)Da(s)) D*e(s) - EKg(s)(Da:(s))?’) ds.

Evaluation of the integral and stepping around the ring is done as for D?z.



12.5 Variation of § with Energy

Using the techniques of reference [6], the total derivatives of the 3 functions at the origin are:

0) dﬂd;(:)) -1 sin(;sz) /00 B2 (5) (Ka(s) = Ka(s)D(s)) cos (27Qs — 2psa(s)(s) ) ds

1
(
1 dB,(0)
ﬁy(o) dp;

These integrals are evaluated and stepped in HARMON like the ones in the preceding section.

& (12.14)

= _2sin(;7er) /OC B2 (s) (K1(s) — Ka(s)Ds(s)) cos (27Q. — 2pa(s)(s) ) ds

12.6 Variation of Tunes with Amplitude

The variation of tunes with amplitude has been described in reference [7, 9]. The tune shifts due to
the betatron amplitudes are

AQ, = Goo#® + Goyi?, AQ, = Gy + Gy 9. (12.15)
With the abbreviations

b = Qz — fz(52) + pz(51), by = Qy — 11y (82) + 1y (1), (12.16)

the coefficients are given as sums of double integrals:
Gow = T 64r sin 37rQ // BE2(51)K2(81)B2*(52) Ka(s3) cos(3¢, )ds1ds;
m// B3?(51)K1(51)B2>(82) K2(52) cos(¢, )dsids,

Coy = 167r sin 7rQ // B2 (51)K3(51)BY(52)By (82) K3(s5) cos(¢, )ds1ds,

327 sin(w

(w (Qz +2Q,)) // BE12(81)By(81) K3(51) B *(55) By (83) K 2(83) cos(¢s + 2¢, )ds1dss

1
* 327 sin( (Qs

G = ~torsintras ) B0 K1) 527 (52)84 52 o 2) eos( s

1

 64n sin(7(Q, + 2Qy
1

64 sin(7(Q, — 2Q,))

1/2 81 81 281 1/2 89 8o 2( 82 ) COS( @, — 5:d8,
—20) B0 s K1) )y ) cos b — 26, s,

) / ﬁl/z(sl)ﬁy(sl)Kz(Sl)ﬁ ?(52)By(52)Ka(s3) cos(¢o + 2y )ds1ds,

// B (s1 ﬁy(sl)Kz(Sl)ﬁ *(52)By(52)Ka(s2) cos(d, — 20, )ds1ds,.
(12.17)

12.7 Resonances

*EXXX section is incomplete *****

12.7.1 HRESONANCE Command

The HRESONANCE command computes the effect of an n-order resonance.



12.7.2 Sum Resonances

For all combinations n; + n; = n HRESONANCE computes the two multiples of the number of super-
periods N, just above and below the expression (n;Q, + n.Q,). Defining

i =27(n1Q, +n2Qy — p)/C (12.18)
For the k-th sextupole the resonance contribution is

1 L

Kofa(s)1128, ()12 exp(i(mapia(s) + napsy (s) — £,5))ds, (12.19)

= —————
b 2rwnglng! Jo
where the integration is over the sextupole length. The integral is evaluated by fitting a cubic poly-
nomial through the values of the integrand and its derivatives at both ends of the sextupole, and
integrating this polynomial. The results are given in the form of real part (cosine terms), imaginary
part (sine terms) and modulus (amplitude). The random effects are

sextupoles

random = J Z (2]cx|?). (12.20)
12.8 Third-Integer Resonances in HFUNCTION Command
kXAEX section to be filled in *****

12.9 Fourth-Order Resonances

*¥¥kx* section to be filled in ***** Find fourth-order resonance coefficients
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