
P T C
Library User Guide

Dan T. Abell

It doesn’t matter how beautiful your theory is,
it doesn’t matter how smart you are.
If it doesn’t agree with experiment, it’s wrong.

Richard P. Feynman

The purpose of science is not to lead us to everlasting wisdom,
but to place a limit on everlasting error.

Bertolt Brecht

Ignorance is no excuse, it’s the real thing.

Irene Peter

P T C
Polymorphic Tracking Code

P T C
Library User Guide

Dan T. Abell

Tech-X Corporation · Boulder CO · 2011

The writing of this manual was supported in part by the U.S. Department of Energy, Office
of Science, Office of Nuclear Physics under SBIR Grant No. DE-FG02-06ER84508.

Copyright © 2011 Tech-X Corporation. All rights reserved.

The Polymorphic Tracking Code, PTC, is copyright © 2008 Étienne Forest and CERN. All rights reserved.
The fibre and the integration node, with their resulting linked list types, the layout and the node layout,
are based on concepts first elaborated with J. Bengtsson. The node layout is similar to the Lagrangian
class that Bengtsson and Forest contemplated around 1990 for the C++ collaboration later known as
Classic.

LEGO® is a registered trademark of the LEGO Group.
Windodw® is a registered trademark of Microsoft Corporation in the United States and other countries.
All other trademarks are the property of their respective owners.

Tech-X Corporation
5621 Arapahoe Avenue, Suite A
Boulder, CO 80303

http://www.txcorp.com
info@txcorp.com

Typeset 15.05 on 29 July 2011 using the memoir class in LATEX 2ε.

http://www.txcorp.com
mailto:info@txcorp.com

Short contents

Short contents · vii

Contents · ix

List of Figures · xii

List of Tables · xiv

Note to the Reader · xv

Acknowledgements · xvii

1 Introduction · 3

2 Overview of PTC · 5

3 Modeling an Accelerator with PTC · 23

4 Linking Magnets Together and Moving Them as a Group · 43

5 Taylor Polymorphism and Knobs · 49

6 Computing Accelerator Properties · 57

7 Tracking Routines · 61

8 Geometric Routines · 67

9 Symplectic Integration and Splitting · 85

Appendices · 99

A Internal States · 101

B Data Types · 103

C PTC Geometry Tutorial Source File: ptc_geometry.f90 · 115

D PTC Splitting Tutorial Source File: ptc_splitting.f90 · 129

viii short contents

Bibliography · 135

Index · 137

Contents

Short contents vii

Contents ix

List of Figures xii

List of Tables xiv

Note to the Reader xv

Acknowledgements xvii

1 Introduction 3

1.1 PTC and FPP 3

History of PTC 3, Where to Obtain PTC 4

1.2 PTC Library User Guide 4

Where to Start Reading 4

2 Overview of PTC 5

PTC and Reference Trajectories 6

2.1 Tracking Particles through an Accelerator 6

Blocks 6, Geometric Transformations 8, Particle Tracking 9, Data
Structures for Modeling Accelerator Topologies 11

2.2 Modeling Accelerator Topologies 13

Element 13, Fibre 13, Layout 13, Chart and Patch 15, Misalignments 16

2.3 Analyzing an Accelerator to Understand its Properties 16

Local versus Global Information 17, Polymorphs and Normal Form 18

2.4 Modeling Particle Interactions 19

Integration Node 19, Node Layout 20, Probe and Temporal Probe 20,
Time-based Tracking 21

3 Modeling an Accelerator with PTC 23

3.1 Accelerator Models 23

3.2 Geometry Tutorial Source File 24

Initial Code 25

3.3 Subroutines 26

build_PSR 26, build_PSR_minus 28, build_Quad_for_Bend 29

x contents

3.4 Populating the DNA Database 30

3.5 Modeling Complex Accelerator Topologies 32

Ring with Forward and Reverse Propagation 32, Figure-Eight 35,
Collider 38

3.6 DNA Arrays 40

4 Linking Magnets Together and Moving Them as a Group 43

4.1 Siamese and Girders 43

4.2 Building Siamese, Girders, and their Reference Frames 44

4.3 Examples of Misalignments 47

5 Taylor Polymorphism and Knobs 49

5.1 Polymorphs 49

States of a Polymorph 49, Computing a Taylor Map 49

5.2 Knobs 50

Using Knobs 50, Creating Knobs 51, Polymorphic Blocks 51

5.3 Tutorial Example 53

6 Computing Accelerator Properties 57

6.1 Global Scalars 57

Tunes 57, Chromaticity 57, Anharmonicity 57

6.2 s-Dependent Global Quantities 57

Betatron Amplitude 57, Dispersion 58, Phase Advance 59, Beam
Envelope 60

6.3 Local Quantities 60

7 Tracking Routines 61

7.1 Standard Tracking Routines on Fibres 61

Track 61, Find_orbit 62

7.2 Tracking Routines on Integration Nodes 62

Routines for Tracking either Probe or Probe_8 62, Routines for Tracking
either Real or Real_8 63

7.3 Tracking Routines on 3-D Information through an Integration Node 63

Track_node_v 63

7.4 Time-based Tracking Routines 64

Track_time 64, Track_temporal_beam 64

7.5 Closed-Orbit Routine 64

Find_orbit_x 64

8 Geometric Routines 67

8.1 Affine Routines on Pure Geometry 67

Theory 67, Descriptions of the Routines 69

8.2 Affine Routines on Computer Objects 71

Affine Routines on Fibrous Structures 72, Misalignment Routines 77

8.3 Dynamical Routines 82

Exact Patching and Exact Misalignments: Dynamical Group 82, Inexact
Patching and Exact Misalignments 83

9 Symplectic Integration and Splitting 85

9.1 Philosophy 85

Integration Methods 85

9.2 Splitting Tutorial Source File 86

contents xi

9.3 Splitting the Lattice 86

Global Parameters 86, Splitting Routines 86, Arguments 87

9.4 Other Splitting Routines 95

Splitting a Single Fibre 95, Splitting an Entire Lattice 97

Appendices 99

A Internal States 101

B Data Types 103

B.1 S-based Tracking 103

Layout 103, Fibre 105, Chart 106, Patch 107

B.2 Time-based Tracking 108

Integration Node 109, Node Layout 113

C PTC Geometry Tutorial Source File: ptc_geometry.f90 115

D PTC Splitting Tutorial Source File: ptc_splitting.f90 129

Bibliography 135

Index 137

List of Figures

2.1 LEGO-block element, with reference frames for the entrance, element
body, and exit. 7

2.2 Two LEGO blocks: drift (D) and bend (B). 7

2.3 Particle trajectories through “drift” and “bend” LEGO blocks. 8

2.4 Two LEGO blocks (elements) on a base (global frame). 9

2.5 Connecting two horizontal LEGO blocks and a vertical LEGO block. 9

2.6 Geometry and local coördinates, (x, y, s), for a generic block in PTC. 10

2.7 Forward propagation of particles in a circular accelerator. 11

2.8 A recirculator illustrates particles traveling through a varying sequence
of magnets. 12

2.9 Particles circulating in different directions through an accelerator. 12

2.10 A layout with a linked list of fibres pointing to magnets. 14

2.11 DNA database with eight DNA sequences (L1 through L8). The arrows
represent the links in the doubly-linked list of fibres that constitutes
a layout. Each fibre points to (contains) the indicated magnet (M1–
M18). 14

2.12 Eight layouts or DNA sequences. 14

2.13 Patching elements in a single beamline. 15

2.14 Patching elements in multiple beamlines. 16

2.15 Misaligning an element. 16

2.16 N + 4 integration nodes cover an element. 20

2.17 Applying a space-charge kick at time τ. 21

3.1 Basic cells for the three accelerator models. 24

3.2 Accelerator models. Arrows indicate the direction of motion of particle
beams in the constituent layouts. 24

3.3 Subroutines for creating DNA sequences. 26

3.4 Geometry of the rectangular bend. 27

3.5 Ring with forward and reverse propagation. 32

3.6 Fig8 fibres pointing to elements in L3 and L4. 35

3.7 Matching L3 to L4. 36

3.8 Collider. 38

4.1 A pair of elements linked together as a siamese. 43

4.2 Incorrect and correct rotations of a siamese. 43

list of figures xiii

4.3 A trio of elements linked together as a girder that has its own reference
frame. 44

4.4 Collider interaction region. The numbers show the indices of a few of
the fibres within the corresponding layout. 44

4.5 Collider interaction region. The small cross-hairs indicate the frame
location for each siamese. 46

4.6 No misalignment. 47

4.7 Examples 1 (top) through 5 (bottom). 47

4.8 Examples 6 (top) through 11 (bottom). 48

6.1 One-turn and partial-turn transfer maps. 59

6.2 This graphic illustrates the essential relationships between the one-
turn map and the normal form at two different locations in a ring
lattice. 59

8.1 Rotating point a and vector basis (v1, v2, v3) by R. 67

8.2 Rotating and translating the frames of a magnet. 70

8.3 Example 0: girder. 78

8.4 Example 1: girder after 22.5 degree rotation. 78

8.5 Example 1: girder after an additive misalignment. 79

8.6 Example 2: misalign siamese followed by misalign girder. 80

8.7 Example 3: misalign girder followed by misalign siamese. 80

8.8 Example 4: misalign siamese with preserve_girder=.true. 81

8.9 Pseudo-Euclidean maps. 84

9.1 Drift-kick-drift for integration methods 1 and 2. 95

9.2 Matrix-kick-matrix for integration methods 2, 4, and 6. 96

B.1 A layout is a linked list of fibres. 105

B.2 Three charts attached to an element. 107

B.3 Misalignments for a element. 108

B.4 Misaligned planar fibre in three dimensions. 109

B.5 Type integration_node and type fibre. 111

List of Tables

3.1 DNA database for the PTC geometry tutorial 31

9.1 Results of Example 1. 87

9.2 Results of Example 2. 88

9.3 Results of Example 3 for Part 1A. 89

9.4 Results of Example 6 when even is not specified. 92

9.5 Results of Example 6 when even=.true. 92

9.6 Results of Example 7 for resplit_cutting=1. 93

9.7 Results of Example 7 for resplit_cutting=2. 93

9.8 Results of Example 8. 93

9.9 Results of Example 9 when useknob=.true. 94

9.10 Results of Example 9 when useknob=.false. 94

Note to the Reader

This manual describes Étienne Forest’s PTC, a software library of data structures
and tools for both integrating and analysing the orbital and spin motion of particles
in modern accelerators and storage rings. I believe that PTC is an important
contribution that should be more widely known, understood, and used by the
accelerator physics community, hence my efforts here. I will therefore greatly
appreciate your reporting any difficulties you have with this document—errors,
inconsistencies, infelicities of language, etc.—to dabell@txcorp.com.

mailto:dabell@txcorp.com

Acknowledgements

First and foremost, I must thank Étienne Forest. Not only is he the author of PTC—
hence sine qua non—he has also answered innumerable questions over the years
and helped me to understand both the structure of PTC and the motivation behind
many of the decisions that went into its design. Many of the examples in this manual
are based on code he provided.

Al Kemp, of Impact Technical Publications, helped with the overall organisation
and the initial draft. In addition, several of my colleagues at Tech-X commented on
various parts of this document: George Bell, Andrey Sobol, and David Bruhwiler.

Very special thanks go to Desmond Barber, for his support, encouragement, and
detailed reviews of the manuscript. His keen ear for the English language, broad
knowledge of accelerator physics, and consistent willingness to help have improved
this document in more ways than I can possibly note. I am deeply in debt to him.

Financial support for the writing of this document was provided in part by the
U.S. Department of Energy, Office of Science, Office of Nuclear Physics under SBIR
Grant No. DE-FG02-06ER84508.

P T C

one

Introduction

1.1 PTC and FPP

The Polymorphic Tracking Code (PTC) is a library of Fortran90 data structures
and subroutines for integrating the equations of orbital and spin motion for particles
in modern accelerators and storage rings. The data structures hold the material
that we will mould into physically correct and consistent three-dimensional com-
puter models of the complex topologies found in machines such as colliders and
recirculating linacs, including the effects of errors in both location and strength
of the various machine elements. We use the subroutines to actually construct the
computer model of a machine and then integrate through it—including the geo-
metric transformations (translations and rotations) of machine elements, connecting
elements to form trackable beamlines, and tracking the orbital and spin degrees of
freedom. In a word, PTC is an integrator.

The Fully Polymorphic Package (FPP) is a package of polymorphic types and
tools that provide PTC with facilities for analysis. In particular, FPP implements a
polymorphic Taylor type (hence the P in PTC) that can change shape at execution
time. This Taylor type makes it possible for FPP to extract a Poincaré map from PTC
(or some other integrator). Moreover, FPP provides the tools to analyse the resulting
map. The most common—and most important—tool is the normal form: with this
at hand, one can compute tunes, lattice functions, and nonlinear extensions of these
and all other standard quantities of accelerator theory. Indeed, the combination of
PTC and FPP gives access to all of standard perturbation theory on complicated
accelerator lattice designs.

In a nutshell, then, the three central features of PTC1 are 1 When we say “PTC”, we
shall (almost always) mean
PTC and FPP combined;
but you keep in mind the
distinction.

• the Fortran90 types and code that facilitate fully three-dimensional placement
of beamline elements and construction of non-simple accelerator topologies:
colliders, recirculators, dog-bones, and combinations of these topologies;

• the polymorphic integration routines for orbit and spin;
• the use of maps derived from the integrator—via operator overloading and

polymorphism—for computing the full range of accelerator properties, includ-
ing the parameter dependence of these properties.

History of PTC

Latter half of 1980s, at SSC-CDG: Berz introduces automatic differentiation and
develops DA package in Fortran77. Forest builds LieLib on top of DA, thus
bringing the power of map methods to the analysis of maps produced by integrators.

4 introduction

Early 1990s: J. Bengtsson pioneers the use of run-time polymorphism to greatly
simplify and improve the process of making run-time changes to, for example,
computing parameter dependence. Forest and Bengtsson together develop the ideas
from which derive the fundamental building blocks of PTC. Forest develops the
dynamical Euclidean group. Middle to late 1990s: Forest develops LieLib into
FPP (using LBNL versions of DA and LieLib). FPP replaces the real variable
type real(8) with a new type called real_8 to produce Taylor series for analysis.
Forest also develops PTC-proper (the integrator). Together these tools compose
PTC. Middle to late 2000s: Forest adds spin dynamics to PTC. L. Yang develops a
C++ replacement for Berz’s DA package.

Where to Obtain PTC

http://www.takafumi.org/etienne/ptc/

1.2 PTC Library User Guide

Where to Start Reading

The Overview of PTC, chapter 2, presents concepts important for understanding
PTC. In-depth discussions of all these concepts can be found in several publications
by Étienne Forest:

• Étienne Forest, “A Hamiltonian-free description of single particle dynamics
for hopelessly complex periodic systems”, J. Math. Phys., 31(5):1133–1144, May
1990, doi: 10.1063/1.528795;

• Étienne Forest and Kohji Hirata, “A contemporary guide to beam dynamics”,
Technical Report KEK-92-12, KEK, Tsukuba, Japan, August 1992;

• Étienne Forest, “Locally accurate dynamical Euclidean group”, Phys. Rev. E,
55(4):4665–4674, April 1997, doi: 10.1103/PhysRevE.55.4665;

• Étienne Forest, Beam Dynamics: A New Attitude and Framework, volume 8 of
The Physics and Technology of Particle and Photon Beams, Harwood Academic
Publishers, Amsterdam, 1998;

• Étienne Forest, “Geometric integration for particle accelerators”, J. Phys. A:
Math. Gen., 39(19):5321–5377, May 2006, doi: 10.1088/0305-4470/39/19/S03.

If you want to get started right away, begin with chapter 3, Modeling an Accelerator
with PTC, and refer back to the overview as needed while working with the tutorial
examples.

http://www.takafumi.org/etienne/ptc/
http://dx.doi.org/10.1063/1.528795
http://dx.doi.org/10.1103/PhysRevE.55.4665
http://dx.doi.org/10.1088/0305-4470/39/19/S03

two

Overview of PTC

This overview describes the PTC approach to simulating and analyzing particle
accelerators.

At the heart of PTC’s accelerator simulation code is an integrator capable of
tracking particles through various kinds of beamline elements. A particle going
through a beamline element sees only the local magnetic field, and PTC uses a local
reference frame for describing that magnetic field—the frame most appropriate
for the geometry of that type of element. To track through a series of beamline
elements, PTC locates the elements with respect to each other using geometric
transformations that connect the reference frame of one element to the reference
frame of neighboring elements. Those two pieces—the integrator and the geometric
transformations—give PTC the capability to model an accelerator with arbitrarily
placed beamline elements.

In tracking orbits through particle accelerators, we want the capability of mod-
eling not only simple linear and ring accelerators, but also complex topologies,
for example, the Continuous Electron Beam Accelerator Facility (CEBAF) at the
Jefferson National Laboratory (JLab). To model a complex topology correctly1, PTC 1 Here correctly means “in

a manner that respects the
physical reality”.

uses a data structure that captures the location of the physical elements as well as
the topology of the beam trajectory. It is that data structure that makes it possible
for us to modify a single PTC beamline element in our simulation code—even when
more than one distinct beam trajectory traverses that element. See the discussion of
Modeling Accelerator Topologies, § 2.2.

PTC itself handles the integrator, the geometric transformations, and the associ-
ated data structures, which provide the capability to track particle orbits through
complex topologies. Inside of PTC is a set of modules referred to collectively as the
Full Polymorphic Package (FPP).2 These routines extend the capabilities of PTC, 2 É. Forest, Y. Nogiwa, and

F. Schmidt. The FPP and
PTC libraries. In Int. Conf.
Accel. Phys. 2006, pages 17–
21; and É. Forest, Y. Nogiwa,
and F. Schmidt. The FPP
documentation. In Int. Conf.
Accel. Phys. 2006, pages
191–193

making it possible not only to track particles, but also to propagate maps. PTC uses
FPP to compute the maps one may analyze for accelerator properties of interest to
us: lattice functions and the like. Analyzing an Accelerator to Understand its Properties,
§ 2.3, discusses this topic.

Finally, when we track particles in accelerators, we must sometimes account for
particle interactions. Modeling Particle Interactions, § 2.4, discusses this topic.

For in-depth discussions of the topics introduced in this overview, see the Bibliog-
raphy, page 135.

6 overview of ptc

PTC and Reference Trajectories

A reference trajectory or reference orbit describes the ideal path of a particle through an
ideal accelerator. Accelerator modeling codes that use a reference trajectory simulate
particle orbits as deviations from that ideal. However, a particle traveling through a
real accelerator “sees” only local magnetic and electric fields, and PTC respects this
physical reality. When pushing a particle through, say, a quadrupole, PTC makes
no distinction between that magnet sitting on a lab bench and that magnet in a
beamline: it simply integrates the particle motion in a frame local to that quadrupole.
As we shall see, an essential component—perhaps the essential component—of
PTC is the collection of geometry routines that handle transformations between
different frames of reference. This approach has the added benefit that even large
displacements—e.g., a quadrupole shifted to act as a combined-function bend—can
be handled in the same consistent and physically correct manner.

2.1 Tracking Particles through an Accelerator

This section discusses four important concepts that enable PTC to perform accurate
simulations of particles through an arbitrarily complex accelerator:

• blocks,
• geometric transformations,
• particle tracking,
• data structures for modeling accelerator topologies.

Blocks

PTC uses the longitudinal coördinate, generically denoted s, as the independent
variable for integrating particle trajectories.3 The particulars of PTC’s s-based, or3 PTC also has the capability

to perform first-order time-
based tracking. See Modeling

Particle Interactions, § 2.4.

element-based, tracking serve to maintain the physical and mathematical integrity
of each element in a beamline and, moreover, make it possible for PTC to provide
information about particles inside an element, again without violating the element’s
physical and mathematical integrity. To explain how PTC does this, we use an
analogy with LEGO® blocks.

Each different type of beamline element in an accelerator is analogous to a
different type of LEGO block in the sense that LEGO blocks are self-contained
objects. A magnet, for example, is a self-contained object that produces a local
field that affects local particle trajectories. Local geometric considerations (e.g., the
shape and symmetry of the magnetic field) determine the coördinate system and
frame of reference for a local Hamiltonian that describes the magnet. (We choose
the coördinate system and frame of reference so as to push particles through the
element as simply as possible.) If individual magnets have conflicting geometries,
we patch them together. In other words, we use local coördinate transformations
to connect particle trajectories between the differing geometries. The rest of the
accelerator does not—and should not—affect our choice of reference frame for any
given beamline element.

A local coördinate system attached to each beamline element permits us to
propagate physical quantities across the elements. That internal structure is the
province of the integrator. In addition, each element includes three reference frames:
a reference frame at the entrance, a reference frame at the midpoint (the element
reference frame), and a reference frame at the exit. See figure 2.1. These extra frames,
used by PTC when it hands a particle from one element to the next, allow PTC to

2.1 tracking particles through an accelerator 7

handle arbitrary changes in the placement of beamline elements. On entering an
element, a particle has a certain phase-space location with respect to the entrance
frame. PTC tracks the particle as it traverses the element, computing the particle’s
phase-space coördinates with respect to the element’s exit frame. Knowing the
relation between the exit frame of the current element and the entrance frame of
the subsequent element, PTC uses the transformations of the dynamical Euclidean
group4 to hand the particle to the next element. 4 É. Forest. Locally accurate

dynamical Euclidean
group. Phys. Rev. E, 55

(4):4665–4674, Apr. 1997.
doi: 10.1103/PhysRevE.55.4665

Figure 2.1: LEGO-block
element, with reference
frames for the entrance,
element body, and exit.

The beamline element represented in figure 2.1 is a drift: a block with parallel
entrance and exit faces to which local Cartesian reference frames are attached. The
entrance and exit reference frames have the same unit vectors. The line that links the
two frames has a length L, and it is perpendicular to both those frames. Note that
for the purposes of this discussion, any beamline element (quadrupole, sextupole,
solenoid, etc.) that does not bend the design orbit is a drift.

A LEGO-block element might also be a bend: a block with two faces that have
parallel y-axes (vertical), and x-axes (horizontal) that meet at an angle θ. The two

Note that calling the x and
y axes “horizontal” and
“vertical” reflects the bias
of accelerator physicists
towards flat rings with
vertical dipole fields. What
we locally (i.e., within the
element) call the x axis need
not be horizontal. See, for
example, the discussion of
the vertical bend indicated
in figure 2.5.

x-axes and the line joining the two origins form a plane perpendicular to the two
faces. An arc of circle of length L passes perpendicularly through the origin of both
faces. The purpose of this element is to bend an incoming particle trajectory by
approximately angle θ. The internal details of the element—whether it is a sector
bend, a bend with an irregular field, etc.—is, for this discussion, immaterial.

D

B

Figure 2.2: Two LEGO
blocks: drift (D) and bend
(B).

Figure 2.2 illustrates these two fundamental types of LEGO blocks with the
entrance and exit reference frames for their local coördinate systems. The solid
arrows show the direction of the local y-axes and the dashed arrows show the
direction of the local x-axes. In summary, the bend is characterized by a bending
radius ρ, a length L, and two faces, each with a reference frame. The drift is
characterized by a length L and also two faces, each with a reference frame. The
bend is the fundamental block used in the composition of complex blocks; the drift,
of course, is just a special case of the bend.

We are interested in the deterministic motion through each LEGO block, repre-
sented by the transformation

zin 7→ zout = f (zin), (2.1)

where f denotes a vector of generally nonlinear functions connecting the local
phase-space coördinate zin defined in the entrance frame, to the local phase-space
coördinate zout in the exit frame. The construction of such a transformation depends
on internal considerations that are not needed for an understanding of the LEGO-
block approach. The LEGO block for a single element might, in fact, comprise a

http://dx.doi.org/10.1103/PhysRevE.55.4665

8 overview of ptc

sequence of simpler blocks. This structure, dictated by the internal geometry of the
element, may be hidden.

Figure 2.3: Particle trajecto-
ries through “drift” and

“bend” LEGO blocks.

In figure 2.3 we show a pair of particle trajectories, in drift and bend LEGO
blocks, passing from the entrance face through to the exit face. As suggested by the
trajectories illustrated, the internal structure may be very complicated (think of a
wiggler); but seen from the outside, our LEGO blocks are, quite simply, blocks with
two faces that define local coördinates with respect to which one may define zin and
zout—nothing more.

A beamline element is defined by a block with three reference frames, together
with a model, or integrator, which describes how to propagate a particle from the
face with the entrance reference frame to the face with the exit reference frame:

element = block + model.

The model transforms the phase-space variables from entrance to exit of the block
according to (2.1). In other words, it represents the physics of the device. Note that
the model also incorporates any approximations we make.

As an example, a block with a bend geometry might actually be a simple drift,
keeping the transverse momenta invariant and changing only the positions. Or it
might be a composition of blocks describing the body of a magnet and its fringe field
regions. An element might also have non-Hamiltonian effects such as radiation.55 Appendix A discusses

PTC’s internal state vari-
ables, which describe

the characteristic dynam-
ics you can choose for

your accelerator model.

The list of possible models is endless. In general, a model is defined by
• one or more blocks internal to the model;
• a model for each internal block;
• the equation of motion in each internal block together with its integration

method and associated number of integration steps.

In summary, we define a beamline element locally: the definition, whether the
element is on a work bench or in an accelerator, is determined solely by the
characteristics of that element. And once we have defined a model for our element,
we stick with it: the LEGO block is inviolate. Like a physical magnet, it exhibits
identical properties under identical conditions. A significant virtue of our computer-
based element, however, is that it is free to report about what is happening inside.

Geometric Transformations

Now that we have defined our two basic types of beamline elements (drift and
bend), the next step is to fit them together. We need geometric transformations that
connect the exit reference frame of one beamline element to the entrance reference
frame of a subsequent element.

Continuing the LEGO-block analogy, we put the individual LEGO blocks on
a base, which represents the accelerator model’s global frame. Once we know the
location of each LEGO block with respect to the global frame, we know their
locations with respect to to one another. Figure 2.4 shows two such LEGO blocks
and their reference frames on a base, which represents the layout of beamline
elements in the global frame of an accelerator. With the LEGO blocks now on the
global frame, we require transformations that translate the phase-space coördinates
in the exit reference frame of one LEGO block to the phase-space coördinates in the
entrance reference frame of the next LEGO block.

To construct, for example, a recirculating accelerator out of LEGO blocks, we
connect bends and drifts one after another to model the desired machine. On
reaching the last LEGO block, we require that the last block’s exit face coincide
with the first entrance face. This means that

2.1 tracking particles through an accelerator 9

Figure 2.4: Two LEGO
blocks (elements) on a base
(global frame).

• the blocks’ faces must be parallel;
• and the frames on the two faces must line up.

BH

D

BV

?

Figure 2.5: Connecting two
horizontal LEGO blocks and
a vertical LEGO block.

Connecting a horizontal bend with a horizontal drift, as for elements BH and D in
figure 2.5, is easy because the x- and y-axes of the two elements match. Connecting a
horizontal drift with a vertical bend, as for elements D and BV in figure 2.5, is not as
straight-forward: their local x- and y-axes do not match. We need, in essence, a new
type of LEGO block—one with an x-y rotation of angle φ. (In figure 2.5, of course,
φ = 90°.) To build an arbitrary accelerator, we shall require a full complement of
such additional LEGO blocks.6 This is the subject of patching, which uses geometric

6 É. Forest. Locally accurate
dynamical Euclidean
group. Phys. Rev. E, 55

(4):4665–4674, Apr. 1997.
doi: 10.1103/PhysRevE.55.4665

transformations to connect the exit frame of one beamline element to the entrance
frame of a subsequent element. Most significantly, patching enables us to position
beamline elements wherever we want them. We discuss this in more detail later in
Chart and Patch, page 15.

Particle Tracking

Now that we have the basic building blocks and the geometric transformations to fit
them together, we can begin to think about how to track particles. Here we present
some essential information about particle tracking in PTC.

In keeping with its LEGO-block philosophy, PTC tracks particles with respect
to local frames of reference. The local phase-space coördinates together with PTC’s
knowledge of the local frames allow the interested user to reconstruct full 3D
particle trajectories with respect to the global frame. In fact, doing exactly that is
useful for checking that one has the constructed the correct lattice topology in PTC.

Units: PTC measures all lengths in meters, and all angles in radians. (It provides
the constant twopi to simplify the conversion from degrees.7) Particle momenta are 7 Many other constants

are defined in the module
precision_constants.

scaled by a value po. This scale momentum is usually set when defining the lattice
(see, for example, the discussion of set_mad on page 27). A subtle point involves the

http://dx.doi.org/10.1103/PhysRevE.55.4665

10 overview of ptc

fact that the scale set for one element may differ from that in the preceding element,
e.g. in the case of acceleration. In such cases, the patching mentioned above must
include not only geometric transformations, but also energy transformations.

Tracking State: PTC defines a variable type called internal_state. Objects of this
type may be used to modify certain assumptions PTC makes when it performs
tracking. One may, for example, ask PTC to track only the 4D transverse phase-space
variables; or one may turn on or off radiation. A variable of type internal_state is
essentially a list of flags that one may pass to PTC tracking routines to modify the
algorithms used. For more information, see Internal States, appendix A.

Phase-Space Coördinates: With the default tracking state, PTC uses the six
phase-space variables88 PTC can turn all six of

the variables into Taylor
series, or it can omit two

of them. Setting an in-
ternal_state flag to “only
four dimensions” imple-

ments the latter behavior.

(x, px, y, py, δ, `). (2.2a)

Here x and y denote the local transverse coördinates, and px and py denote the
corresponding canonical momenta (divided by a scale momentum po). The fifth
variable, δ, denotes the relative momentum deviation

δ =
p− po

po
;

and the sixth variable, `, denotes the path-length deviation.99 These last two variables
are kept in this order for

a technical reason. This
ordering allows us to re-

tain the natural meanings:
positive δ implies higher en-
ergy, and positive ` implies
longer path length. Because

of the Hamiltonian struc-
ture, reversing their order

would require us to reverse
the sign on one of them.

One may modify the tracking state so as to change the phase-space variables. If
desired, one may set a flag that causes PTC to compute flight time rather than path
length. In this case, the phase-space coördinates are

(x, px, y, py, ε, ct). (2.2b)

Here the fifth variable, ε, denotes the scaled energy deviation

ε =
E− Eo

poc
,

where Eo is the energy associated with po. (In other words, if po = mc2βoγo, then
Eo = mc2γo.) And the sixth variable, ct, is the time-of-flight deviation multiplied by
the speed of light.

One may set a separate flag that causes PTC to compute the total path length (or
flight time) rather than the deviation. In this case the phase-space variables will be
either

(x, px, y, py, δ, L), (2.3a)

or
(x, px, y, py, ε, cT), (2.3b)

where L and T denote respectively the total path length and total flight time.
x

y

s

ρ0

Figure 2.6: Geometry and
local coördinates, (x, y, s),

for a generic block in PTC.

Hamiltonians: In accord with its LEGO-block philosophy, PTC tracks a particle
across an element using a Hamiltonian that is local to that element. The Hamiltonian
used by PTC in the body of an element (no fringe field) then has the simple form

− (1 + κox)
√
(1 + δ)2 − p2

x − p2
y + (1 + κox)

q
po

As(x, y) (2.4a)

if one uses the variables (2.3a), or

− (1 + κox)

√
1 +

2
βo

ε + ε2 − p2
x − p2

y + (1 + κox)
q
po

As(x, y) (2.4b)

2.1 tracking particles through an accelerator 11

if one uses the variables (2.3b). Here κo = 1/ρo denotes the curvature defined by the
geometry of the element, and As denotes the longitudinal component of the vector
potential. Figure 2.6 indicates the variables, including the longitudinal coördinate s.
For straight elements, of course, κo = 0. If one uses the variables (2.2), then there is,
effectively, an additional term that subtracts the default path length or flight time
across that element.10 10 D.P. Barber, K.A. Heine-

mann, and G. Ripken. A
canonical 8-dimensional
formalism for classical
spin-orbit motion in stor-
age rings: I. A new pair
of canonical spin vari-
ables. Z. Phys. C, 64

(1):117–142, Mar. 1994.
doi: 10.1007/BF01557243

One may, if desired, have PTC track using an approximation of one of the
Hamiltonians (2.4) (i.e., using truncated expansions for the square-root and the
vector potential). One might, for example, do this to speed the computation, but of
course the validity of the expansion for your particular problem should be verified
with careful testing.

When integrating across an element described by one of the Hamiltonians (2.4),
one typically splits the Hamiltonian into two integrable pieces.11 If those pieces

11 R.I. McLachlan and
G.R.W. Quispel. Splitting
methods. Acta Numer.,
11:341–434, Jan. 2002.
doi: 10.1017/S0962492902000053

are, for example, the two terms of (2.4a), then this is referred to as a drift-kick split.
Since the motion of a particle in a uniform dipole is integrable, an alternative split
involves writing As(x, y) as a sum of two pieces: the part that produces a uniform
dipole field, and everything else. Then the dipole field part is added to the drift
term of the Hamiltonian, and we obtain a bend-kick split.12 One may ask PTC to use

12 É. Forest. Beam Dynam-
ics: A New Attitude and
Framework, volume 8 of The
Physics and Technology of
Particle and Photon Beams.
Harwood Academic Pub-
lishers, Amsterdam, 1998;
and É. Forest. Geometric
integration for particle
accelerators. J. Phys. A: Math.
Gen., 39(19):5321–5377, May
2006. doi: 10.1088/0305-
4470/39/19/S03

one or the other of these splitting methods.

Structures for Particles and Beams: Because PTC tracks particles with
respect to local frames of reference, a set of values for (as an example) the six phase-
space variables (2.2a) will not mean too much unless one knows the context—in
particular, where in the lattice the particle is located. When you need PTC to keep
track of such information for you, it provides some additional structures. The type
beam holds an N × 6 array for the phase-space variables, as well as a pointer that
tells you where in the lattice that beam is located. There is also a type probe that
holds not only phase-space data, but also data about a particle’s spin state.

Data Structures for Modeling Accelerator Topologies

PTC data structures fully account for the three-dimensional structure of a lattice and
potential topological complexities such as those found in colliders and recirculators.
In this section, we discuss a simple lattice and then two complex lattices.

M1

M2

M3

M4

M5

M6

M7

M8

Figure 2.7: Forward prop-
agation of particles in a
circular accelerator.

A very simple lattice is shown in Figure 2.7, which illustrates basic forward
propagation of particles through a sequence of magnets that never varies. Each

In this discussion, we
use the word “magnet”
whether or not it is actually
a magnet, a drift, or any
other beamline element.

magnet appears once in the sequence, and particles go magnet-to-magnet from M1
through M8. At that point, they reënter the magnet M1. A simple linked list of
magnets suffices to model this basic topology:

ring = linked-list(M1, M2, M3, M4, M5, M6, M7, M8).

One might instead use an array of magnets, but that approach would require us to
recreate and reallocate the array whenever we wish to add or insert a new element.
A virtue of the linked list is that one may easily add or rearrange elements in
the lattice. However, such a simple approach does not suffice when an accelerator
topology reuses the magnets in different sequences, different directions, or both.

To see the difficulties associated with a recirculating beam, consider Figure 2.8,
which shows a machine similar to the Continuous Electron Beam Accelerator Facility
(CEBAF) at Thomas Jefferson National Laboratory (JLab). It illustrates the concept
of particles circulating through a varying sequence of magnets. The particles start
out traveling through an injector from magnet M1 through magnet M4. During the

http://dx.doi.org/10.1007/BF01557243
http://dx.doi.org/10.1017/S0962492902000053
http://dx.doi.org/10.1088/0305-4470/39/19/S03
http://dx.doi.org/10.1088/0305-4470/39/19/S03

12 overview of ptc

first trip circulating around the accelerator, the particles go through the sequence of
magnets M5, M6, M7, M8, M9, M10, M11, and M12. During their second trip around
the accelerator, the particles go through the sequence of magnets M5, M6, M13,
M14, M9, M10, M15, and M16. And during their last trip, the particles go through
the sequence of magnets M5, M6, M17, M18, M9, and M10. The particles are then
dumped. Note that magnets M5, M6, M9, and M10 appear in all three circuits.

Figure 2.8: A recircula-
tor illustrates particles

traveling through a vary-
ing sequence of magnets.

M1 M2 M3 M4 M5 M6

M7

M8

M9M10

M11

M12 M13

M14M15

M16 M17

M18

A linked list of magnets cannot properly represent the physics of this situation.
In a linked list, magnet M6, for example, must point to only one magnet. It cannot
point to M7, M13, and M17 unless we create two clones of M6. Creating clones,
however, is a bad idea: If we wish to adjust the position or strength of magnet M6,
such adjustments would have be made three times: once in the magnet itself, and
once in each of its two clones.

A better solution separates the magnets from the linked list that tracks the path of
particles through the magnets. PTC does this with a linked list of containers called
fibres, each with a pointer to the appropriate magnet. Adjustments to the position or
strength of a magnet are made once and are automatically taken into account each
time a container in the linked list points to that magnet. We discuss the linked list
of containers with pointers to magnets in Modeling Accelerator Topologies, § 2.2.

Figure 2.9: Particles circu-
lating in different direc-

tions through an accelerator.

M1

M2

M3

M4

What about a collider? Figure 2.9, based on the intersecting rings of the Relativistic
Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL), shows
particles circulating in both directions (forward and backward propagation) through
some of the same magnets. For example, the particles following the blue path
go though one set of magnets in the sequence M1, M2, M3, M4. Meanwhile, the

2.2 modeling accelerator topologies 13

particles following the yellow path traverse the same set of magnets in the reverse
order: M4, M3, M2, M1.

Using an array or a linked list with clones of magnets creates the same problems as
before, and PTC alleviates the difficulties by using doubly-linked lists of containers The use of a doubly-linked

list enables both forward
and reverse propagation
through a given sequence of
beamline elements.

that follow the particle paths—containers which have inside them pointers to the
appropriate magnets. Changes to the strength or position of, say, magnet M3 are
made once in the object for magnet M3 and are immediately reflected in the two
linked lists—one linked list for each of the two particle beams.

2.2 Modeling Accelerator Topologies

To set up a linked list of containers with pointers to the elements in a beamline, PTC
employs three different data types: element, Vbre, and layout. PTC also provides
what it refers to as a DNA database, which one may populate with layouts that
one may use to construct complex accelerator topologies. Finally, for the proper
positioning of elements in the accelerator, PTC uses two additional data types: chart
and patch. We discuss all these concepts in this section.

Element

The data type element represents a beamline element in a machine. It contains
information about the element type (dipole, quadrupole, rf cavity, etc.), its physical
properties (length, strength, etc.), and its location and orientation in space. In PTC, it
is the fundamental object. PTC preserves each element’s physical and mathematical
integrity to ensure that it can be positioned, repositioned, or misaligned as a whole.
At the same time, PTC provides the capability for one to look inside the element
to see, for example, details of a particle trajectory. One should therefore never feel
compelled to split an element in half.

In addition to information about the element itself, the data type element includes
information about which Vbres point to it. This information is used by PTC to
ensure that if an element is moved, then all beamlines containing it know about the
move.

Fibre

The data type Vbre contains a pointer to a beamline element as well as pointers to
the fibres that precede and follow it along a particle path. When strung together in
a linked list, a sequence of fibres defines a beamline. The fact that different fibres
can point to the same element means that separate beamlines can share common
elements; and this gives PTC the capability to model complex accelerator topologies.

A Vbre contains, among other items,
• a pointer to an element;
• pointers to the previous and next Vbres along a beamline;
• a pointer to a chart that locates the element within the global reference frame;
• a pointer to a patch that connects the elements of successive fibres geometrically,

energetically, and temporally;
• the direction of propagation through the element.

Layout

The data type layout represents a beamline as a doubly-linked list of Vbres. It follows
the particle path by specifying the order of the fibres, which each point to an actual

14 overview of ptc

element in the beamline.13 In addition, a layout defines the direction of propagation13 Note that a layout need
not represent an entire ma-
chine: it may represent just
a piece of an machine. The
full accelerator would then

be built from several layouts.

through the sequence of fibres and whether the particles recirculate.

Figure 2.10: A layout
with a linked list of fi-

bres pointing to magnets.

M1F1 M2F2 M3F3 M4F4 M5F5, F13, F21 M6F6, F14, F22

M7F7

M8F8

M9F9, F17, F25M10F10, F18, F26

M11 F11

M12 F12 M13

F15

M14

F16

M15

F19

M16

F20

M17

F23

M18

F24

As an example, consider the accelerator illustrated in figure 2.8. We could con-As before, we say “mag-
net”, but it may mean any
type of beamline element.

struct it as indicated in figure 2.10, which shows a PTC layout with a linked list of
26 fibres (F#) pointing to the 18 magnets (M#).

Most accelerator modeling codes do not, as PTC does, enforce a dichotomy
between fibres and elements. As a consequence, it can be difficult to import lattice
descriptions from other codes into PTC in a manner consistent with PTC’s approach
to modeling accelerators. To overcome this difficulty, PTC provides what it refers
to as a DNA database. This database is first populated with a set of layouts whose
fibres point to unique elements. In other words, no element appears more than
once—via the fibres—in the set of DNA layouts. (This much may, if desired, be done
by importing from an external lattice description.) These simple layouts—we shall
refer to them as DNA sequences—may then be used to construct complex layouts of
the form shown in figure 2.10.

L1: M1 M2 M3 M4

L2: M5 M6

L3: M7 M8

L4: M9 M10

L5: M11 M12

L6: M13 M14

L7: M15 M16

L8: M17 M18

Figure 2.11: DNA database
with eight DNA sequences

(L1 through L8). The ar-
rows represent the links
in the doubly-linked list

of fibres that constitutes a
layout. Each fibre points

to (contains) the indi-
cated magnet (M1–M18).

As a concrete example, consider how we might do this for the accelerator shown
in figure 2.8 or 2.10: We first create a set of layouts in which no magnet appears
twice, and which have no magnets in common. The logical course in this case is
to create the eight layouts L1 through L8 shown in figure 2.11. Note that each of
the eighteen magnets appears just once in this database. Here we show each of the
DNA sequences in a different color; and these colors match those used in figure 2.12,
which shows the accelerator with the different DNA sequences indicated by the
corresponding colors.

Figure 2.12: Eight lay-
outs or DNA sequences.

M1F1 M2F2 M3F3 M4F4 M5F5, F13, F21 M6F6, F14, F22

M7F7

M8F8

M9F9, F17, F25M10F10, F18, F26

M11 F11

M12 F12 M13

F15

M14

F16

M15

F19

M16

F20

M17

F23

M18

F24

Having created the eight DNA sequences in our DNA database, we can now
use PTC to string these basic layouts together to create the trackable layout that
represents the full machine illustrated in figure 2.8, or 2.10 or 2.12. Evidently, a
trackable layout may be constructed from one or more DNA sequences.1414 By contrast, we may

sometimes refer to the
DNA sequences—high-
level building blocks of
our accelerator model—

as non-trackable layouts.

In general, once we have populated the DNA database (either from within PTC
or by importing external lattice descriptions) we can use PTC to string together these
basic layouts to create the additional layouts we need for tracking. These latter—T1

2.2 modeling accelerator topologies 15

through TN, say—contain fibres that point to elements in the DNA database. For
the recirculator shown in figure 2.8, we would create one beamline layout T1 with
26 fibres, each pointing to an element in the DNA database. For the collider shown
in figure 2.9, we would create two beamline layouts, T1 and T2, one layout for each
ring.

Chart and Patch

PTC uses the new data types chart and patch to locate, connect, and move the
elements of a beamline. The generic capability, which we term patching, connects
the exit frame of one element to the entrance frame of the subsequent element.

The data type chart contains a pointer to a frame of reference (actually the
collection of three frames illustrated in figure 2.1) that locates a fibre (really the
element the fibre points to) within PTC’s global three-dimensional reference frame.
The chart also contains information that describes, if present, any misalignment of
the fibre.

The data type patch contains information about the about the relation between
the exit reference frame of one element and the entrance reference frame of the
subsequent element. As a consequence, a patch is a property not of an element
but of a Vbre, and it must be computed after placing both elements in their final
locations.

As a concrete example, consider the set of elements illustrated in figure 2.13.
There we see three elements separated by a pair of drifts. We know the locations
of these elements (in particular the reference frames attached to these elements)
because of the information stored in the corresponding charts. The second drift
is explicitly defined as the third beamline element. The first drift, however, is not
explicitly defined. The exit frame of element 1 and the entrance frame of element 2

do not coincide, and this indicates the need for a patch. The remaining elements all
have exit-entrance frame pairs that coincide, and hence no additional patches are
required.

element 1

element 2

element 4

element 3
(drift)

particle
path

patch
required

no patchrequired Figure 2.13: Patching ele-
ments in a single beamline.

As another example of patching, figure 2.14 shows three magnets in a recirculator.
A high-energy particle passing through magnet 1 follows the red trajectory to
magnet 2. After exiting magnet 2, the particle continues around the machine and
returns with a lower energy (after deceleration by appropriately phased rf fields) to
magnet 1. Because the particle has less energy, magnet 1, the separator, now bends
it along the blue trajectory towards magnet 3, the first magnet in a new beamline.
Magnet 1 of figure 2.14 must, of course, appear in two fibres: the first points to
magnet 2 as the subsequent element, while the second points to magnet 3. What
about the patches? Assuming the exit frame of magnet 1 and the entrance frame of

16 overview of ptc

magnet 2 have the same unit vectors but different origins. then the patch between
the fibres pointing to magnets 1 and 2 must correspond to a simple drift of the
appropriate length—and that is exactly what PTC will compute. The patch between
the fibres pointing to magnets 1 and 3 corresponds to three actions: a drift of length
d, a coördinate frame rotation by angle α, and a translation of length h.

Figure 2.14: Patch-
ing elements in mul-

tiple beamlines.

d

h

α

magnet 1 magnet 2

magnet 3

Misalignments

The accelerator we design is never the one we build. This fact makes it essential to
investigate the margin for error in any design. To simulate misalignment errors, PTC
uses the approach illustrated in figure 2.15. There we show the original element 2

with a light gray outline, and the misaligned element 2 with a red outline. To
push a particle from the exit of element 1 to the entrance of element 3, PTC first
applies the patch from element 1 to the original element 2. Then PTC traverses
element 2 in three steps: an entrance misalignment, the standard element 2, and
an exit misalignment. PTC then applies the patch from element 2 to element 3. If
we remove the misalignment (which translates and rotates element 2), the element
returns to its design position in the fibre.

Figure 2.15: Mis-
aligning an element.

element 1 element 2

element 3

particle
path

2.3 Analyzing an Accelerator to Understand its Properties

In this overview chapter, the first two sections, Tracking Particles through an Accelerator
and Modeling Accelerator Topologies, discuss the essential concepts and data structures
used by PTC to construct a computer model of an accelerator and simulate particle
trajectories through that model. Your next activity is likely to be that of asking
questions of your simulated accelerator: Where is the particle in that magnet? What
are the Twiss parameters at this location in the ring? What are the horizontal and
vertical tunes of this machine? How much synchrotron radiation does my particle
emit while traversing this magnet? Such questions are the domain of analysis.

2.3 analyzing an accelerator to understand its properties 17

At the heart of the software design decisions made for PTC lies the desire to
analyze real accelerators. The fact that real accelerators are complicated beasts—with
many individual magnets performing many individual functions—leads directly to
PTC’s simulating accelerators using the LEGO-block approach, which emphasizes a
local view of beamline elements and particle tracking. Similarly, the desire to analyze
leads directly to PTC’s use of map-based methods, which emphasize a global view
of the accelerator.

Map-based methods are fundamental to the analysis of real accelerators. Think
of a one-turn map as a piece of sophisticated diagnostic hardware that you install at
some point in the ring. It enables you to observe the beam turn after turn. It follows
that any sensible question you might ask about the beam at that point in the ring
must be contained within that one-turn map. Indeed, all of standard perturbation
theory may be expressed entirely in terms of the one-turn map.15 15 É. Forest. A Hamiltonian-

free description of single
particle dynamics for
hopelessly complex periodic
systems. J. Math. Phys., 31

(5):1133–1144, May 1990.
doi: 10.1063/1.528795

If you desire information at some other point in the ring, then you must, of
course, install another sophisticated beam monitor at that new location. Using
map-based methods, this will be equivalent to a proper combination of the one-turn
map at your original location and the transfer map that connects the two locations of
interest. As a consequence, a one-turn map plus partial-turn transfer maps contain
the answers to all sensible questions you might ask of an accelerator model.

The analogy of a one-turn map as a sophisticated beam monitor also implies—
quite correctly—that no connection exists between the construction of a one-turn
map and its analysis. The construction is done using a strictly local approach, which
is our only hope of getting the physics right in this complicated and messy world.
Once we’ve obtained the one-turn map, we may forget where it came from and
what various frames of reference were used to compute it. We now concentrate on
asking sensible questions of our “beam monitor”.

Local versus Global Information

PTC provides you with two kinds of information: local and global.
Information about an element, or a particle in an element, is called local if it

can be obtained independently of any knowledge of the element’s position in an
accelerator. It could be obtained even if the element were a prototype sitting on a
test bench in your lab. The field strength at a particular location in the element is
an obvious example of local information. Another example is a particle’s trajectory
through a magnet: When, for example, an electron appears at the entrance of a
quadrupole, we can predict its (local) trajectory without any knowledge of where the
electron came from, or where it is going. Yet another example of local information is
the amount of synchrotron radiation emitted by a particle as it traverses a magnet.

Information is called global if it can be obtained only after constructing an
accelerator. The dynamic aperture is an example of global information, because it
makes sense only in the context of circulating particles around an accelerator ring.
Other examples include

tune closed orbit normal mode decomposition
tune shift resonance damping partition number
chromaticity linear lattice function nonlinear distortion function
anharmonicity equilibrium emittance short-, mid-, and long-term stability

and much more.
Note that all local quantities are governed solely by the particulars of an element

and the underlying equations of motion. Particle information, local field strengths,
and the Lorentz equation are all you need to know for the computation of local

http://dx.doi.org/10.1063/1.528795

18 overview of ptc

quantities. Global quantities, on the other hand, are governed by the fact that an
accelerator ring is designed to circulate particles in stable orbits for many turns.
They result from our efforts to interpret the one-turn map.

Polymorphs and Normal Form

The simplest simulation of particle trajectories in an accelerator represents a particle
as an array z of real numbers, which constitutes the phase-space coördinates and
any other quantities (spin, for example) that need to be tracked. One then tracks
the particle through the accelerator by integrating the appropriate equations of
motion with initial conditions given by zi. If we wish to know the behavior of nearby
particles, then we could, of course, launch other particles with initial conditions
zi + ε and study how the results vary with ε. However, the polymorphic aspect of
PTC enables us to do this in a way that gives us access to all of standard perturbation
theory, including the kinds of global information mentioned above.

Given a software library that implements a truncated power series algebra (TPSA),
one can use polymorphism and operator overloading to turn any particle tracking
code into a map generation code. Rather than propagating a particle through the
accelerator, one may instead propagate an array of truncated power series (TPS)
that represents the particle and its phase-space neighborhood. The result of such
tracking is a one turn map for that region of phase space. The polymorphism of
PTC makes it possible to do this in a transparent manner.

The concept of a normal form is absolutely central to the modern view of
accelerator analysis. In the very simplest case, a one-turn map reduces to a matrix
M, and we factor it in the form of a similarity transformation:

M = A · N · A−1.

Here N denotes a normal form, and A denotes the matrix that transforms between
N and M. Continuing our simplest example, N generates rotations in each of the
separate phase planes, and A converts the circles of normal form coördinates to
generic phase-space ellipses. If we go to another location in the accelerator, the
one-turn map will differ, but it will have the same normal form:

M′ = A′ · N · A′−1.

In other words, N is an invariant of the ring. Global scalars, by which we mean
global quantities that do not depend on location around the accelerator, may be
derived from N. The s-dependent global quantities (SDGQs) may be derived from
the transformations A, A′, Thus, for example, one extracts tunes from N and
linear lattice functions from the As.

Two very important benefits derive from a normal form factorization of the one-
turn map: The first benefit is that this factorization generalizes in a straightforward
manner to nonlinear maps. We may thus write the map M(z) as the composition

M(z) = A ◦ N ◦ A−1(z), (2.5)

where now M, A, and N all denote nonlinear functions on phase space. As in the
matrix case, the normal form N(z) yields the global scalars, and the transformation
A(z) yields the SDGQs. N, for example, contains not only the tunes, but also the
nonlinear information of how the tunes vary with amplitude. The second benefit is

2.4 modeling particle interactions 19

that we may use the same code that produced the one-turn map M(z) to propagate
the normalizing transformation A(z). Doing exactly this—using the polymorphic
capabilities of PTC, of course—we can compute SDGQs at many locations around
the ring.

As with all things wonderful, some caveats attach to the normal form decompo-
sition (2.5). The first caveat is associated with the approximate nature of the work
we do. Unless our system is extremely special, we can know M(z) only up through
some finite order. Moreover, because of the complicated nature of particle orbits in
accelerators, the expansion is generally asymptotic. As a consequence, we should
examine all analyses in the light of common sense and actual particle tracking.16 16 This should already be

part of your routine.The second caveat is associated with the fact that the transformation A(z) is not
unique: If B denotes any transformation that commutes with N, then replacing
A(z) in (2.5) with A ◦ B(z) yields the same result. In other words, the particular A
we choose to work with depends on certain conventions. For physical quantities
associated with A(z), this freedom in the definition of A necessarily has no effect.
But some quantities17 that people discuss do, in fact, depend on the particular choice

17 One example is the so-
called phase advance. At
matched locations in a ring,
the normalizing transforma-
tions (chosen with common
conventions!) are identical;
as a consequence, the phase
advance between such
locations is well-defined. Be-
tween unmatched locations,
however, the definition of
phase advance can depend
on the conventions used in
extracting the As.

for the normalizing transformation A. Such quantities, needless to say, cannot be
physical and should be used with great care, or not at all.18

18 A.W. Chao. SLIM—
An early work revisited.
In Proceedings of the 11th
European Particle Acelerator
Conference, Genoa, Italy,
23–27 June 2008, pages
2963–2967, Geneva, 2008.
European Physical Society

2.4 Modeling Particle Interactions

This overview chapter has, until now, discussed concepts related to single-particle
dynamics. In this section we introduce some concepts related to the inclusion of
particle interactions in PTC simulations. Some of these concepts, however, apply
also to single-particle dynamics, and hence we urge even readers not interested in
space-charge to at least skim this section.

We begin with a caveat: The inclusion of particle interactions violates the philosophy of
PTC. To see this, consider a beam of self-interacting particles at a moment when
the head has entered a magnet and the tail has not. Particles in the head and tail
communicate via the self interactions, and hence the dynamics of particles in the
head and tail affect one another. If we place the magnet in a different location,
particles in the head will follow different trajectories. The particle interactions
communicate this information to the tail, and now particles in the tail also follow
different trajectories—their behavior differs because of a change in a magnet they
have yet to see. This scenario tells us that if our beam is spatially extended and self-
interacting, we cannot define an isolated propagator for each element. In other words,
particle interactions violate the LEGO-block approach to modeling accelerators.

To fit within the philosophy of PTC, beamline elements must be independent of
one another. This idealization—upon which most tracking codes rely—should be
borne in mind when using PTC—or any of those other codes—to simulate beams
with self-interacting particles.19 19 Overlapping fringe fields

also violate the principle of
magnet independence; and
in that case, too, one must
exercise care.

In the rest of this section, we discuss some of the data types useful for including
particle interactions: integration_node, node_layout, probe, and temporal_probe. We
also describe the basic idea behind the time-based tracking capability of PTC.

Integration Node

The data type integration_node represents a step of integration in PTC. In particular,
this data type includes entrance and exit reference frames, pointers to the previous
and next integration nodes along a particle path (see Node Layout), and a pointer

20 overview of ptc

to the parent Vbre that contains it. Integration nodes allow us to examine data
inside a beamline element without violating the element as a fundamental unit—a
self-contained LEGO block. They allow us to resist the temptation to “slice” an
element by hand: they are the slices. The data type integration_node also contains
an integer that determines the type of integration node, of which there are five.
See figure 2.16. On traversing the integration nodes that represent an element, one
encounters, in order,

• an entrance patch (and misalignment, if any), which connects the geometry
described by the fibre to that of the preceding fibre in the linked list;

• an entrance fringe field, which contains approximate fringe effects (if any);
• N body integration nodes representing the body of element;2020 The choice of N, which

you are free to modify,
obviously affects the ac-

curacy of your simula-
tion. Chapter 9 discusses

how to split elements
into integration nodes.

• an exit fringe field, which contains approximate fringe effects (if any);
• an exit patch, which connects the geometry described by the fibre to that of the

following fibre in the linked list.

Figure 2.16: N + 4 integra-
tion nodes cover an element.

any number (N) of body
integration nodes (here 6)

exit fringe
integration node

exit patch
integration node

entrance fringe
integration node

entrance patch
integration node

parti
cle

path

Using s-based tracking, we can obtain particle data at the entrance and exit of
each integration node in the body of a magnet, that is, at the seven black lines in
figure 2.16. In addition, we can obtain first-order information about the location
within a node of a particle at some fixed time (see Time-based Tracking).

The integration nodes contain no duplicate data about the elements; they have no
existence apart from the beamline elements they represent. Because the data in the
integration nodes reside on the fibres (which point to the elements), PTC is able
to carry over changes affecting elements (e.g., a change in the magnetic field) and
changes affecting the fibres (e.g., misalignments) to the integration nodes.

Node Layout

The data type node_layout represents a beamline as a linked list of integration_nodes.
It includes pointers to the first and last integration nodes in the beamline, as well as a
pointer to the parent layout. To access the integration nodes of a particular fibre, one
may step through them, making use the fact that the data type Vbre includes pointers
to the first, last, and middle integration nodes for the corresponding element.

A node_layout is not created automatically when you create a layout: You must
ask PTC to create it and populate the associated reference frames.

Probe and Temporal Probe

The data type probe represents a particle. In particular, it contains, for a given
particle, both the orbital phase-space data and a spinor for the spin data. Should the

2.4 modeling particle interactions 21

particle become lost, the probe contains a logical in which to record this fact, as well
a pointer to the integration_node in which the particle loss occured.

The data type temporal_probe contains a probe together with information rele-
vant to the time-based tracking capability of PTC. This includes a pointer to the
integration_node that currently contains the particle.

Time-based Tracking

Any high-order s-based integrator may be converted to a first-order time-based
integrator provided information is available about the three-dimensional environment.
When we ask PTC to perform time-based tracking, PTC augments its s-based
information with temporal information. PTC’s tracking remains fundamentally
s-based, but with the additional information, it can determine which integration
node a particle is in at a given time. PTC can then compute a first-order accurate
location inside that node for the particle at that time.

sτ

s1

s2

s3 s4

no SC kick

t1

t2

after SC kickτ

t
′

2

t3
t4

Figure 2.17: Applying a
space-charge kick at time τ.

PTC’s time-based tracking capability allows us to obtain a snapshot of the beam
at a fixed time. Figure 2.17 illustrates this approach to applying a space-charge kick
at time τ:

1. PTC checks node by node the entrance and exit times of a particle to determine
the integration node for which τ ∈ [tentrance, texit). After locating the appropriate
node, PTC returns the particle to the node entrance. At this point in figure 2.17,
because τ falls between times t2 and t3, the particle is on the blue curve at the
point labeled with time t2.

2. PTC determines the time difference δt = τ − tentrance. Then, using the par-
ticle’s position and momentum at the node entrance as an initial condition,
and assuming the current integration node to be a drift, PTC computes a
position and momentum for the particle at time τ. It records the shift δs in the
temporal_probe. If the element is a drift, the position of the particle at time τ is
exact. If the element is not a drift, the position of the particle at time τ is a close
approximation. At this point in figure 2.17, the particle is at the point labeled
with time τ.

3. After completing the above two steps for all particles in the beam, you can
apply space-charge kicks to your particles. At this point in figure 2.17, the
particle remains at the point labeled with time τ, but it has a new momentum,
as indicated by the angle between the light blue arrow and the red arrow.

22 overview of ptc

4. PTC now drifts the particle—with its new momentum—back to the entrance of
the integration node. At this point in figure 2.17, the particle is back in the s2
plane, but now on the red curve at the point labeled with time t′2.

5. PTC now continues tracking the particle—with its new momentum—seeking
the integration node for which tentrance and texit bracket the time for the next
space-charge kick.

three

Modeling an Accelerator with PTC

This chapter explains how to use PTC to model the geometry for a range of
accelerators. To that end, we introduce three accelerator topologies and show how to
define their geometries using PTC. After going through these models in detail, you
should have a good understanding of how to use PTC to model your own accelerator
designs. If some of your elements move together as units—because they’re tied to a
girder, for example—then you will also want to absorb the information presented in
chapter 4, Linking Magnets Together and Moving Them as a Group.

In § 3.1 we describe briefly the accelerator topologies we shall model. In § 3.2 we
introduce the PTC source code for our examples. The three accelerator topologies
use some common structures, and we describe the subroutines for these in § 3.3.
Then, in §§ 3.4 and 3.5, we construct our DNA sequences and show in detail
how to construct our three accelerator designs. We conclude, in § 3.6, with some
housekeeping for our DNA database.

3.1 Accelerator Models

Figure 3.2 illustrates the three accelerator topologies we shall model:
• figure-eight,
• ring with both forward and reverse propagation,
• collider.

All three machines are based on a ten-cell ring, with each cell composed of seven
elements: a drift, a focusing quadrupole, a short drift, a dipole, a short drift, a
defocusing quadrupole, and another drift.1 In the figure-eight and collider examples, 1 When you see the particu-

lar numbers, in a few pages,
you may recognize this cell
as that of the Los Alamos
Proton Storage Ring.

the dipole is a rectangular bend. In the ring with forward and reverse propagation,
however, the dipole is what we shall call, for want of a better term, a “straight” bend
(with the quotation marks!). By this we shall mean a rectangular bending magnet
whose entrance and exit reference frames are parallel to one another and orthogonal
to the main axis of the magnet. This implies—see Chart and Patch, page 15—that any
cell containing a “straight” bend will require patching.

Figure 3.1 illustrates the two basic cells. We outline the quadrupoles in blue, the
rectangular bend in red, and the “straight” bend in green. The black lines indicate
the drifts. The cell with the rectangular bend does not require patching (unless the
direction or charge change), because the reference frames of adjacent elements lie
on top of one another. The cell with the “straight” bend, however, requires patching
(regardless of direction or charge), because the adjacent drifts have frames that are
rotated with repect to those of the “straight” bend.

24 modeling an accelerator with ptc

Figure 3.1: Basic cells for
the three accelerator models.

cell for figure eight and collider cell for ring with forward and reverse propagation

The basic ring (see the build_PSR example in figure 3.3 on page 26) has ten
cells. It has 70 fibres pointing to 70 elements. The ring with forward and reverse
propagation has 140 fibres pointing to 140 elements.

The figure-eight and the collider each have 140 fibres pointing to 134 elements.
In each of those models the upper and lower rings share the elements at the start of
one cell (long drift, quadrupole, short drift) and the elements at the end of another
cell (short drift, quadrupole, long drift).

Figure 3.2: Accelerator
models. Arrows indi-

cate the direction of mo-
tion of particle beams in

the constituent layouts.

figure eight (Fig8) forward and reverse rings (PSR1 and PSR2) collider (Col1 and Col2)

Fig8

PSR1

PSR2

Col1

Col2

global ref.
frame

x

y
z

Our three tutorial examples are not real accelerators: They do not have particle
injectors or dumps; and two of the examples are not physically possible, because
some of their elements overlap. The goal of these examples is to introduce the
principal PTC concepts involved in modeling the geometry of an accelerator. After
learning these concepts, we can use PTC to model complex real-world accelerators.

3.2 Geometry Tutorial Source File

The example code in this chapter is from the PTC geometry tutorial source file,
ptc_geometry.f90, which is given in appendix C. The line numbers of the code in
the examples refer to the line numbers of the code in that appendix.

3.2 geometry tutorial source file 25

Initial Code

The initial code in the ptc_geometry.f90 source file includes type declarations and
performs some initialization.

ptc_geometry.f90 This program describes the geometry of several PTC lattices.

program ptc_geometry
use run_madx
use pointer_lattice
implicit none

5

character*48 :: command_gino
logical(lp) :: doit
integer :: i, j, mf, pos, example
real(dp) :: b0

10 real(dp), dimension(3) :: a, d
real(dp), dimension(6) :: fix1, fix2, mis, x
type(real_8), dimension(6) :: y1, y2
type(layout), pointer :: L1, L2, L3, L4, L5, L6
type(layout), pointer :: PSR1, PSR2, Fig8, Col1, Col2

15 type(fibre), pointer :: p1, p2, b, f
type(internal_state) :: state

type(pol_block) :: qf(2), qd(2)
type(normalform) :: n1, n2

20 type(damap) :: id
type(taylor) :: eq(4)
type(gmap) :: g
!-----------------------------------

25 Lmax = 100.d0
use_info = .true.

!== user stuff : one layout necessary before starting GUI
call ptc_ini_no_append

The module run_madx tells PTC to use the madx_ptc_module, which defines the
global variable m_u.2 This variable, which we shall use frequently, denotes a linked 2 Think "Mad Universe".
list of layouts3 that will constitute our DNA database. The gino mentioned on line 6 3 We use the linked-list

aspect of m_u only briefly in
§ 3.6, DNA Arrays,.

refers to a Windows®-based graphical user interface developed for PTC by Étienne
Forest. Its use is not required.

PTC uses the following type declarations for modeling accelerator topologies:
• real(dp) for double precision real numbers,
• type(layout) for layouts,
• type(fibre) for Vbres,
• type(internal_state) for setting the characteristic dynamics desired of your

accelerator (see Internal States, appendix A).
These data types will be discussed in this chapter.

PTC uses the following type declarations for analyzing accelerator properties:
• type(real_8) for polymorphs,
• type(pol_block) for polymorphic blocks,

26 modeling an accelerator with ptc

• type(normalform) for normal forms,
• type(damap) for differential algebra maps,
• type(taylor) for Taylor maps,
• type(gmap) for a vector of Taylor maps.

These latter data types will be described in chapter 5, Taylor Polymorphism and Knobs.
The global variable Lmax defines the maximum length (here 100 meters!) of an

integration node. For more information about splitting elements into integration
nodes, see Symplectic Integration and Splitting, chapter 9.

This initial code also, on line 29, initializes a layout; this must be done before
starting PTC’s Gino-based graphical user interface for Windows.

3.3 Subroutines

The end of the ptc_geometry.f90 source file contains three subroutines we use to
create the DNA sequences—non-trackable layouts for our DNA database. Figure 3.3
shows the layouts that the three subroutines create. In subsequent sections of this
chapter, we describe how to use the layouts from this database, or pieces of these
layouts, to form the accelerator models of figure 3.2.

Figure 3.3: Subroutines for
creating DNA sequences.

build_PSR build_PSR_minus build_Quad_for_Bend

build_PSR

The subroutine build_PSR creates the basic ten-cell ring lattice shown on the left in
figure 3.3.

490 subroutine build_PSR(PSR)
use run_madx
use pointer_lattice
implicit none

495 type(layout), target :: PSR

real(dp) :: ang, brho, kd, kf, Larc
type(fibre) :: b, d1, d2, qd, qf
type(layout) :: cell

500 !-----------------------------------

3.3 subroutines 27

call make_states(.false.)
exact_model = .true.
default = default + nocavity + exactmis

505 call update_states
madlength = .false.

ang = (twopi * 36.d0 / 360.d0)
Larc = 2.54948d0

510 brho = 1.2d0 * (Larc / ang)
call set_mad(brho = brho, method = 2, step = 10)
madkind2 = drift_kick_drift

kf = 2.72d0 / brho
515 kd = -1.92d0 / brho

d1 = drift("D1", 2.28646d0)
d2 = drift("D2", 0.45d0)
qf = quadrupole("QF", 0.5d0, kf)

520 qd = quadrupole("QD", 0.5d0, kd)
b = rbend("B", Larc, ang)
cell = d1 + qd + d2 + b + d2 + qf + d1

PSR = 10 * cell
525 PSR = .ring.PSR

call survey(PSR)
end subroutine build_PSR

The lines 502–506 set important internal state variables for tracking. In the call
to make_states, the boolean argument .false. means we are modeling a proton
lattice. Use .true. for electrons.4 To use the full “square-root” Hamiltonian, we set 4 For other particles, use

the ratio of particle mass
to electron mass as the
argument of make_states.

the global parameter exact_model to .true. The global variable default, of type
internal_state, is here modified from its default value by adding the following two
flags:

• nocavity, which tells PTC to ignore RF cavities;
• exactmis, which tells PTC to treat misalignments exactly.

(For more on internal-state variables, see appendix A.) Finally, we set the flag
madlength to .false. This means that PTC will use the arc length, rather than the
chord length, to define the geometry of a rectangular bending magnet. Use .true.
to make PTC use the chord length.

ang

Larc = 2.54948

Figure 3.4: Geometry of the
rectangular bend.

The call, in line 511, to set_mad defines (via brho) the scale momentum po for the
fibres in the layout returned by this subroutine. It also specifies the type (method
= 2) and number (STEP = 10) of integration steps in the body of each element. We
then define the five fibres needed for our basic cell:

• Fibres d1 and d2 denote the long and short drifts.
• Fibres qf and qd denote the focusing and defocusing quadrupoles.
• And fibre b denotes the rectangular bending magnet. Note that it is defined by

its arc length and bend angle—here Larc and ang, respectively. See figure 3.4.
The symbols in quotes (e.g., "QF") are the names given to these elements.5 We may 5 Because a layout may have

any number of these ele-
ments, the names actually
define classes of elements.

now define the variable cell, of type layout, as the appropriate sequence of fibres.

28 modeling an accelerator with ptc

Finally, the layout PSR returned by this subroutine is defined as 10 cells, and line 525

modifies PSR to make it a ring, i.e., closed.
At this point, line 525, the elements of the PSR lattice are present, and in the

correct sequence of fibres, in layout PSR. But should we ask for the location of those
elements,6 we would discover that all of them have their entrance frames at the6 How to ask this of PTC

will become clear later in
this chapter. See, for exam-

ple, page 33—especially
the discussion of moving

and rotating elements.

global origin. In other words, they are all stacked on top of one another at the global
origin. The call to survey causes PTC to loop through the fibres in PSR, moving
each element so that its entrance frame coincides with the exit frame of the previous
element. For the PSR lattice, the reference frames for the bends and quadrupoles
line up exactly with those of their adjacent drifts. As a consequence, this lattice
requires no patching. We have therefore finished building the PSR lattice in PTC.

A few readers will complain that the set of lines 517 through 522 violates
the philosophy of PTC—and they have a point. This may seem subtle, but we urge
all other readers to invest the time required to comprehend this point. Look, for
example, at the definition of the bend given in line 521. After careful consideration
of this definition and what happens on the succeeding lines, the reader should
recognize that this definition actually serves a dual purpose. On the one hand, the
setting of arc length and bend angle define the geometry of the element. On the other
hand, this line also serves to define the physics of this element. To verify this claim,
query PTC for the magnetic field of this element:

write(6,’(a,f7.4)’) "PSR B-field = ", b%mag%bn(1) * brho
will do the trick. You will learn that PTC already knows the magnetic field has a
value of 1.2 T! This information, of course, requires a knowledge of not only the
geometry, but also the particle mass and energy. Here is the apparent violation of
the PTC philospophy, which aims to separate the geometric description of beamline
elements (location, reference frames, etc.) from their physical content (magnetic field
strength, etc.). The resolution of this conflict lies in the fact that once we have nailed
down the geometry, we are then free to modify the lattice with misalignments,
changes to the magnetic field, and the like.

build_PSR_minus

The subroutine build_PSR_minus defines the partial ring shown in the center of
figure 3.3. It begins with a bend, a short drift, a quadrupole, and a long drift; it
continues with eight PSR cells; and it concludes with a long drift, a quadrupole,
a short drift, and a bend. Relative to the PSR lattice, this partial ring is missing
a short drift, a quadrupole, two long drifts, a quadrupole, and a short drift. The
subroutine is a straightforward modification of that for build_PSR.

subroutine build_PSR_minus(PSR)
use run_madx
use pointer_lattice

535 implicit none

type(layout), target :: PSR

real(dp) :: ang, brho, kd, kf, Larc
540 type(fibre) :: b, d1, d2, qd, qf

type(layout) :: cell
!-----------------------------------

3.3 subroutines 29

call make_states(.false.)
545 exact_model = .true.

default = default + nocavity + exactmis
call update_states
madlength = .false.

550 ang = (twopi * 36.d0 / 360.d0)
Larc = 2.54948d0
brho = 1.2d0 * (Larc / ang)
call set_mad(brho = brho, method = 6, step = 10)
madkind2 = drift_kick_drift

555

kf = 2.72d0 / brho
kd = -1.92d0 / brho

d1 = drift("D1", 2.28646d0)
560 d2 = drift("D2", 0.45d0)

qf = quadrupole("QF", 0.5d0, kf)
qd = quadrupole("QD", 0.5d0, kd)
b = rbend("B", Larc, ang)
cell = d1 + qd + d2 + b + d2 + qf + d1

565

PSR = b + d2 + qf + d1 + 8 * cell + d1 + qd + d2 + b
PSR = .ring.PSR

call survey(PSR)
570 end subroutine build_PSR_minus

build_Quad_for_Bend

The subroutine build_Quad_for_Bend defines the layout shown on the right in
figure 3.3. It has ten “straight” bends, which have the same length as the rectangular
bends in the PSR lattice. Because this lattice contains no drifts, it will require
patching. In addition, because it contains no focusing elements, the elements of this
layout will actually be used only as entries in other layouts.

subroutine build_Quad_for_Bend(PSR)
575 use run_madx

use pointer_lattice
implicit none

type(layout),target :: PSR
580

real(dp) :: ang, ang2, brho, b1, Larc, Lq
type(fibre) :: b
!-----------------------------------

585 call make_states(.false.)
exact_model = .true.

30 modeling an accelerator with ptc

default = default + nocavity + exactmis
call update_states
madlength = .false.

590

ang = (twopi * 36.d0 / 360.d0)
Larc = 2.54948d0
brho = 1.2d0 * (Larc / ang)
call set_mad(brho = brho, method = 6, step = 10)

595 madkind2 = drift_kick_drift

ang2 = ang / two
b1 = ang / Larc
Lq = Larc * sin(ang2) / ang2

600

b = quadrupole("B_QUAD", Lq, 0.d0);
call add(b, 1, 0, b1)
b%mag%permfringe = .true.
b%magp%permfringe = .true.

605 b%mag%p%bend_fringe = .true.
b%magp%p%bend_fringe = .true.

PSR = 10 * b
PSR = .ring.PSR

610

call survey(PSR)
end subroutine build_Quad_for_Bend

Except for some changes in the type declarations, the code through line 595 in
this subroutine is identical to that in the previous two subroutines. The “straight”
bend is created in lines 597 through 606. We first compute the length Lq as the chord
length of the PSR’s rectangular bend. To achieve the desired “straight” reference
frames, we define the “straight” bend as a zero-strength quadrupole. Then, to make
this a dipole, we set, in line 602, the normalized dipole strength of b to the computed
value b1. Finally, we set some flags to give this magnet the fringe fields appropriate
to a rectangular bend.

Query: After the call to survey in line 611, where in the global frame are the
magnets that this subroutine defines?77 They lie all in a straight

line, one after the other,
starting at the global ori-

gin and extending to a
point 10 Lq out along the

z axis. Making this lay-
out look like the right-

hand layout of figure 3.3
will require more work.

3.4 Populating the DNA Database

Using the subroutines described in the previous section, we shall populate our
DNA database with six DNA sequences (non-trackable layouts): L1, L2, L3, L4, L5,
and L6. Note that we shall want each element in our three accelerator models to
appear once and only once in the DNA sequence portion of the DNA database.
This uniqueness will reflect the uniqueness of the individual beamline elements in
our accelerators.

Layouts L1 and L2 will provide the elements for the concentric rings accelerator:
trackable layouts PSR1 and PSR2. (See figure 3.2.) Layouts L3 and L4 will provide
the elements for the figure-eight accelerator: trackable layout Fig8. And layouts
L5 and L6 will provide the elements for the collider: trackable layouts COL1 and

3.4 populating the dna database 31

Non-trackable layouts Trackable layouts

L1: 70 elements (build_PSR) PSR1: created from L1 and L2
L2: 10 elements (build_Quad_for_Bend) PSR2: created from L1 and L2
L3: 64 elements (build_PSR_minus) Fig8: created from L3 and L4
L4: 70 elements (build_PSR) Col1: created from L6
L5: 64 elements (build_PSR_minus) Col2: created from L5 and L6
L6: 70 elements (build_PSR) Table 3.1: DNA database for

the PTC geometry tutorial

COL2. Table 3.1 summarizes the layouts we plan to create: six DNA sequences, or
non-trackable layouts, and five trackable layouts.

Query: As initially constructed (by build_PSR), layouts L1, L4, and L6 are identical.
So also are layouts L3 and L5. Why don’t we avoid this duplication?8 8 Because we want to be

able to modify—move, mis-
power, etc.— the individual
elements. We do not want
changes made to COL1, for
example, to appear in Fig8.

The following four lines create the first DNA sequence:

call append_empty_layout(m_u) ! DNA sequence 1
call set_up(m_u%end)
L1 => m_u%end

40 call build_PSR(L1)

The call to append_empty_layout appends an empty layout to the global linked list
of layouts m_u. The layout pointer m_u%end points to this empty layout. The second
line initializes this new layout; and the third line makes L1 point to it. Finally, the
call to build_PSR populates layout L1 with the 70 elements shown for the PSR in
figure 3.3.

We repeat this process five times for layouts L2, L3, L4, L5, and L6. For L2,
we call build_Quad_for_Bend, which populates that layout with 10 elements (the
“straight” bends). For L3, we call build_PSR_minus, which populates that layout
with 64 elements. And for L4, L5, and L6, we repeat the calls to build_PSR and
build_PSR_minus.

call append_empty_layout(m_u) ! DNA sequence 2
call set_up(m_u%end)
L2 => m_u%end

45 call build_Quad_for_Bend(L2)

call append_empty_layout(m_u) ! DNA sequence 3
call set_up(m_u%end)
L3 => m_u%end

50 call build_PSR_minus(L3)

call append_empty_layout(m_u) ! DNA sequence 4
call set_up(m_u%end)
L4 => m_u%end

55 call build_PSR(L4)

call append_empty_layout(m_u) ! DNA sequence 5
call set_up(m_u%end)
L5 => m_u%end

32 modeling an accelerator with ptc

60 call build_PSR_minus(L5)

call append_empty_layout(m_u) ! DNA sequence 6
call set_up(m_u%end)
L6 => m_u%end

65 call build_PSR(L6)

We now have six DNA sequences, or non-trackable layouts, in our DNA database.
Moreover, each beamline element appears just once in that database.

The PTC type element contains an object, doko (from the Japanese word for
“where”), that enables PTC to keep track of which fibres point to a given beamline
element. This object doko allows PTC to use a given element multiple times in
the database of trackable layouts. We shall see several examples of this in the next
section.

3.5 Modeling Complex Accelerator Topologies

In the previous section, we created the layouts in the left-hand column of table 3.1.
We now set about creating the layouts (right-hand column of table 3.1) for the
three accelerator models shown in figure 3.2: the ring with forward and reverse
propagation, the figure-eight lattice, and the collider. Complex accelerator topolo-
gies typically have a one-to-many correspondence between some of the beamline
elements (stored in the DNA sequences of the DNA database) and the fibres in the
trackable layouts. By the end of this section, you should understand how to set up
such correspondences.

Ring with Forward and Reverse Propagation
PSR1

PSR2

Figure 3.5: Ring
with forward and re-

verse propagation.

Here we model an accelerator that carries a pair of counter-propagating beams (fig-
ure 3.5, also middle lattice in figure 3.2). The two beams will propagate through dif-
ferent layouts—PRS1 for the forward-propagating beam, and PRS2 for the backward-
propagating beam—but the two trackable layouts must, of course, share the same
ring with the same beamline elements. They will just have different directions of
propagation and oppositely charged particles.

There is a further complication: this ring uses “straight” bends instead of rect-
angular bends (see figure 3.1). In order to place these elements in their proper
locations, we will use the lattice of layout L1 as a guide, taking the “straight” bends
from layout L2.9 The final result will be a pair of layouts, PSR1 and PSR2, each of9 The point of this compli-

cation is to illustrate some
of PTC’s geometry oper-
ations and the process of
patching. It should also,
we hope, emphasize the

LEGO-block concepts of
PTC (cf. figure 2.3 and

the associated discussion).

which refer to fibres in two different DNA sequences, L1 and L2.
We begin by calling append_empty_layout on m_u and then setting the layout

pointer PSR1 to point to this new layout:

72 !== PSR1 : forward ring (layout 7)
call append_empty_layout(m_u)
PSR1 => m_u%end

We shall populate this layout with a linked list of fibres taken appropriately from
layouts L1 and L2. Two fibre pointers p1 and p2 will step through these two layouts,
and a third fibre pointer, f, will keep track of our location in PSR1. Elements taken
from L1 have the correct geometric relations, but the “straight” bends taken from L2
will have to be moved to their correct locations.

3.5 modeling complex accelerator topologies 33

p1 => L1%start
p2 => L2%start
do i = 1, L1%n
if(p1%mag%name == "B") then

80 ! read bends from L2
call append_point(PSR1, p2)
f => PSR1%end
d = p1%chart%f%o - f%chart%f%o
call translate(f, d)

85 call compute_entrance_angle(f%chart%f%mid, p1%chart%f%mid, a)
call rotate(f, f%chart%f%o, a, basis = f%chart%f%mid)
p2 => p2%next

else
call append_point(PSR1, p1)

90 end if
p1 => p1%next

end do ! elements in PSR1 now in correct locations

In the above block of code, we point p1 and p2 respectively to the starts of DNA
sequences L1 and L2. The do loop over the L1%n fibres in L1 appends to PSR1 the
desired fibres from L1 or L2—bends from L2, everything else from L1:

• If p1 points to a bend, then in line 81 we append the current fibre of L2 to PSR1.
This, of course, will always be a “straight” bend—a B_QUAD. Later, in line 87,
we advance p2 to the next fibre in L2.

• If p1 does not point to a bend, then in line 89 we append the current fibre of L1
to PSR1.

• In either case, we advance, in line 91, p1 to the next fibre in L1.
After we append a “straight” bend to PSR1, we must do some extra work to

place it in the correct location. Since we want a given “straight” bend to have the
same location and orientation as the corresponding rectangular bend, we simply
compute and perform the required translations and rotations. This happens in
lines 82 through 86:

1. Point f to the fibre most recently appended to PSR1.
2. Compute, in line 83, the vector d from the center of the newly appended

“straight” bend (f%chart%f%o)10 to the center of the corresponding rectangular 10 Read f%chart%f%o as
“f-chart-frame-origin”.bend in L1 (p1%chart%f%o).

3. Translate the newly appended fibre (line 84).
4. Compute, in line 85, the rotation a from the frame attached to the middle of

the newly appended “straight” bend (f%chart%f%mid) to the frame attached to
the middle of the corresponding rectangular bend in L1 (p1%chart%f%mid).11 11 Because rotations do not

commute, their order is
important. PTC performs
coördinate rotations in the
order x-axis, −y-axis, z-axis.

5. Rotate the newly appended fibre about its center (f%chart%f%o) by angles a,
which are given with respect to the frame attached to the middle of that element
(f%chart%f%mid).

When the above do loop terminates, the beamline elements of PSR1 are all in their
correct locations. However (recall the discussion concerning figure 3.1) the “straight”
bends of PSR1 all require patching. This happens in the following block of code:

f => PSR1%start
95 do i = 1, PSR1%n

if(f%mag%name == "B_QUAD") then

34 modeling an accelerator with ptc

call find_patch(f%previous, f, next = .true.)
call find_patch(f, f%next, next = .false.)

end if
100 f => f%next

end do ! PSR1 now patched

Within the do loop over all elements in PSR1, we apply the patches required between
each B_QUAD (or “straight” bend) and its preceding and trailing elements. No other
elements require patching.

Finally, in the following three lines of code, we give layout PSR1 a formal name,
and we ensure that it forms a closed topological ring, so that particles can circulate.
Note that the second two lines must both be executed to make the layout PSR1 form
a closed ring. The call to ring_L in line 105 sets some pointers inside the layout
PSR1 that connect the end of PSR1 to the start, and vice versa.

PSR1%name = "PSR 1"
PSR1%closed = .true.

105 call ring_L(PSR1, .true.) ! make it a ring topologically

Query: At this point, where in the global frame are the magnets, the “straight”
bends, of layout L2?1212 The geometry operations

performed on the bend
Vbres of PSR1 applied, ul-
timately, to the elements

in L2. Hence those ele-
ments are now oriented
as in the right-hand lay-

out of figure 3.3, with the
global origin centered be-

tween the adjacent ends
of the top two magnets.

To construct layout PSR2 for the backward-propagating beam, we follow essen-
tially the same steps as for PSR1. (See the next block of code.) There are three
significant differences: (i) In this case, all the elements are already in their proper
physical locations,12 so here we may omit the geometric computations and oper-
ations performed during the construction of PSR1. (ii) Because of the backwards
propagation, we initialize the pointers p1 and p2 respectively to the ends of layouts
L1 and L2; and we advance those pointers not to the next but to the previous fibres in
their respective layouts. (See lines 117 and 124.) (iii) We must add the information
that the beam described by this layout traverses its elements in the reverse direction
(line 122) and has particles with negative charge (line 123).1313 Both direction and charge

are properties of fibres,
and both default to +1.

!== PSR2 : backward ring (layout 8)
call append_empty_layout(m_u)

110 PSR2 => m_u%end

p1 => L1%end
p2 => L2%end
do i = 1, L1%n

115 if(p1%mag%name == "B") then
call append_point(PSR2, p2)
p2 => p2%previous

else
call append_point(PSR2, p1)

120 end if
f => PSR2%end
f%dir = -1
f%charge = -1
p1 => p1%previous

125 end do

3.5 modeling complex accelerator topologies 35

f => PSR2%start
do i = 1, PSR2%n
if(f%mag%name == "B_QUAD") then

130 call find_patch(f%previous, f, next = .true.)
call find_patch(f, f%next, next = .false.)

end if
f => f%next

end do
135

PSR2%name = "PSR 2"
PSR2%%closed = .true.
call ring_L(PSR2, .true.) ! make it a ring topologically

Trackable layouts PSR1 and PSR2 are now complete. Both contain 70 fibres pointing
to the same set of 70 elements in DNA sequences L1 and L2.

Figure-Eight

Here we model a figure-eight lattice—the left-hand lattice in figure 3.2. It carries
a single beam clockwise (forward) around the lower ring, then counter-clockwise
(backward) around the upper ring. The two rings share several elements in one
straight section. See figure 3.6. The single trackable layout Fig8 we shall construct
from DNA sequences L3 and L4 (see table 3.1). For the lower ring, we use the
full ten-cell PSR lattice in layout L4. For the upper ring, we use all of layout L3
(PRS_minus), and we re-use six of the fibres in layout L4. In addition, so that this
layout does not overlap our previous layouts, PSR1 and PSR2, we shall place it 40 m
distant in the negative z direction.

Fig8

64 fibres in layout fig8 point to

64 fibres in DNA layout L3

12 fibres in layout fig8 point to

6 fibres in DNA layout L4

64 fibres in layout fig8 point to

64 fibres in DNA layout L4

Figure 3.6: Fig8 fibres
pointing to elements in L3
and L4.

The construction of layout Fig8 takes place in the following six blocks of code.
We describe each in detail.

36 modeling an accelerator with ptc

In this first block of code, we translate layout L4 a distance 40 m in the negative z
direction (lines 142–144). We then (lines 145–147) rotate layout L3 180° about the
entrance of its first element (L3%start%chart%f%a). This rotates the gap in L3 down
to the bottom. Now note that the bend to the right of this gap (after the rotation)
belongs to the last fibre in L3. To finish placing L3 in the correct location, we want
the end of its last bend to coincide with the entrance of the first bend in the lower
ring, L4. See figure 3.7. We therefore point, in line 148, the fibre pointer p1 to the first
bend ("B") in L4; compute, in line 149, the vector d from the exit of the last bend in
L3 (L3%end%chart%f%b) to the entrance of the first bend in L4 (p1%chart%f%a); and
then translate, in line 150, layout L3 by vector d.

!== Fig8 : figure-eight lattice (layout 9)
d = zero
d(3) = -40.d0
call translate(L4, d)

145 a = zero
a(2) = pi
call rotate(L3, L3%start%chart%f%a, a)
call move_to(L4, p1, "B", pos)
d = p1%chart%f%a - L3%end%chart%f%b

150 call translate(L3, d)

At this point, the beamline elements for the figure-eight lattice are all correctly
located and oriented.

L4

L3

Figure 3.7: Match-
ing L3 to L4.

In the next block of code, we first call append_empty_layout on m_u and set the
layout pointer Fig8 to point to this new layout. Then, in lines 154–158, we append
in order all the fibres of L4 to Fig8.

call append_empty_layout(m_u)
Fig8 => m_u%end
p1 => L4%start

155 do i = 1, L4%n
call append_point(Fig8, p1)
p1 => p1%next

end do

We now have the complete lower ring.
In the next block of code, we start the upper ring by appending to Fig8 the first

three fibres of the lower ring. These three new fibres in Fig8 will, of course, point
to the same physical elements as do the first three fibres in Fig8: a long drift, a
defocusing quadrupole, and a short drift. During the calls to append_point, PTC
will add this information to the dokos of the corresponding elements in L4. As a
consequence, each of those three elements in DNA sequence L4 knows that it is
pointed to by two different fibres in trackable layout Fig8.1414 Each of those elements

already knows it belongs
to a fibre in layout L4.

Note that we need not initialize the pointer p1 to L4%start: the last execution, in
line 157, of p1 => p1%next returns p1 to the beginning of the layout.

160 write(6,*) p1%mag%name
call append_point(Fig8, p1)
p1 => p1%next
write(6,*) p1%mag%name

3.5 modeling complex accelerator topologies 37

call append_point(Fig8, p1)
165 p1 => p1%next

write(6,*) p1%mag%name
call append_point(Fig8, p1)

In the next block of code, we append the fibres of layout L3 to Fig8. Since our
beam traverses L3 in the reverse direction, we initialize the fibre pointer p1 to
L3%end (line 169), and we advance that pointer to the previous fibre (line 174). During
this process, we take care of two other tasks: We tell PTC that these elements are
traversed in the reverse direction (line 172); and, if the element is a bend, we reverse
the sign of the magnetic field (line 173). The particle charge remains the same
(default value +1).

p1 => L3%end
170 do i = 1, L3%n

call append_point(Fig8, p1)
Fig8%end%dir = -1
if(p1%mag%name == "B") p1%mag%bn(1) = -p1%mag%bn(1)
p1 => p1%previous

175 end do

To complete the upper ring, and hence our trackable layout Fig8, three fibres re-
main to be appended: the last three fibres of the lower ring, L4. This is accomplished
in the next block of code. First, in line 177, we point p1 to the fibre containing the
short drift near the end of layout L4. We then append to Fig8 that fibre and the next
two. During the calls to append_point, PTC will add the appropriate information
to the dokos of the corresponding elements.

p1 => L4%end%previous%previous
write(6,*) p1%mag%name
call append_point(Fig8, p1)

180 p1 => p1%next
write(6,*) p1%mag%name
call append_point(Fig8, p1)
p1 => p1%next
write(6,*) p1%mag%name

185 call append_point(Fig8, p1)

Finally, in the last block of code for Fig8, we give our new layout a formal name
("Figure-Eight"), ensure that it is topologically closed, and apply any necessary
patches. The call to check_need_patch, line 194, returns the integer pos equal to zero
if no patch is needed. A non-zero value indicates the type of patch required. By using
check_need_patch, we can apply patches only where necessary. Our figure-eight
lattice requires patching because some of the constituent elements are traversed in
the reverse direction. In particular, there are adjacent fibres f which have opposite
values of f%dir. This happens between the short drift at end of the common straight
section and the first bend of the upper ring; and also between the last bend of the
upper ring and the subsequent short drift.

write(6,*) "Fig8 has ", Fig8%n, " fibres"
Fig8%name = "Figure-Eight"
Fig8%closed = .true.

38 modeling an accelerator with ptc

190 call ring_L(Fig8, .true.) ! make it topologically closed

p1 => Fig8%start
do i = 1, Fig8%n
call check_need_patch(p1, p1%next, 1.d-10, pos)

195 if(pos /= 0) call find_patch(p1, p1%next, next = .false.)
p1 => p1%next

end do

Trackable layout Fig8 is now complete. It has 140 fibres pointing to 134 elements
in DNA sequences L4 and L3. Twelve of the fibres in Fig8 point to the six elements
(four drifts and two quadrupoles at the top of L4) which are common to the upper
and lower rings. See figure 3.6.

Collider

Col1

Col2

Figure 3.8: Collider.

Here we model a collider—figure 3.8, also the right-hand lattice in figure 3.2—which
has clockwise propagating beams in each of its two rings. This model comprises two
layouts, Col1 and Col2, which we shall construct from DNA sequences L5 and L6
(see table 3.1). For the lower ring, we use the full ten-cell PSR lattice in layout L6. For
the upper ring, we use all of layout L5 (PRS_minus), and we re-use six of the fibres
in layout L6.15 In addition, so that this layout does not overlap our previous layouts,

15 Yes, this sounds much
like the description for

layout Fig8. Be sure
to note the differences.

PSR1, PSR2, and Fig8, we shall place it 40 m distant in the positive z direction.
The construction of layouts Col1 and Col2 takes place in the following four blocks

of code. We describe each in detail.
In this first block of code, we place all the beamline elements of layouts Col1

and Col2 in their correct locations: We translate layout L6 a distance 40 m in the
positive z direction. We then rotate layout L5 180° about the entrance of its first
element (L5%start%chart%f%a). This rotates the gap in L5 down to the bottom.
To finish placing L5 in the correct location, we want the end of its last bend to
coincide with the entrance of the first bend in the lower ring, L6. We therefore point
layout pointer p1 to the first bend ("B") in L6; compute the vector d from the exit
of the last bend in L5 (L5%end%chart%f%b) to the entrance of the first bend in L6
(p1%chart%f%a); and then translate layout L5 by that vector d.

200 !== Col1 : lower collider ring (layout 10)
!== Col2 : upper collider ring (layout 11)
d = zero
d(3) = 40.d0
call translate(L6, d)

205 a = zero
a(2) = pi
call rotate(L5, L5%start%chart%f%a, a)
call move_to(L6, p1, "B", pos)
d = p1%chart%f%a - L5%end%chart%f%b

210 call translate(L5, d)

In the next block of code, we construct layout Col1: We call append_empty_layout
on m_u and set the layout pointer Col1 to point to this new layout. Then we append
in order all the fibres of L6 to Col1. Finally, we give our new layout a formal name
("Collider 1") and ensure that it is topologically closed. This layout does not
require patching.

3.5 modeling complex accelerator topologies 39

call append_empty_layout(m_u)
Col1 => m_u%end
p1 => L6%start

215 do i = 1, L6%n
call append_point(Col1, p1)
p1 => p1%next

end do

220 write(6,*) "Collider 1 has ", Col1%n, " fibres"
Col1%name = "Collider 1"
Col1%closed = .true.
call ring_L(Col1, .true.) ! make it a ring topologically

In the next block of code, we construct layout Col2: We call append_empty_layout
again on m_u, set the layout pointer Col2 to point to this new layout, and then locate,
in line 227, the first short drift in layout L6. To populate Col2, we now, in lines 228–
233, march backwards appending the six elements in the straight section at the top of
layout L6 (short drift, defocusing quadrupole, two long drifts, focusing quadrupole,
and short drift). While doing this, we inform PTC, in line 231, that this layout
traverses those elements in the opposite direction. Finally, in lines 234–238, we
append in order all the fibres of L5 to Col2.

225 call append_empty_layout(m_u)
Col2 => m_u%end
p1 => L6%start%next%next
do i = 1, 6
write(6,*) p1%mag%name

230 call append_point(Col2, p1)
Col2%end%dir = -1
p1 => p1%previous

end do
p1 => L5%start

235 do i = 1, L5%n
call append_point(Col2, p1)
p1 => p1%next

end do

In this last block of code for Col2, we give our new layout a formal name
("Collider 2"), ensure that it is topologically closed, and apply any necessary
patches. This layout requires patches only where Vbre%dir switches sign. As in our
earlier layout Fig8, this happens at the two ends of the common straight section,
where they join the bends of the upper ring.

240 write(6,*) "Collider 2 has ", Col2%n, " fibres"
Col2%name = "Collider 2"
Col2%closed = .true.
call ring_L(Col2, .true.) ! make it a ring topologically

245 p1 => Col2%start
do i = 1, Col2%n

40 modeling an accelerator with ptc

call check_need_patch(p1, p1%next, 1.d-10, pos)
if(pos /= 0) call find_patch(p1, p1%next, next = .false.)
p1 => p1%next

250 end do

The trackable layouts Col1 and Col2 are now complete. They have 140 fibres
pointing to 134 elements in DNA sequences L6 and L5. Twelve of the fibres in Col1
and Col2 point to the six elements which are common to the upper and lower rings.

3.6 DNA Arrays

The following code constitutes a bit of housekeeping. We have created a set of
six layouts—L1–L6—that form the core of our DNA database. What we do here
is tell each of the trackable layouts we have created—PSR1, PSR2, Fig8, Col1, and
Col2—which DNA sequences they use. This information is stored in the array DNA
that is part of the data held in each PTC layout.

In line 258 we record in PSR1 the fact that DNA sequence L1 is used by PSR1.
Then line 260 records the fact that PSR1 also uses DNA sequence L2. Note that
this latter line makes use of the linked-list character of our DNA database. (Recall,
see page 25, that m_u is a linked list of layouts.) Since PSR1%DNA(1)%L already
points to L1 (see line 258), and since L2 is the next layout in the DNA database,
then PSR1%DNA(1)%L%next points to L2. (In this very simple case you could, of
course, replace lines 259–261 with the single statement PSR1%DNA(2)%L => L2.) The
remaining lines in this block of code populate the DNA arrays for the other trackable
layouts.

allocate(PSR1%DNA(2))
PSR1%DNA(1)%L => L1
do i = 2, 2

260 PSR1%DNA(i)%L => PSR1%DNA(i-1)%L%next ! L2
end do

allocate(PSR2%DNA(2))
PSR2%DNA(1)%L => L1

265 do i = 2, 2
PSR2%DNA(i)%L => PSR2%DNA(i-1)%L%next ! L2

end do

allocate(Fig8%DNA(2))
270 Fig8%DNA(1)%L => L3

do i = 2, 2
Fig8%DNA(i)%L => Fig8%DNA(i-1)%L%next ! L4

end do

275 allocate(Col1%DNA(2))
Col1%DNA(1)%L => L5
do i = 2, 2
Col1%DNA(i)%L => Col1%DNA(i-1)%L%next ! L6

end do
280

allocate(Col2%DNA(2))

3.6 dna arrays 41

Col2%DNA(1)%L => L5
do i = 2, 2
Col2%DNA(i)%L => Col2%DNA(i-1)%L%next ! L6

285 end do

four

Linking Magnets Together and Moving
Them as a Group

In many accelerator designs, there are groups of elements that move together as a
unit. The Large Hadron Collider, for example, has dual-bore magnets that carry the
two counter-propagating beams through the cryostats. A more common example is
a group of elements assembled onto a single substrate. When misalignments are
applied to such units, our accelerator modeling code should respect the internal
geometric constraints.

PTC allows us to link elements together to model groups of elements that move
as units. In this chapter, we describe the tools PTC provides, and we illustrate their
use by applying them to the collider (layouts Col1 and Col2) of the previous chapter.

4.1 Siamese and Girders

A siamese consists of elements that are linked together so that one can move them as
a group. Those elements may be in the same or different layouts. The elements in
a siamese are often parallel, as in a collider; but they may be in different arcs of a
recirculator—arcs, for example, that share common cryogenics.

s

s

Figure 4.1: A pair of ele-
ments linked together as a
siamese.

s

s

s

s

Figure 4.2: Incorrect and
correct rotations of a
siamese.

To create a siamese, we build a circular linked list containing the several elements
we wish to tie together. See figure 4.1. When moving a siamese, PTC traverses
the linked list, moving all the siamese elements in concert. Note that doing this
properly—i.e. preserving the geometric relations between the siamese elements—
requires the use of a common reference frame. Figure 4.2, for example, illustrates
incorrect and correct rotations of a pair of elements linked together as a siamese.
In the left-hand graphic of that figure, the same rotation applied to the separate
elements breaks the geometry of the siamese. In the right-hand graphic, the use
of a common reference frame when rotating the elements preserves the geometry.
When we link the elements together as a siamese and then ask PTC to rotate the
siamese—as opposed to the individual elements—PTC takes care of the details
and preserves the internal geometric constraints. We discuss geometric operations
applied to siamese later in this chapter. See also Operations on Siamese, page 75.

A siamese does not have an independent reference frame; instead, a siamese
frame is defined in terms of translations and rotations with respect to the frame of
one of its constituent elements. Misalignments of a siamese are then specified in a
similar way with respect to the siamese frame. If we zero the misalignments, the
siamese returns to its original location.

44 linking magnets together and moving them as a group

A girder is a collection of siamese and regular elements tied to a substrate so that
one can move them as a unit. Like a siamese, we construct a girder as a circular
linked list containing the elements belonging to the common substrate. See figure 4.3.
Unlike a siamese, a girder typically has its own reference frame, independent of
any element on the girder. This is actually a pair of reference frames—stored in the
PTC data type aXne_frame. The two frames specify location and orientation for the
original and misaligned girder. This structure simplifies the process of misaligning a
girder: If applying a different misalignment to the girder, PTC starts with the original
frame. If adding to an existing misalignment, PTC uses the misaligned frame as its
starting point. If we remove the misalignment, PTC easily returns the girder to its
original position in the lattice. We discuss geometric operations applied to girders
later in this chapter. See also Operations on Girders, page 76.

g g g

Figure 4.3: A trio of ele-
ments linked together
as a girder that has its

own reference frame.

Do note that linking together a group of elements on a girder does not mean those
elements may no longer move with respect to one another. It is only the geometric
operations that apply specifically to girders that will preserve the geometric relations
between the girder elements. A similar comment applies for the siamese.

In this chapter we show how to create a pair of siamese and a girder in the
collider—trackable layouts Col1 and Col2 from chapter 3—as well as how to misalign
them. The code in this chapter is from the PTC geometry tutorial source file,
ptc_geometry.f90, which is given in appendix C. The line numbers of the code
shown here refer to the line numbers of the code in that appendix.

4.2 Building Siamese, Girders, and their Reference Frames

Col1

Col2

170
467

34
7 70

14

Figure 4.4: Collider inter-
action region. The num-
bers show the indices of

a few of the fibres within
the corresponding layout.

At each end of the straight section shared by layouts Col1 and Col2, see figure 4.4,
is a pair of overlapping bend magnets. In the first block of code below, we group
each pair of bends as a siamese. For the pair at the left-hand end of the straight, we
set, in the first two lines, pointers p1 and p2 respectively to the 67

th and 7
th fibres

of layouts Col1 and Col2. Those two fibres contain the pair of elements we wish to
group together as a siamese. Each of those elements—p1%mag and p2%mag—contains
an element pointer called siamese. In lines 388 and 389 we now set each element’s
siamese pointing to the other element, thus creating a circular linked list that ties
these two elements together.

In a similar fashion, the next four lines link together as a siamese the two bends
at the right-hand end of the common straight. Those elements belong to the 4

th and
70

th fibres respectively of layouts Col1 and Col2.

call move_to(Col1, p1, 67)
call move_to(Col2, p2, 7)
p1%mag%siamese => p2%mag
p2%mag%siamese => p1%mag

390 call move_to(Col1, p1, 4)
call move_to(Col2, p2, 70)
p1%mag%siamese => p2%mag
p2%mag%siamese => p1%mag

Our next goal is to group together onto a girder the above two siamese and all the
intervening elements shared by layouts Col1 and Col2. In addition, we will add one
more element to our girder: the bend in the 14

th fibre of layout Col2 (see upper left
of figure 4.4). We do this not because this example seems likely from an engineer’s
perspective, but because we want to illustrate the flexibility of PTC’s approach. In

4.2 building siamese, girders, and their reference frames 45

particular, we wish to emphasize the fact that elements tied to a common girder
need not be adjacent. Nevertheless, tied to a common substrate, they will move as a
unit.

The next block of code links together the elements we want on our girder. As for
the case of siamese, every PTC element contains an element pointer called girders,
and we use this to construct the linked list that ties our girder elements together.
Pointing p1 to the short drift at the left-hand end of the common straight section (in
fibre 68 of layout Col1), we deal first with the girder elements common to layouts
Col1 and Col2. In lines 396–400, we march along the straight section, pointing p2
to the next fibre, linking the elements in p1 and p2 (line 398), and then advancing
p1. After that loop terminates, both p1 and p2 point to fibre 4 in layout Col1, and
we have linked together the elements of the common straight section plus that last
bend.

call move_to(Col1, p1, 68)
395 f => p1 ! remember start of girder linked-list

do i = 2, 7
p2 => p1%next
p1%mag%girders => p2%mag
p1 => p1%next

400 end do
call move_to(Col2, p2, 7)
p1%mag%girders => p1%mag%siamese
p1%mag%siamese%girders => p2%mag
p2%mag%girders => p2%mag%siamese

405 call move_to(Col1, p1, 67)
call move_to(Col2, p2, 14)
p1%mag%girders => p2%mag
p2%mag%girders => f%mag

In the rest of this block of code, we link in the remaining four bends we want on our
girder: 7, 14, and 70 from Col2, and 67 from Col1. (Because these four indices are
distinct, we simplify the following description: instead of saying, for example, “the
bend in fibre 4 of Col1”, we shall say simply “bend 4”.) First, we move p2 to bend 7.
Line 402 then links bend 4 to bend 70, because p1%mag%siamese already points to
the latter. Line 403 links bend 70 to bend 7; and line 404 links bend 7 to bend 67,
because p2%mag%siamese already points to the latter. It now remains for us to link in
bend 14 and then close our linked list of girder elements. To do this, we first point
p1 to bend 67 and p2 to bend 14. Then line 407 adds the girder link from one to the
other of those two elements. Finally, line 408 closes the linked list.

We now have a pair of siamese and a girder defined in our collider. Our next
task is to define appropriate siamese and girder frames. Though we may locate
those frames wherever we wish, a sensible choice for the girder might be to make it
coincide with the entrance frame of the first fibre in layout Col1, at the center of our
collider’s common straight section. We accomplish this in the next block of code.

After moving p1 to the first fibre in layout Col1, we then, in line 410, allocate mem-
ory for the special dual reference frame needed by our girder, p1%mag%girder_frame.1

1 Read alloc_af as “allocate
affine frame”.

This has four pieces we need to define: a and b for the origins of the original and
current (or misaligned) frames, and ent and exi for the bases of those two frames.2

2 Here the origin of a ref-
erence frame refers to a
three-dimensional vector
that stores the coördinates
of the local frame’s origin
with respect to the global
frame. The basis refers to a
3× 3 matrix whose rows
contain the orthogonal unit
vectors of the local frame,
written with respect to the
global frame. See chapter 8

for more details.
In the remaining four lines of this block of code, we set these components equal to
the corresponding parts (origin or basis) of the entrance reference frame of the ele-

46 linking magnets together and moving them as a group

ment in fibre p1. This information is held in p1%mag%parent_fibre%chart%f, which
you might read as “the magnet frame attached to the chart associated with this
element’s parent fibre.”.

call move_to(Col1, p1, 1)
410 call alloc_af(p1%mag%girder_frame, girder = .true.)

p1%mag%girder_frame%a = p1%mag%parent_fibre%chart%f%a
p1%mag%girder_frame%ent = p1%mag%parent_fibre%chart%f%ent
p1%mag%girder_frame%b = p1%mag%parent_fibre%chart%f%a
p1%mag%girder_frame%exi = p1%mag%parent_fibre%chart%f%ent

As set here, the original and current frames are identical, so this girder is in its design
location. Later, if we ask PTC to misalign this girder, it will modify girder_frame%b
and girder_frame%exi, leaving girder_frame%a and girder_frame%ent to record
the design location and orientation of our girder.

Col1

Col2

Figure 4.5: Collider interac-
tion region. The small cross-

hairs indicate the frame
location for each siamese.

In the following block of code, we also define reference frames for the two siamese.
In this case, we choose to locate the siamese frames along the axis of the common
straight section, five meters from the center of that straight, and oriented parallel to
the girder’s frame of reference. (See the cross-hairs in figure 4.5.) Consider first the
left-hand siamese: We compute, in lines 415–416, the desired origin of our siamese
frame. Then, in the following two lines, we move fibre pointer b to bend 67 and
allocate the necessary memory.3 Here is where a siamese and girder differ. When3 This means the siamese

frame will be attached to
bend 67, but one could

equally well attach it
to bend 7, the other

magnet in this siamese.

PTC allocates a girder frame (by setting girder = .true., as in line 410 above), it
allocates memory for the data a, ent, b, and exi. For the siamese frame (the default,
as in line 418 below, is girder = .false.) PTC allocates memory for the data d and
angle, which specify not the frame itself, but rather how to get there (translation
and angle) from the entrance frame of the local element. Our next step is therefore to
compute d and angle. This we do in line 419 with a call to find_patch. The first two
arguments are respectively the origin and basis of bend 67’s entrance frame. The
second two arguments are the desired origin (a) and basis (same as for the girder).
And the last two arguments are the computed translation and angle, which we store
in our siamese frame: b%mag%siamese_frame%d and b%mag%siamese_frame%angle.

In a similar fashion, the remaining lines in this block of code define the reference
frame for the other siamese.

415 a = p1%mag%girder_frame%a
a(3) = a(3) - 5.d0
call move_to(Col1, b, 67)
call alloc_af(b%mag%siamese_frame)
call find_patch(b%mag%p%f%a, b%mag%p%f%ent, &

420 a, p1%mag%girder_frame%ent, &
b%mag%siamese_frame%d, b%mag%siamese_frame%angle)

a = p1%mag%girder_frame%a
a(3) = a(3) + 5.d0
call move_to(Col1, b, 4)

425 call alloc_af(b%mag%siamese_frame)
call find_patch(b%mag%p%f%a, b%mag%p%f%ent, &

a, p1%mag%girder_frame%ent, &
b%mag%siamese_frame%d, b%mag%siamese_frame%angle)

4.3 examples of misalignments 47

4.3 Examples of Misalignments

The remaining blocks of code in this chapter show some examples of misalignment
operations on the girder and siamese—with variations in their order and options.
In the margin are corresponding figures that illustrate the effect of the different
misalignments. (For comparison, figure 4.6 shows the same portion of the collider
with no misalignments.) To make the effects clear, we have made very exaggerated
“misalignments”: π/8 rad = 22.5° for rotations, and 2 m for displacements.

The various misalignments are specified by the six-component vector mis: the
first three components describe translation, while the last three describe rotation
in PTC order. This code is probably only somewhat self-explanatory. Nevertheless,
we present it here for you to look at and mull over, with only a little in the way of
comments. A detailed explanation is given in chapter 8, Geometric Routines.

Figure 4.6: No misalign-
ment.

Concerning line 431, note that bend 7 (i.e. the bend contained in fibre 7 of layout
Col2) is present in both the girder and the left-hand siamese, which are the parts we
misalign in the examples given here. That bend is not directly associated with either
the girder frame or the siamese frame. But it is indirectly associated: via the linked
lists that define the girder and the siamese, PTC can always find the appropriate
girder or siamese frame.

write(6,*) "Example # (from the manual) 1--11 ?"
430 read(5,*) example

call move_to(Col2, p2, 7)
if(example == 1) then ! Example 1

mis = 0.d0
mis(5) = pi / 8.d0

435 call misalign_girder(p2, mis)
elseif(example == 2) then ! Example 2
mis = 0.d0
mis(1) = 2.0d0
call misalign_girder(p2, mis)

440 elseif(example == 3) then ! Example 3
mis = 0.d0
mis(5) = pi / 8.d0
call misalign_girder(p2, mis)
mis = 0.d0

445 mis(1) = 2.d0
call misalign_girder(p2, mis, add = .false.)

elseif(example == 4) then ! Example 4
mis = 0.d0
mis(5) = pi / 8.d0

450 call misalign_girder(p2, mis)
mis = 0.d0
mis(1) = 2.d0
call misalign_girder(p2, mis, add = .true.)

elseif(example == 5) then ! Example 5
455 mis = 0.d0

mis(1) = 2.d0
mis(5) = pi / 8.d0
call misalign_girder(p2, mis)

1

2

3

4

5

Figure 4.7: Examples 1 (top)
through 5 (bottom).

48 linking magnets together and moving them as a group

The examples above all misalign only the girder. In the following examples, we
apply a misalignment also to one of the siamese. Note that the difference between
examples 7 and 8 is solely to the optional argument add in lines 470 and 478.

elseif(example == 6) then ! Example 6
460 mis = 0.d0

mis(1) = 2.d0
call misalign_siamese(p2, mis)

elseif(example == 7) then ! Example 7
mis = 0.d0

465 mis(1) = 2.d0
call misalign_siamese(p2, mis)
mis = 0.d0
mis(1) = 2.d0
mis(5) = pi / 8.d0

470 call misalign_girder(p2, mis, add = .false.)
elseif(example == 8) then ! Example 8

mis = 0.d0
mis(1) = 2.d0
call misalign_siamese(p2, mis)

475 mis = 0.d0
mis(1) = 2.d0
mis(5) = pi / 8.d0
call misalign_girder(p2, mis, add = .true.)

elseif(example == 9) then ! Example 9
480 mis = 0.d0

mis(1) = 2.d0
mis(5) = pi / 8.d0
call misalign_girder(p2, mis)
mis = 0.d0

485 mis(1) = 2.d0
call misalign_siamese(p2, mis, add = .false.)

elseif(example == 10) then ! Example 10
mis = 0.d0
mis(1) = 2.d0

490 mis(5) = pi / 8.d0
call misalign_girder(p2, mis)
mis = 0.d0
mis(1) = 2.d0
call misalign_siamese(p2, mis, add = .true.)

495 elseif(example == 11) then ! Example 11
mis = 0.d0
mis(1) = 2.d0
mis(5) = pi / 8.d0
call misalign_girder(p2, mis)

500 mis = 0.d0
mis(1) = 2.d0
call misalign_siamese(p2, mis, add = .false., &

preserve_girder = .true.)
end if

6

7

8

9

10

11

Figure 4.8: Examples 6

(top) through 11 (bottom).

five

Taylor Polymorphism and Knobs

PTC supports the full usage of Taylor maps derived from the integrator for the
computation of lattice functions. PTC uses FPP, a package of polymorphic types
and tools to extract and analyze the Taylor maps. Information explaining FPP1 is at 1 The CERN folder is called

PTC_proper to distinguish
it from the information on
Mad-X. Most of the infor-
mation in the PTC_proper
folder is about FPP.

http://mad.web.cern.ch/mad/PTC_proper/

5.1 Polymorphs

A polymorph is the Fortran90 type real_8:

type real_8
type (taylor) :: T ! active if Taylor
real(dp) :: r ! active if real or knob
integer :: kind ! 1=real,2=Taylor,3=Taylor knob,0=special
integer :: i ! used for knobs
real(dp) :: s ! scaling for knobs
logical(lp) :: alloc ! is Taylor is allocated in DA-package?

end type real_8

Polymorphs allow the computation of parameter-dependent maps.

States of a Polymorph

A polymorph Y can be real (Y%kind = 1), Taylor (Y%kind = 2), or a special Taylor
called a knob (Y%kind = 3).

Computing a Taylor Map

Suppose we have a closed orbit at position 1 given by six real numbers fix(1:6).
We can construct the following array of six polymorphs:

type(real_8) :: Y(6)
type(damap) :: id

call init(state, NO, 0)
call alloc(Y)

http://mad.web.cern.ch/mad/PTC_proper/

50 taylor polymorphism and knobs

call alloc(id)

id = 1
Y = fix + id

The variable state describes internal states of PTC.
The variable id is a differential algebra map (damap), and id = 1 constructs the

identity map.
Then Y = fix + id creates the polymorphic component Y(i) given by Y(i) =

fix(i) + xi, where xi denotes the i-th component of the identity map id.
To compute a one-turn map, for example, we track Y around the machine (here R)

as if it were six real numbers:

call track(R, Y, 1, state)

At the end, Y contains the Taylor map, to order NO, about the closed orbit fix.
The internal state variable state determines the exact nature of the map:

1. state = default0 specifies a 6-D map with cavities;
2. state = default0 + nocavity0 specifies a 6-D map with cavities skipped;
3. state = default0 + only_4d0 specifies a 4-D phase space (X, PX , Y, PY);
4. state = default0 + delta0 specifies a 4-D phase space (X, PX , Y, PY), plus

energy as the fifth variable; cavities are skipped.
For more information about states, see appendix A.

5.2 Knobs

A knob is a polymorph that turns itself into a simple Taylor series when used. A
knob cannot be on the left side of an equal sign.

Knobs let users set up parameters that can be changed without having to recom-
pile.

Using Knobs

Example: The bn(2) (quadrupole component) of a magnet is made into the first
knob:

bn(2)%kind = 3
bn(2)%i = 1
bn(2)%s = 1

At execution time, during an operation involving bn(2), the knob becomes the
following Taylor map:

bn(2)= bn(2)%r + bn(2)%s * X_j

In the map above, j= npara_fpp + bn(2)%i.
The integer npara_fpp depends on the state: It equals the minimal number of

variables compatible with the state selected. In the four state examples above:

5.2 knobs 51

1. npara_fpp = 6⇒ j = 7
2. npara_fpp = 6⇒ j = 7
3. npara_fpp = 4⇒ j = 5
4. npara_fpp = 5⇒ j = 6

Creating Knobs

While FPP has a routine to help users make a knob, PTC has tailored routines to
put knobs into a layout and remove knobs from a layout. The types, subroutines,
and routines are

• type pol_block;
• subroutine scan_for_polymorphs(R,B) or R = B;
• unary +, as in +state, to activate knobs in a track routine;
• TPSAfit(1:lnv) array;
• set_TPSAfit and set_element logicals;
• subroutine kill_para_L(R).

For more information about the unary + used to activate knobs in a track routine,
see Internal States, appendix A.

Polymorphic Blocks

This section discusses type pol_block, setting values for polymorphic blocks, and
removing polymorphic blocks from layouts.

Type pol_block

This data type creates an object to be compared with an actual layout. It identities
families or single elements using the name, part of the name, or the vorname (first
name) of an element to make certain variables knobs. (The last name is the family,
for example: QF.)

type pol_block
character(nlp) name
integer :: n_name
character(vp) vorname

! types for setting magnet using global array TPSAfit
real(dp), dimension(:), pointer :: TPSAfit
logical(lp), pointer :: set_TPSAfit
logical(lp), pointer :: set_element

! types for parameter dependence
integer :: npara ! should not be used anymore

! knob index
integer :: ian(nmax), ibn(nmax)
real(dp) :: san(nmax), sbn(nmax)
integer :: ivolt, ifreq, iphas
integer :: ib_sol

! scales for knobs

52 taylor polymorphism and knobs

real(dp) :: svolt, sfreq, sphas
real(dp) :: sb_sol

! user defined functions
type(pol_block_sagan) :: SAGAN

end type pol_block

Consider the following pol_block qf:

qf = 0 ! initialize the pol_block qf
qf%name = ’QF’ ! specify a family name
qf%ibn(2) = 1 ! set normal quad strength as first parameter

If we call the routine scan_for_polymorphs(R, qf) or R = qf, then the DNA layout
R is scanned. If a polymorphic magnet on any fibre of the layout R is named ’QF’,
then bn(2) becomes a knob. In our example:

bn(2) = bn(2%r + qf%sbn(2) * X(fpp_npara) + qf%ibn(2)
bn(2) = bn(2)%r + X(fpp_npara) + 1

The index fpp_npara depends on the state as explained above.
One may also specify an integer qf%n_name. If, for example, qf%n_name = 2, then

a polymorph is set if the magnet name matches ’QFxxxxxxxxxxxxxxx’, where x
denotes any character.

Once the knobs are set on the lattice using the routine scan_for_polymorphs,
tracking routines can be invoked after the DA-package has been initialized.

Setting Values using Polymorphic Blocks

Polymorphs allow for the computation of parameter-dependent maps. These maps
can be analyzed by various methods including normal forms. From these maps one
may attempt to fit certain computed quantities by modifying the parameters of the
polymorphs on the ring.

This is done as follows with scan_for_polymorphs or the = sign assignment. The
global parameter set_TPSAfit turns the scan_for_polymorphs routine into a routine
that inputs the array TPSAfit(1:C_%np_pol) into variables that the pol_blocks make
into knobs. Note that the knobs exist only in the polymorphic version of the magnet
located at fibre%magp. The polymorphic version is copied into the real magnet
fibre%mag if set_element is true.

set_TPSAfit = .true.
set_element = .true.
Col1%DNA(1)%L = qf(1)
Col1%DNA(1)%L = qd(1)
Col1%DNA(2)%L = qf(2)
Col1%DNA(2)%L = qd(2)
set_element = .false.
set_TPSAfit = .false.

Removing Polymorphic Blocks from Layouts

To remove a polymorphic block from a layout use the subroutines

5.3 tutorial example 53

call kill_para(Col1%DNA(1)%L)
call kill_para(Col1%DNA(2)%L)

5.3 Tutorial Example

The example code in this chapter is from the PTC geometry tutorial source file,
ptc_geometry.f90, which is given in appendix C. The line numbers of the code in
the examples refer to the line numbers of the code in the appendix.

This tutorial example shows how to create a map for the collider with polymorphs
and knobs.

The first six lines of code initialize the polymorphic block for the focusing
quadrupoles (qf) in Col1 and Col2, give the quadrupoles the family name ’QF’, and
set their normal strength as the first parameter in the Taylor series. The following
six lines do the same for the defocusing quadrupoles (’QD’).

qf(1) = 0
qf(1)%name = ’qf’

315 qf(1)%ibn(2) = 1
qf(2) = 0
qf(2)%name = ’qf’
qf(2)%ibn(2) = 3
qd(1) = 0

320 qd(1)%name = ’qd’
qd(1)%ibn(2) = 2
qd(2) = 0
qd(2)%name = ’qd’
qd(2)%ibn(2) = 4

The next four lines of code declare qf and qd as independent in DNA layouts L5
and L6. They perform the same function as calls to the subroutine scan_for_polymorphs.
If a polymorphic magnet on any fibre of the DNA layouts L5 and L6 is named ’QF’
or ’QD’, then ibn(2) becomes a knob.

325 Col1%dna(1)%L = qf(1)
Col1%dna(1)%L = qd(1)
CoL1%dna(2)%L = qf(2)
CoL1%dna(2)%L = qd(2)

Once the knobs are set on the lattice using the scan_for_polymorphs routine
(or equivalent), we can invoke tracking routines after the DA-package has been
initialized.

The following lines of code define the closed orbit if not 0.

330 101 continue
state = default0 + only_4d0

fix1 = 0.d0

54 taylor polymorphism and knobs

fix2 = 0.d0;
335 call init(state, 2, c_%np_pol) ! c_%np_pol is automatically computed

The 2 is automatically computed above—counting the number of DNA variables
(1-4). This means the Taylor series now has eight variables.

call find_orbit(CoL1, fix1, 1, state, 1.d-6)
call find_orbit(Col2, fix2, 1, state, 1.d-6)
call alloc(y1)
call alloc(y2)

340 call alloc(id)
call alloc(n1)
call alloc(n2)
call alloc(eq);
id=1 ! identity damap

345 y1 = id + fix1 ! this is permitted in ptc only (not fpp)
y2 = id + fix2 ! closed orbit added to map

The plus sign in the next two lines of code activates the knobs. If we remove the
plus sign, PTC will ignore the knobs.

call track(Col1, y1, 1, +state) ! unary + activates knobs
call track(Col2, y2, 1, +state)

After accounting for knobs, the code computes the tunes (with and without
knobs). Equations 1 and 2 compute the tunes for col1; equations 3 and 4 compute
the tunes for col2.

The first number is the difference between the goal and what we have obtained,
which should be as close to 0 as possible.

n1 = y1 ! normal forms: abused of language permitted by ptc
350 n2 = y2 ! normally one should do => damap=y; normalform=damap

write(6,*) " tunes 1 "
write(6,*) n1%tune(1:2)
write(6,*) " tunes 2 "
write(6,*) n2%tune(1:2)

355 eq(1) = n1%dhdj%v(1) - 0.254d0
eq(2) = n1%dhdj%v(2) - 0.255d0
eq(3) = n2%dhdj%v(1) - 0.130d0
eq(4) = n2%dhdj%v(2) - 0.360d0
do i = 1, 4

360 eq(i) = eq(i) <= c_%npara
end do

call kanalnummer(mf,"eq.txt")
do i=1,4

365 call daprint(eq(i), mf)
end do
close(mf)

5.3 tutorial example 55

call kill(y1)
370 call kill(y2)

call kill(id)
call kill(n1)
call kill(n2)
call kill(eq)

375 call init(1,4)
call alloc(g,4)
call kanalnummer(mf,"eq.txt")
do i = 1, 4
call read(g%v(i), mf)

380 end do
close(mf)

g = g.oo.(-1)
tpsafit(1:4) = g

385 set_tpsafit = .true.
set_element = .true.
Col1%dna(1)%L = qf(1)
Col1%dna(1)%L = qd(1)
Col1%dna(2)%L = qf(2)

390 Col1%dna(2)%L = qd(2)
set_tpsafit = .false.
set_element = .false.
call kill(g)

We need to kill the knobs after we compute them: the two calls to kill_para kill
the knobs in DNA layouts L5 and L6.

write(6,*) " more "
395 read(5,*) i

if(i == 1) goto 101
call kill_para(Col1%dna(1)%l)
call kill_para(Col1%dna(2)%l)

six

Computing Accelerator Properties

This chapter explains how to compute global and local accelerator properties and
provides examples of the code required for the computations.

6.1 Global Scalars

Global scalars apply to the accelerator as a whole. They can be derived only after
the complete accelerator has been modeled, and they are the same at any point on
the closed orbit.

Tunes

x = zero
x(5) = delta
call find_orbit(lattice, x, 1, istate, 1.d-7)
call init(istate, 1, 0)
call alloc(y)
call alloc(normal)
call alloc(id)
id = 1
y = x + id
call track(lattice, y, 1, istate)
normal = y
write(6,’(a,3(2x,f9.6))’) ’tunes:’, normal%tune

Chromaticity

Anharmonicity

6.2 s-Dependent Global Quantities

Betatron Amplitude

x = zero
x(5) = delta

58 computing accelerator properties

call find_orbit(lattice, x, 1, istate, 1.d-7)
call init(istate, 1, 0)
call alloc(y)
call alloc(normal)
call alloc(id)
id = 1
y = x + id
call track(lattice, y, 1, istate)
normal = y
y = x + normal%a_t ! track this---normalizing transformation
p => lattice%start
beta_x = (y(1).sub.’10’) ** 2 + (y(1).sub.’01’) ** 2
beta_y = (y(3).sub.’0010’) ** 2 + (y(3).sub.’0001’) ** 2
write(6,’(a,2(2x,f9.6))’) ’beta_x, beta_y: ’, beta_x, beta_y
do j = 1, lattice%n
call track(lattice, y ,j, j+1, istate)
beta_x = (y(1).sub.’10’) ** 2 + (y(1).sub.’01’) ** 2
beta_y = (y(3).sub.’0010’) ** 2 + (y(3).sub.’0001’) ** 2
write(6,’(a,2(2x,f9.6))’) ’beta_x, beta_y: ’, beta_x, beta_y
p => p%next

end do

Dispersion

x = zero
x(5) = delta
call find_orbit(lattice, x, 1, istate, 1.d-7)
call alloc(id) ! type(damap)
call alloc(disp) ! type(damap)
call alloc(xt) ! type(damap)
call alloc(eta) ! type(real_8), dimension(6)
call alloc(y) ! type(real_8), dimension(6)
call alloc(normal) ! type(normalform)
id = 1
y = x + id
call track(lattice, y, 1, default)
normal = y
y = x + normal%A_t
p => lattice%start
do j = 1, lattice%n
call track(lattice, y ,j, j+1, default)
id = 0
xt = y
disp = xt * id
x = xt
id = 1
disp = id - disp
xt = disp * xt
eta = x + xt

6.2 s-dependent global quantities 59

dispx = (eta(1).sub.’00001’)
dispy = (eta(3).sub.’00001’)
write(6,’(a,2(2x,f9.6))’) ’disp_x, disp_y: ’, dispx, dispy

end do

Phase Advance

M1

M2

Mn

M12

Figure 6.1: One-turn and
partial-turn transfer maps.

M12

A
−1

1

R(∆φ12)

A2

M12 = A2 ◦ R(∆φ12) ◦ A
−1

1

∆φ12

Figure 6.2: This graphic
illustrates the essential
relationships between
the one-turn map and
the normal form at two
different locations in a ring
lattice.

See caveat at end of § 2.3!

x = zero
x(5) = delta
call find_orbit(lattice, x, 1, istate, 1.d-7)
call init(istate, 1, 0)
call alloc(y)
call alloc(normal)
call alloc(id)
id = 1
y = x + id
call track(lattice, y, 1, istate)
normal = y
y = x + normal%a_t
theta_prev = zero
phi = zero
write(6,’(a,2(2x,f9.6))’) ’ CS phase adv:’, phi(1:2)
p => lattice%start
do j = 1, lattice%n
call track(lattice, y ,j, j+1, istate)
theta(1) = atan2((y(1).sub.’01’), (y(1).sub.’10’)) / twopi
theta(2) = atan2((y(3).sub.’0001’), (y(3).sub.’0010’)) / twopi
do k = 1, 2
if(theta(k) < zero .and. abs(theta(k)) > tiny) then
theta(k) = theta(k) + one

end if
dphi(k) = theta(k) - theta_prev(k)

60 computing accelerator properties

if(dphi(k) < zero .and. abs(dphi(k)) > tiny) then
dphi(k) = dphi(k) + one

end if
phi(k) = phi(k) + dphi(k)

end do
theta_prev = theta
write(6,’(a,2(2x,f9.6))’) ’ CS phase adv:’, phi(1:2)
p => p%next

end do

Beam Envelope

Text and example code here.

6.3 Local Quantities

Local properties do not apply to the accelerator as a whole. They are derived from
individual magnets, and they differ at different points on the closed orbit. The
trajectory of a particle through a magnet is local; it is derivable from the individual
magnet irrespective of the magnet’s position in the accelerator.

seven

Tracking Routines

PTC’s tracking routines are divided into four categories:

• standard tracking routines on fibres,
• tracking routines on integration nodes,
• tracking routines on 3-D information through an integration node,
• time-based tracking routines.

A fifth section documents the closed-orbit routine.
Mandatory arguments for the tracking routines are in regular black type. Op-

tional arguments are in red italic type.
Positions are normally specified by I1, I2, fibre1, fibre2, node1, or node2.

Generally, if only x1 is present (x=I, fibre, or node), this produces a one-turn map
from position x1 back to position x1 if the layout is closed. If the layout is opened,
then it goes to the end of the line.

If x1 and x2 are present, the routine tracks through x1 all the way to the front of
x2 (x2 not included).

The only exception to all of this is the time-based tracking routine.

7.1 Standard Tracking Routines on Fibres

These routines do not support spin and radiation.

Track

track (R, X, I1, I2, K)

X is an array of six real(dp) or REAL_8.
I1 and I2 are the position of the fibres.
Result=TRACK_FLAG (R,X,I1,I2,k)
Result=logical; true indicates stable; false indicates unstable.

track (C, X, K, CHARGE)

This routine tracks through the fibre C.

62 tracking routines

Find_orbit

find_orbit(R, FIX, LOC, STATE, eps, TURNS)

The find_orbit routine works in the same way as the subroutine find_orbit_x
but on the fibre structure without radiation. For more information about the sub-
routine find_orbit_x, see Find_orbit_x.

LOC is the integer location in the layout R.

7.2 Tracking Routines on Integration Nodes

These routines support spin and radiation.

Routines for Tracking either Probe or Probe_8

For the type definitions of probe and probe_8, see Probe.

TRACK_PROBE2

TRACK_PROBE2(R,XS,K,I1,I2)

I1,I2 = NODE POSITION
I1 only implies a one-turn map.
K=INTERNAL STATE

TRACK_PROBE

TRACK_PROBE (R,XS,K,FIBRE1,FIBRE2,NODE1,NODE2)

FIBRE1,FIBRE2,NODE1,NODE2 are all integer positions of either the fibre or the
integration node.

TRACK_NODE_PROBE

TRACK_NODE_PROBE(T,XS,K)

T is an integration node.

Object-Oriented Routines

TRACK_PROBE2 (XS,K,FIBRE1,FIBRE2,NODE1,NODE2)
TRACK_PROBE (XS,K,FIBRE1,FIBRE2,NODE1,NODE2)
TRACK_NODE_PROBE (XS,K,FIBRE1,FIBRE2,NODE1,NODE2)

These are all calls to the same routine. The fibres and the nodes are actual pointers
to the objects.

One turn can be done as follows:

7.3 tracking routines on 3-d information through an integration node 63

TRACK_PROBE (XS,K,NODE1=T,NODE2=T%PREVIOUS)

In the TRACK_PROBE_X routine, the fibres and the nodes are pointers to the objects.
The routine wraps the TRACK_PROBE routine shown above.

TRACK_PROBE_X (R,X,K,U,T,FIBRE1,FIBRE2,NODE1,NODE2)

Routines for Tracking either Real or Real_8

All these routines wrap the above routines and therefore support radiation, beam-
beam and s-dependent apertures.

TRACK_NODE_X

TRACK_NODE_X(T,X,K)

TRACK_PROBE_X

TRACK_PROBE_X(R,X,K,U,T,FIBRE1,FIBRE2,NODE1,NODE2)

U=LOGICAL where TRUE indicates UNSTABLE (optional).
T is a pointer to the fibre where the particle is lost (optional).

TRACK_BEAM

This routine tracks a beam of particles.

TRACK_BEAM(R,B,K,T,FIBRE1,FIBRE2,NODE1,NODE2)

For the type definition of BEAM, see Section B.2.

7.3 Tracking Routines on 3-D Information through an

Integration Node

These routines track three-dimensional information through an integration node.

Track_node_v

The TRACK_NODE_V routine tracks a trajectory and records its three-dimensional
position for plotting at the beginning and the end of a node.

TRACK_NODE_V (T,V,K,REF)

64 tracking routines

T is an integration node.
V is of type THREE_D_INFO. The type definition is given below.
REF=TRUE or FALSE. If REF=TRUE, then the results of the TRACK_FILL_REF routine

are used. The ray is magnified by V%SCALE (see type THREE_D_INFO below) with
respect to a trajectory computed and stored by the TRACK_FILL_REF routine, which
tracks the ray FIX from fibre I1 back to fibre I1.

TRACK_FILL_REF(R,FIX,I1,K))

Here is the data type definition for three-dimensional information.

TYPE THREE_D_INFO
REAL(DP) A(3),B(3) ! CENTRE OF ENTRANCE AND EXIT FACES
REAL(DP) ENT(3,3),EXI(3,3) ! ENTRANCE AND EXIT FRAMES FOR DRAWING MAGNET FACES
REAL(DP) WX,WY ! WIDTH OF BOX FOR PLOTTING PURPOSES
REAL(DP) O(3),MID(3,3) ! FRAMES AT THE POINT OF TRACKING
REAL(DP) REFERENCE_RAY(6) !
REAL(DP) X(6) ! RAY TRACKED WITH REFERENCE_RAY USING A TYPE(BEAM)
REAL(DP) R0(3),R(3) ! RAY POSITION GLOBAL RETURNED
REAL(DP) SCALE ! MAGNIFICATION USING REFERENCE_RAY
LOGICAL(LP) U(2) ! UNSTABLE FLAG FOR BOTH RAY AND REFERENCE_RAY

END TYPE THREE_D_INFO

7.4 Time-based Tracking Routines

These routines provide time-based tracking of temporal probes and temporal beams.

Track_time

TRACK_TIME(XT,DT,K)

XT is a temporal probe. For the type definition of TEMPORAL_PROBE, see Section B.2.

Track_temporal_beam

TRACK_TEMPORAL_BEAM(B,DT,STATE)

B is a temporal beam. For the type definition of TEMPORAL_BEAM, see Section B.2.

7.5 Closed-Orbit Routine

This routine finds the closed orbit.

Find_orbit_x

7.5 closed-orbit routine 65

FIND_ORBIT_X(R,FIX,STATE,eps,TURNS,fibre1,node1)

Here fibre1 and node1 are integer positions. The routine finds the fixed point
for TURNS turns; one turn if not specified.

The argument eps= real(dp) number is used to do numerical differentiation—
typically 1.d-6 works.

For a no-cavity fixed point, fix(5) must contain the energy variable.

eight

Geometric Routines

PTC’s geometric routines are divided into three categories:
• affine routines on pure geometry,
• affine routines on computer objects,
• dynamical routines.
Mandatory arguments for the geometric routines are in regular black type.

Optional arguments are in red italic type.

8.1 Affine Routines on Pure Geometry

Affine routines on pure geometry act on a pure geometrical affine basis: A(3) and
V(3,3) where A represents the coordinates of a point in the global frame, and V(3,3)
the coordinates of a triad of vectors.

Theory

Consider a point a and vector basis (v1, v2, v3) attached to a solid (a magnet, for
example). See figure 8.1.

Figure 8.1: Rotating point a
and vector basis (v1, v2, v3)
by R.

The vector a can be expressed as follows:

a = ∑
i

aivi.

68 geometric routines

The basis vectors vi can be expressed in terms of a global basis, that is, PTC’s
global frame:

vi = ∑
j

Vijej.

Suppose we rotate the solid by a rotation R defined by its action on the basis
(v1, v2, v3):

wi = Rvi = ∑
j

Rijvj.

Then we ask the following question: what are the components of wi in the global
basis (e1, e2, e3) in terms of the component array Vij?

Note: The components of b in the frame (w1, w2, w3), which is the image of a
upon rotation of the magnet, are also given ai because this point is fixed in the
magnet.

Solution:
wi = Rvi = ∑

j
Rijvj = ∑

jk
RijVjkek = ∑

k
Wikek.

Thus we have
W = RV.

The components of the vector b in the global frame are then

bk = ∑
ij

aiRijVjkek → b = (RV)ta.

We now address a slightly harder problem, which is essential in PTC. The rotation
R, instead of being defined in the frame (v1, v2, v3), might be defined on a totally
different frame (u1, u2, u3):

ui = ∑
k

Uikek.

Therefore, prior to rotating the basis (v1, v2, v3), we must express it in the frame
(u1, u2, u3):

a = ∑
ik

aiVikek = ∑
ikn

aiVikU−1
kn un = ∑

ikn
aiVikUnkun.

We can now apply the rotation R defined on the basis (u1, u2, u3):

b = ∑
iknm

aiVikUnkRnmum = ∑
iknm

aiVikUnkRnmUmkek.

Thus the final result of W is:

W = VUtRU

The point b in global coordinates is:

bi = ∑
k

aiWik → b = (VUtRU)ta.

Notice that if V = U, we regain the previous result.
PTC factors the rotation R in the form

R = RzRyRx

Using local variables results in the need to go back and forth between frames.
The magnets must be placed within the global frame. However, the tracking is in
local variables. We need routines that are able to connect geometrically both points
of view.

8.1 affine routines on pure geometry 69

Descriptions of the Routines

This section describes the affine routines on pure geometry.

GEO_ROT

GEO_ROT(V(3, 3),W(3, 3),A(3),B(3),ANG(3),BASIS(3,3))

This routine exactly reproduces the theory in the previous section.
BASIS is an optional variable, which is set equal to the U described in Section 8.1.
The real array ANG(3) is used to define R:

R = Rz(ang(3))Ry(ang(2))Rx(ang(1))

GEO_ROT(V(3, 3),W(3, 3),ANG(3),BASIS(3,3))

This routine is the same as the previous routine except that A and B are not
needed.

GEO_ROT(V(3, 3),A(3),ANG(3),I,BASIS(3,3))

Here the final W and B are copied back into V and A. The integer I can be ±1 to
produce the inverse rotation: R±1.

GEO_ROT(V(3, 3),ANG(3),I,BASIS(3,3))

This routine is the same as the previous routine without the A vector.

GEO_TRA

GEO_TRA(A(3),V(3, 3) (3),D,I)

A is translated by ± D expressed in the basis V; I = ±1.

result = ∑
ij
(ajej ± diVijej)

The result is put back in A, that is:

A← A±VtD

Rotating and Translating the Frames of a Magnet

ROTATE_FRAME(F,OMEGA,ANG,ORDER,BASIS(3,3))

F is of type magnet_frame and contains three affine frames tied to the magnet.

F = {(F%A(3), F%ENT(3)), (F%O(3), F%MID(3)), (F%B(3), F%EXI(3))}

The entire content of F is rotated as shown in figure 8.2.

70 geometric routines

Figure 8.2: Rotating
and translating the
frames of a magnet.

TRANSLATE_FRAME(F,D,ORDER,BASIS(3,3))

CALL CHANGE_BASIS(D,BASIS,DD,GLOBAL_FRAME)

P%A = P%A + ORDER * DD
P%B = P%B + ORDER * DD
P%O = P%O + ORDER * DD

The frame is simply translated by D. The translation D is expressed in BASIS if
present.

CHANGE_BASIS

CHANGE_BASIS(A(3),V(3,3),B(3),W(3,3))

The component vector A, expressed in the basis V, is re-expressed as B using basis
W. B is the output of this subroutine.

∑
ik

aiVikek = ∑
ik

biWikek → b = WVta.

COMPUTE_ENTRANCE_ANGLE

COMPUTE_ENTRANCE_ANGLE(V(3,3),W(3,3),ANG(3))

This is a crucial routine. Given two frames V and W, which most likely represent
a magnet or a beam line, the routine computes a rotation R in the standard PTC
order, that is,

R = Rz(ang(3))Ry(ang(2))Rx(ang(1))

such that V is transformed into W. It is the reverse routine from GEO_ROT.

8.2 affine routines on computer objects 71

FIND_PATCH_B

This routine connects the affine frame A,V to the affine frame B,W.

FIND_PATCH_B(A(3),V(3,3),B(3),W(3,3),D(3),ANG(3))

SUBROUTINE FIND_PATCH_B(A,V,B,W,D,ANG)
! FINDS PATCH BETWEEN V AND W : INTERFACED LATER FOR FIBRES
IMPLICIT NONE
REAL(DP), INTENT(INOUT) :: V(3,3),W(3,3)
REAL(DP), INTENT(INOUT) :: A(3),B(3),D(3),ANG(3)
CALL COMPUTE_ENTRANCE_ANGLE(V,W,ANG)
D=B-A; CALL CHANGE_BASIS(D,GLOBAL_FRAME,D,W);

END SUBROUTINE FIND_PATCH_B

The above code is a simple example of the usage of the geometric routines. This
geometric routine is very close to the dynamical set up of PTC. Patches are written
as an “x” rotation, a “y” rotation, a “z” rotation, followed by a translation (transverse
+ drift). Note that the translation D = B− A between is expressed in the final frame
W. This is normal if dynamical rotations precede the translations.

FIND_INVERSE_PATCH

This routine is the precise inverse of the FIND_PATCH_B routine. The affine frame B,W
is the output.

INVERSE_FIND_PATCH(A(3),V(3,3),D(3),ANG(3),B(3),W(3,3))

SUBROUTINE INVERSE_FIND_PATCH(A,V,D,ANG,B,W)
! USED IN MISALIGNMENTS OF SIAMESE
IMPLICIT NONE
REAL(DP), INTENT(INOUT):: V(3,3),W(3,3)
REAL(DP), INTENT(INOUT):: A(3),B(3),D(3),ANG(3)
REAL(DP) :: DD(3)
W=V
CALL GEO_ROT(W,ANG,1,BASIS=V)
CALL CHANGE_BASIS(D,W,DD,GLOBAL_FRAME)
B=A+DD

END SUBROUTINE INVERSE_FIND_PATCH

8.2 Affine Routines on Computer Objects

Affine routines on PTC’s computer objects act on the affine bases of magnets,
siamese, girders, integration nodes, and fibres. These objects contain a myriad of
affine bases to help us locate the trajectories in 3-D.

Within this category are two subcategories:

72 geometric routines

• Affine Routines on Fibrous Structures: Displacements that correspond to the
design positioning and thus requiring patching.

• Misalignment Routines: Misalignments representing errors that do not require
patching. The misalignments displace the magnet away from a fibre that con-
tains it. The misalignments also displace girders away from their original
position.

Affine Routines on Fibrous Structures

We discussed in the previous section PTC’s geometric tools on the affine frame.
This is useful in giving a pictorial representation of a ring in 3-D. One can imagine
linking PTC with a CAD program equipped with a magnet widget containing at
least one affine frame, say the cord frame O(3), MID(3,3) of a PTC magnet.

Of course, PTC is dynamically a more complex structure than just magnets:
fibres, integration nodes, layouts, etc. All these objects have affine frames attached
to them, and we must be able to move them.

We describe first the routines that displace PTC structures away from a standard
“MAD8” configuration.1 These are used in the generation of “non-standard” systems.1 The quotation marks in-

dicate that there is really
nothing standard about the
so-called standard implicit

geometry of MAD8. It is
worth pointing out that the

code MAD of CERN and
the code SAD of KEK have
different implicit geometry

once vertical magnets are in-
voked: nothing is standard.

Patching Routines

The central power of PTC is its ability to place magnets in arbitrary positions. To
do so, the concept of a fibre with a patch is necessary.

FIND_PATCH

FIND_PATCH(EL1,EL2_NEXT,NEXT,ENERGY_PATCH,PRECi)

EL1 and EL2_NEXT
PREC is a small real(dp) number. If the norm of the geometric patch is smaller

than PREC, then the patch is ignored. If energy_patch is true, then it compares the
design momenta of the magnets in both fibres. If the magnitude of difference is
greater than PREC, then an energy patch is put on.

CHECK_NEED_PATCH

This routine checks whether a patch is needed without actually applying it to the
layout. The routine returns the integer PATCH_NEEDED. If zero, it is not needed.

CHECK_NEED_PATCH(EL1,EL2_NEXT,PREC,PATCH_NEEDED)

Fibre Content

Before going any further, we remind the reader of the frames contained within a
fibre:

• the frames of the fibre itself located in type chart, that is, fibre%chart%f,
• the frames of the magnet fibre%mag%p%f and its polymorphic twin,
• the frames of the integration nodes associated with this fibre/magnet, if they

are present,
• the frame of a girder that might be tagged on this magnet.

8.2 affine routines on computer objects 73

Subroutines Invoking the Magnet and Relying on the DNA

When complex structures are constructed in PTC, it is preferable to follow a strict
discipline. First various layouts with no “cloning” of magnets are created in a “mad
universe” of data type MAD_UNIVERSE. The code MAD-X calls this universe M_U.

These no-clone layouts contain the actual magnet database of the accelerator
complex. Therefore we refer to these layouts as the DNA of the complex.

Then trackable structures are appended after the DNA. Since the magnets of
these structures must be in the DNA, they are created with the APPEND_POINT
routine rather than the standard APPEND_EMPTY or APPEND_FIBRE used for the DNA
production.

When the APPEND_POINT routine is used, a magnet will automatically retain mem-
ory of its various fibre appearances though a data type called FIBRE_APPEARANCE.

TYPE FIBRE_APPEARANCE
TYPE(FIBRE), POINTER :: PARENT_FIBRE
TYPE(FIBRE_APPEARANCE), POINTER :: NEXT

END TYPE FIBRE_APPEARANCE

Each magnet of the DNA contains a pointer called:

TYPE(FIBRE_APPEARANCE), POINTER :: DOKO

which constitutes a linked list storing all the appearances of this magnet in the
pointer parent_fibre. The linked list is terminated, or grounded, at the last fibre
appearance. If more trackable structures are created, this linked list is extended for
each magnet.

There are all sorts of reasons why we may have multiple appearances of a
DNA magnet: recirculation, common section of colliders or even multiple trackable
structures of the same physical object.

It is through the DOKO construct that the following routines know where all the
magnets are located.

Translation Routines with No Automatic Patching

This section describes translation routines that do not automatically patch fibres
together.

TRANSLATE_FIBRE

This routine uses the DOKO construct, if associated, to locate all the appearances of a
magnet and rotate the frames on all integration nodes if present.

TRANSLATE_FIBRE(R,D(3),ORDER,BASIS(3,3),DOGIRDER)

Here R is a fibre to be translated by D. Dogirder=true forces the translation of the
girder frame if present.

TRANSLATE_LAYOUT

This routine

74 geometric routines

• scans the layout R from position I1 to I2 inclusive if present. I1 and I2 are
defaulted to 1 and R%N respectively.

• calls TRANSLATE_FIBRE with dogirder=true on each fibre.
• uses the DOKO construct, if associated, to locate all the appearances of a magnet

and rotate the frames on all integration nodes if present.

TRANSLATE_LAYOUT(R,D,I1,I2,ORDER,BASIS)

Rotation Routines with No Automatic Patching

This section describes rotation routines that do not automatically patch fibres
together.

ROTATE_FIBRE

The comments that apply to TRANSLATE_FIBRE also apply to ROTATE_FIBRE.

ROTATE_FIBRE(R,OMEGA,ANG,ORDER,BASIS,DOGIRDER)

ROTATE_LAYOUT

The comments that apply to TRANSLATE_LAYOUT also apply to ROTATE_LAYOUT.

ROTATE_LAYOUT(R,OMEGA,ANG,I1,I2,ORDER,BASIS)

DNA-Designed Rotation Routines with Automatic Patching

This section describes rotation routines that automatically patch fibres together. The
routines have been designed to rotate magnets stored in the DNA database.

ROTATE_MAGNET

ROTATE_MAGNET(R,ANG,OMEGA,ORDER,BASIS,PATCH,PREC)

R is a magnet. The routine rotates parent_fibre, which rotates all the frames of
the magnet.

If patch=true, then all the appearances of this magnet stored in DOKO are patched—
provided the norm of the patches is greater than PREC. It is advisable to set PREC to
a not too small number (for example, 10

−10) to avoid useless patches.
If there is no DNA, that is, if PTC runs in pure compatibility mode with standard

codes, then patches are on the parent fibre of the magnet.

TRANSLATE_MAGNET

This routine operates like ROTATE_MAGNET described above.

TRANSLATE_MAGNET(R,D,ORDER,BASIS,PATCH,PREC)

8.2 affine routines on computer objects 75

Operations on Siamese

For a discussion of siamese, see § 4.1.
Siamese are tied together by the pointer SIAMESE, which sits on fibre%mag%siamese.
To create a siamese structure, we make a circular linked list of magnets. For

example, suppose three DNA fibres f1, f2, and f3 must be tied together. This can
be done as follows:

f1%mag%siamese=>f2%mag
f2%mag%siamese=>f3%mag
f3%mag%siamese=>f1%mag

Siamese Frame of Reference

Because a siamese does not have its own frame of reference, it is advisable to set up
a so-called affine_frame on the siamese. In the above example, one picks up any
magnet of the siamese, for example f1%mag, and calls the routine:

CALL ALLOC_AF(F1%MAG%SIAMESE_FRAME)
CALL FIND_PATCH(F1%CHART%F%A,F1%CHART%F%ENT,A,ENT,&

F1%MAG%SIAMESE_FRAME%D,F1%MAG%SIAMESE_FRAME%ANGLE)

The siamese frame is located in relative coordinates from the entrance of the fibre
that contains the magnet on which siamese_frame is attached (green objects above).
Generally we may know the desired frame of reference in absolute coordinates
given by the red A(3) and ENT(3,3) above. The relative translation and rotation can
be computed, and the result is stored in the blue variables.

ROTATE_SIAMESE

This routine rotates the siamese by a set of angles ang(1:3) in the usual PTC order.

ROTATE_SIAMESE(S2,ANG,OMEGA,ORDER,BASIS,PATCH,PREC)

S2 is any fibre that contains an element of the siamese string. The intricate usage
of the optional variables OMEGA,ORDER,BASIS is best explained by displaying the
actual code:

CALL FIND_AFFINE_SIAMESE(S2,CN,FOUND)
IF(FOUND) CALL FIND_FRAME_SIAMESE(CN,B,EXI,ADD=MY_FALSE)

IF(PRESENT(BASIS)) THEN
BASIST=BASIS

ELSE
IF(FOUND) THEN
BASIST=EXI

ELSE
BASIST=GLOBAL_FRAME

ENDIF

76 geometric routines

ENDIF
IF(PRESENT(OMEGA)) THEN
OMEGAT=OMEGA

ELSE
IF(FOUND) THEN
OMEGAT=B

ELSE
OMEGAT=GLOBAL_ORIGIN

ENDIF
ENDIF

If OMEGA is present, then it is used. If BASIS is present, it is also used. Normally
one would expect both to be present or both to be absent. PTC does not check for
this.

If they are not present, PTC looks for a siamese frame which is then used if it
exists. Otherwise the global frame is used.

This routine calls the equivalent “magnet” routines over the entire string of
siamese, and this permits automatic patching.

TRANSLATE_SIAMESE

This routine functions like the above rotate_siamese with the same priorities
concerning the optional variable BASIS.

TRANSLATE_SIAMESE(S2,D,ORDER,BASIS,PATCH,PREC)

Operations on Girders

For a discussion of girders, see § 4.1.
To create a girder structure, we make a circular linked list of magnets. Let us

create a girder structure with the three siamese f1, f2, and f3 above. In addition, let
us put a single magnet f0 on the girder.

f0%mag%girder => f1%mag
f1%mag%girder => f2%mag
f2%mag%girder => f3%mag
f3%mag%girder => f0%mag

Four magnets are on the girder; three are in a siamese as well as on the girder.

Girder Frame of Reference

Unlike a siamese, a girder has a frame of reference. For example, we may elect to
put the frame of reference on f0:

CALL ALLOC_AF(F0%MAG%GIRDER_FRAME,GIRDER=.TRUE.)

Then we set the following two affine frames of the girder to the same value:

8.2 affine routines on computer objects 77

F0%MAG%GIRDER_FRAME%ENT = ENT
F0%MAG%GIRDER_FRAME%A = A
F0%MAG%GIRDER_FRAME%EXI = ENT
F0%MAG%GIRDER_FRAME%B = A

The affine frame A,ENT can be any convenient frame chosen by the people who
align the girder on the floor of the machine.

If a girder is misaligned, the affine frame B,EXI contains the new position of the
girder. If the misalignments are removed, then B,EXI coincides with A,ENT. This
allows the girder to have an existence independent of the fibres themselves. One
can move fibres within a girder during its creation while keeping this frame fixed.

ROTATE_GIRDER and TRANSLATE_GIRDER

The routines operate exactly as the siamese routines do and therefore do not require
any special description. The routines describe “design” displacements of the girder
and therefore the affine frames A,ENT and B,EXI are moved together.

ROTATE_GIRDER(S2,ANG,OMEGA,ORDER,BASIS,PATCH,PREC)
TRANSLATE_GIRDER(S2,D,ORDER,BASIS,PATCH,PREC)

Misalignment Routines

PTC has three fundamental misalignment routines related to a single magnet, a
siamese, and a girder.

The single magnet and the siamese are defined with respect to their fibre po-
sition and are thus inherently similar. The girder has a special frame of reference
independent of the fibre.

If one is not careful, a single magnet or a siamese misalignment may break the
girder. To avoid this problem, we start with the girder misalignment.

MISALIGN_GIRDER

MISALIGN_GIRDER(S2,S1,OMEGA,BASIS,ADD)

To understand how the misalignments affect single magnets, siamese, and girders,
we examine the following:

• example 0—girder,
• example 1—girder after rotation and additive misalignment,
• example 2—misalign siamese followed by misalign girder,
• example 3—misalign girder followed by misalign siamese,
• example 4—misalign siamese with PRESERVE_GIRDER=.true..
In these examples, we assume that a girder frame of reference has been defined;

otherwise the girder becomes simply a giant siamese.

78 geometric routines

Figure 8.3: Ex-
ample 0: girder.

Example 0

On the image in figure 8.3, the red and the cyan magnets are part of a single girder.
The origin of the girder frame of reference is located in the middle of the red drift
and displayed with an orange cross.

The cyan magnets form two siamese: one on the left and one on the right. The
array MIS(1:6) contains the actual misalignments: the translations in MIS(1:3) and
the rotations in MIS(4:6). They are applied in the standard PTC order: rotation
around the x, then the y, and finally the z-axis, followed by the translation.

Example 1

Now we rotate the girder by 22.5 degrees, as shown in figure 8.4.

Figure 8.4: Exam-
ple 1: girder after

22.5 degree rotation.

This was done with the command:

MIS=0.d0
MIS(5)=PI/8.d0
CALL MISALIGN_GIRDER(B,MIS,ADD=.FALSE.)

If we follow this command by:

8.2 affine routines on computer objects 79

MIS=0.d0
MIS(1)=2.d0
CALL MISALIGN_GIRDER(B,MIS,ADD=.TRUE.)

The ADD=.TRUE. indicates that the second misalignment of the girder is additive.
The misalignment is in the direction of the rotated girder, as shown in figure 8.5.

Figure 8.5: Example 1:
girder after an additive
misalignment.

MISALIGN_SIAMESE

MISALIGN_SIAMESE(S2,S1,OMEGA,BASIS,ADD,PRESERVE_GIRDER)

Example 2

Let us consider the following sequence of calls where the fibre pointer B is pointing
to a member of the left siamese:

MIS=0.d0
MIS(1)=2.d0
CALL MISALIGN_SIAMESE(B,MIS,ADD=.FALSE.)
MIS=0.d0
MIS(1)=2.d0
MIS(5)=PI/8.d0
CALL MISALIGN_GIRDER(B,MIS,ADD=.TRUE.)

Figure 8.6 shows the result.

Example 3

Now let us switch the order.

80 geometric routines

Figure 8.6: Example 2:
misalign siamese fol-

lowed by misalign girder.

MIS=0.d0
MIS(1)=2.d0
MIS(5)=PI/8.d0
CALL MISALIGN_GIRDER(B,MIS,ADD=.FALSE.)
MIS=0.d0
MIS(1)=2.d0
CALL MISALIGN_SIAMESE(B,MIS,ADD=.FALSE.)

Here we purposely made ADD=.FALSE. on the siamese call since naively one
expects the position to be relative to the girder on which it is attached. The results
should be the same, but they are not—as we see in figure 8.7.

Figure 8.7: Example 3:
misalign girder followed

by misalign siamese.

All the magnets store their effective misalignments in one array. Therefore the
siamese has no knowledge of being on a girder. ADD=.FALSE. sends the siamese
back to its original fibre.

8.2 affine routines on computer objects 81

Example 4

This command avoids sending the siamese back to its original fibre prior to the
misalignment:

MIS=0.d0
MIS(1)=2.d0
CALL MISALIGN_SIAMESE(B,MIS,ADD=.FALSE.,PRESERVE_GIRDER=.TRUE.)

Figure 8.8 shows the result.

Figure 8.8: Example 4:
misalign siamese with
preserve_girder=.true.

The same command with MIS=0.d0 in the siamese always returns the siamese to
its girder position, not to fibre position.

MISALIGN_FIBRE

This routine behaves like the siamese routine but acts on a single fibre.

MISALIGN_FIBRE(S2,S1,OMEGA,BASIS,ADD,PRESERVE_GIRDER)

Note: If the MISALIGN_FIBRE routine is used on a siamese, it mildly breaks the
siamese. One can imagine very tiny errors internal to a siamese and bigger errors
on the siamese and yet bigger errors on a girder containing siamese and individual
elements.

Therefore the following sequence of commands is acceptable if B is an element
part that is of a siamese and part of a girder:

CALL MISALIGN_FIBRE(B,MIS1)
CALL MISALIGN_SIAMESE(B,MIS2,ADD=.TRUE.)
CALL MISALIGN_GIRDER(B,MIS3,ADD=.TRUE.)

Here we would imagine MIS1 < MIS2 < MIS3. Notice that ADD=.TRUE. on a siamese
does not break a girder.

82 geometric routines

CALL MISALIGN_GIRDER(B,MIS3)
CALL MISALIGN_SIAMESE(B,MIS2,ADD=.FALSE. ,PRESERVE_GIRDER=.TRUE.)
CALL MISALIGN_FIBRE(B,MIS1,ADD=.TRUE.)

8.3 Dynamical Routines

Dynamical routines perform geometric rotations and translations, which act on the
tracked object itself. PTC has an “exact” dynamical group and an “approximate”
dynamical group. It is remarkable that the approximate dynamical rotations and
translations also form a group—but it is not isomorphic to the affine Euclidean
group.

The ultimate goal of PTC is to propagate particles and maps thanks to Taylor
polymorphism. Placing geometric objects in three dimensions is worthless unless
our rotations and translations can be translated into dynamical equivalents acting
on rays (and on spin).

It is useful first to look at the Lie algebra acting on the t-based dynamics because
it contains within it as a subgroup the affine part discussed above.

Exact Patching and Exact Misalignments: Dynamical Group

PTC first computes patching and misalignments geometrically. The connection
between two affine frames is always expressed as follows through pure geometric
computations:

Connection = T(dx, dy, dz) ◦ Rz ◦ Ry ◦ Rx

This product of operators is in the usual matrix ordering. Therefore the rotation
in the x-axis acts first, followed by the y-axis, etc. The rotations are computed using
COMPUTE_ENTRANCE_ANGLE.

We factor the rotation in that manner because the operators Rx and Ry are drifts
in polar coordinates and are therefore nonlinear. For example, the rotation Ry is a
pole face rotation, dubbed “prot” by Dragt in the code MARYLIE. The formula is
given by:

x =
x

cos α
(

1− px
pz

tan α
) , where pz =

√(
1− 2

β0
pt + p2

t

)
− p2

x − p2
y

px = px cos α + pz sin α

y = y +
xpy tan α

pz

(
1− px

pz
tan α

)
py = py

t = t +
x
(

1
β0
− pt

)
tan α

pz

(
1− px

pz
tan α

)
pt = pt

Here (t, pt) form a canonical pair. In PTC (−pt, t) form a canonical pair.

8.3 dynamical routines 83

We get the rotation Rx from Ry by interchanging x and y. Both rotations rotate
the magnet towards the direction of propagation, that is, towards the z-direction.

The rotation Rz is the usual affine rotation along the z-axis. It is linear and
transforms (x, y) and (px, py) identically, leaving (t, pt) untouched. It rotates the
x-axis of the magnet towards its y-axis.

The Lie operators for the three translations and rotations are given by:

:Tx : = :px :,
:Tx : = :px :,
:Ty : = :py :,

:Tz : = :
√
(1 + δ)2 − p2

x − p2
y :,

:Lx : = :y
√
(1 + δ)2 − p2

x − p2
y :,

:Ly : = − :x
√
(1 + δ)2 − p2

x − p2
y :,

:Lz : = :xpy − ypx : .

It is remarkable that these Lie operators have the same Lie algebra as the ordinary
affine (or time) Lie operators:

[Lx, Ly] = Lz, [Lx, py] = pz, [Lx, pz] = −py,

[Ly, Lz] = Lx, [Ly, pz] = px, [Ly, px] = −pz,

[Lz, Lx] = Ly, [Lz, px] = py, [Lz, py] = −px.

The Lie groups are therefore locally isomorphic. Of course one notices that “prot”
(Rx and Ry) has a divergence at α = 90◦. It is not possible in the “lens” or “s”
paradigm to rotate a magnet map by 90◦ and get meaningful propagators. Therefore
the dynamical group is locally isomorphic.

Inexact Patching and Exact Misalignments

PTC provides for an emasculated pseudo-Euclidean group. The Lie operators are
obtained by expanding the dynamical maps keeping the energy dependence exact.
This is in tune with the exact_model=false option.

:Tx : = :px :,
:Ty : = :py :,

:Tz(r1, r2): = : r1

(
−

p2
x + p2

y

1(1 + δ)

)
︸ ︷︷ ︸

Dz

+r2δ :,

:Lx : = :y(1 + δ):,
:Ly : = − :x(1 + δ):,

:Lz : = :xpy − ypx : .

This group has seven generators for convenience. The Lie algebra differs from the
original algebra of the Euclidean group as follows:

[Lx, Ly] = 0,

[Lx, py] = Tz(0, 1) = emasculatedpz,

[Ly, px] = −Tz(0, 1).

84 geometric routines

Why do we care about the approximate Euclidean group?
The reason is speed: if a fast post-processor to PTC is written. Let us assume that

we have represented a (large) machine with exact_model=false and the drift-kick-
drift option. Figure 8.9 schematically shows two magnets separated by a drift.

Figure 8.9: Pseudo-
Euclidean maps.

The drifts (1,3,6) are in red. Some of the drifts (1,6) are part of the integration
scheme. The misalignments are made of our six pseudo-Euclidean operators; they
are in cyan (2,4). Finally a patch (4) is needed; it is in magenta.

The blue and cyan operators contain our six pseudo-Euclidean maps. Therefore
to go from 1 to 6 in the figure may involve over 20 maps. By using the group
properties, this can be reduced to six maps!

nine

Symplectic Integration and Splitting

PTC generally attempts to integrate the maps of each magnet using a symplectic
integrator. The current release of PTC supports two exceptions to explicit symplectic
integration: the traveling wave cavity used in linear accelerators and the pancake
type for fitted B-fields. Support for other exceptions could be added to be PTC:
exact wigglers and exact helical dipoles, exact solenoids, etc.

This chapter discusses the elements of PTC amenable to explicit symplectic
integration.

9.1 Philosophy

PTC’s philosophy for symplectic integration, which is based on the work of Richard
Talman,1 involves six steps: 1 In the early days of “kick”

codes, physicists believed
that the drift-kick-drift
(D-K-D) kick model was
massively inadequate
because it requires a large
number of steps to achieve
decent convergence and
thus the correct tunes.
Such codes were restricted
to special applications
such as radiation and spin
calculations—Chao’s code
SLIM.

The reason for this state of
affairs was two-fold. First, a
technical reason. We did not
have high-order symplectic
integrators. Second, a
philosophical reason. People
did not understand their
own approaches, which
contradicted the inadequacy
of kick codes.

The technical issue was
resolved by Ruth and
later by a cabal of authors
including Neri, Forest, and
finally Yoshida. We can
use high-order symplectic
integrators on our usual
“MAD8” Hamiltonian for
the body of the magnet.

Almost simultaneously,
the code TEAPOT emerged
from the suffocating entrails
of the SSC-CDG. TEAPOT
integrated exactly using
a D-K-D method—or
more accurately, a PROT-
KICK-PROT method—the
combined function S-bend.
TEAPOT was a second-
order code restricted to
one step of integration or
four strange steps for the
IR quadrupoles! (PROT is
a drift in polar coordinates
used in S-bend integration
and in patching.)

Talman, the principal
person pushing TEAPOT,
realized that in accelerator
physics the integration step
is part of the model. For ex-
ample, people who objected
to the D-K-D integration
method would themselves
always use a single kick for
the sextupoles. They would
then adjust chromaticities
not based on the thick sex-
tupole model but based on
their semi-serious one-kick
representation. Remarkably,
the results are acceptable for
most machines.

Talman realized that if
he fitted each cell of the
SSC to exactly 90 degrees,
the results with one kick
per quadrupole would be
nearly identical to that of
a “matrix” code. Better
still, Talman’s code—once
the magnets are refitted to
achieve a correct machine—
could potentially produce
the correct physics for small
rings while the standard
“matrix-kick-matrix” codes
could not because they
relied on the small angle
approximation.

1. Split the elements in the lattice into integration nodes2 using one of PTC’s

2 During tracking, PTC
performs an integration step
for each integration node in
the body of an element.

integration methods. For a list of PTC’s integration methods, see Section 9.1.
2. Fit all the stuff you would normally fit using your matching routines.
3. Examine the resulting lattice functions and perhaps some short-term dynamic

aperture.
4. If your results are satisfactory, reduce the number of integration nodes, the

sophistication of the integration method, or both. Then go back to step 1.
5. If your results are not satisfactory, increase the number of integration nodes,

the sophistication of the integration method, or both. Then go back to step 1.
6. After oscillating between steps 4 and 5, make up your mind and call that the

lattice.
For your particular lattice, store all the information at step 6 so that you do not

have to repeat the process!
In this chapter, we describe step 1 in detail. The other steps depend on the results

you want for your simulation.
Example 3 in Section ?? gives an example—the “Talman algorithm”—of PTC

code that performs these steps.

Integration Methods

PTC has six integration methods.
In the drift-kick-drift (D-K-D) case, PTC has three methods of integration:
• method 2, the naïve second-order method, which has one kick per integration

step,

86 symplectic integration and splitting

• method 4, the Ruth-Neri-Yoshida fourth-order method, which has three kicks
per integration step,

• method 6, the Yoshida sixth-order method, which has seven kicks per integra-
tion step.

In the matrix-kick-matrix (M-K-M) case, PTC also has three methods of integra-
tion:

• method 1,
• method 3,
• method 5.
For more information about integration methods, see Section 9.4.

9.2 Splitting Tutorial Source File

The example code in this chapter is from the tutorial source file ptc_splitting.f90
in PTC Splitting Tutorial Source File: ptc_splitting.f90, appendix D. The line
numbers of the code in the examples refer to the line numbers of the code in the
appendix.

9.3 Splitting the Lattice

This section describes the routines, global parameters, and arguments involved in
splitting elements in the lattice.

Global Parameters

The default values for the global parameters are in red italic type.
Four global parameters are involved in splitting the lattice:
• resplit_cutting (0, 1, or 2) For more information, see Section 9.3.
• sixtrack_compatible (true or false) This global parameter enforces a second-

order integrator for all magnets.
• radiation_bend_split (true or false) This global parameter splits bends with

integration method 2 to improve radiation or spin results. For more information
about PTC’s methods of integration, see Section 9.1.

• fuzzy_split (default to 1.0) If this global parameter is greater than 1.0, PTC
lets some magnets with slightly too-long integration steps go through, i.e., if
ds<lmax0*fuzzy_split.

Splitting Routines

Mandatory arguments for the routines are in regular black type. Optional argu-
ments are in red italic type.

THIN_LENS_RESTART(R1,FIB,USEKNOB)
This routine resets all magnets to second-order integration with one step.
THIN_LENS_RESPLIT(R,THIN,EVEN,LIM(1:2),LMAX0,XBEND,FIB,USEKNOB)
This routine splits all the magnets in the lattice into integration nodes, or thin

lenses.
To restrict the action of THIN_LENS_RESTART and THIN_LENS_RESPLIT to specific

fibres or groups of magnets, use the optional arguments FIB and USEKNOB. For more
information, see Section 9.3.

9.3 splitting the lattice 87

Arguments

This section describes the arguments for the THIN_LENS_RESTART and THIN_LENS_RESPLIT
routines.

R1 or R Argument

The name of the layout to be split.

Optional Argument THIN

The optional argument THIN describes an approximate integrated quadrupole
strength for which a single integration node, or thin lens, in the body of an el-
ement should be used. For example, the quadrupoles QF and QD in Example 1

below have an integrated strength of

KF L = 0.279309637578521 KD L=-0.197159744173073

Example 1

For our build-psr layout (see build_PSR, page 26), we make following calls:

CALL MOVE_TO(R1,QF,"QF",POS)
CALL MOVE_TO(R1,QD,"QD",POS)
THIN=0.01D0
LIMITS(1:2)=100000

CALL THIN_LENS_RESPLIT(R1,THIN,LIM=LIMITS)
WRITE(6,*) QF%MAG%NAME,QF%MAG%P%METHOD,QF%MAG%P%NST
WRITE(6,*) QD%MAG%NAME,QD%MAG%P%METHOD,QD%MAG%P%NST

NST is the number of integration steps.
Table 9.1 shows the results.

Element Method Steps Kicks/Step Total Kicks

QF 2 27 1 27

QD 2 19 1 19

B 2 15 1 15 Table 9.1: Results of Exam-
ple 1.

KF/THIN is about 27.9, which is close to the 27 integration steps that result from
Example 1, and KD/THIN is about 19.7, which is close to the 19 integration steps
that result from Example 1. Example 1 behaves as expected: it splits according to
quadrupole strength. The method stayed 2, i.e., second-order integrator. This is not
efficient if the number of steps must be large. Therefore we must teach the splitting
algorithm to switch to the fourth-order or sixth-order integrator. We discuss how to
do this in Section 9.3.

In the bend, we also look at the amount of natural horizontal focusing, vertical
focusing, or both. In this example, a small ring with bends of 36 degrees, the bends
are unusually strong. The global parameter radiation_bend_split and the optional
argument xbend can be used to affect the bends.

88 symplectic integration and splitting

LIM Optional Argument

The optional array lim(2) determines when PTC should choose the second-order,
fourth-order, or sixth-order integration method.

• lim(1) > KL/THIN: second-order method,
• lim(2) > KL/THIN > lim(1): fourth-order method,
• KL/THIN > lim(2): sixth-order method.

Example 2

Let us rerun the previous case with a different limit array:

THIN = 0.01D0
LIMITS(1) = 8
LIMITS(2) = 24

CALL THIN_LENS_RESPLIT(R1,THIN,LIM=LIMITS)
WRITE(6,*) QF%MAG%NAME, QF%MAG%P%METHOD, QF%MAG%P%NST
WRITE(6,*) QD%MAG%NAME, QD%MAG%P%METHOD, QD%MAG%P%NST

Note that KF/THIN, which is about 27.9, is greater than lim(2), which is 24.
KD/THIN, which is about 19.7, is less than lim(2). Both are greater than lim(1).

Table 9.2 shows the results.

Table 9.2: Results
of Example 2.

Element Method Steps Kicks/Step Total Kicks

QF 6 3 7 21

QD 4 6 3 18

B 4 5 3 15

PTC uses integration method 6 for element QF, which results in three integration
steps with seven kicks per step: a total of 21 kicks. PTC uses integration method 4

for element QD, which results in six integration steps with three kicks per step: a
total of 18 kicks. As we can see, the number of kicks has remained more or less
constant while the integration method has increased in order.

Example 3

This PTC code is an example of the six-step PTC philosophy for splitting (see § 9.1),
which we are calling the “Talman algorithm”. The example reuses Example 2’s limit
array.

!!!! TALMAN ALGORITHM !!!!! !!!!! EXAMPLE 3
WRITE(6,*) " "
WRITE(6,*) "!!!! TALMAN ALGORITHM !!!!! !!!!! EXAMPLE 3"
WRITE(6,*) " "

! PART 1A

9.3 splitting the lattice 89

THIN=0.001D0 ~! CUT LIKE CRAZY
CALL THIN_LENS_RESPLIT(R1,THIN,LIM=LIMITS)
!!! PTC COMMAND FILE: COULD BE A MAD-X COMMAND OR WHATEVER
! COMPUTING TUNE AND BETA AROUND THE RING

! PART 1B
CALL READ_PTC_COMMAND77("FILL_BETA0.TXT")
WRITE(6,*) " "
WRITE(6,*) " NOW REDUCING THE NUMBER OF STEPS AND REFITTING "
WRITE(6,*) " "
! PART 2
DO I=0,2
THIN=0.01D0+I*0.03

! PART 2A
CALL THIN_LENS_RESPLIT(R1,THIN,LIM=LIMITS) ! REDUCING NUMBER OF CUTS
! FITTING TO PREVIOUS TUNES

! PART 2B
CALL READ_PTC_COMMAND77("FIT_TO_BETA0_RESULTS.TXT")
! COMPUTING DBETA/BETA AROUND THE RING

! PART 2C
CALL READ_PTC_COMMAND77("FILL_BETA1.TXT")
ENDDO

Example 3 uses the limits from Example 2: lim(1) of 8 and lim(2) of 24 with
THIN=0.001D0. KF/THIN is now about 279, and KD/THIN is about 197. Both are much
greater than lim(2). PTC will use integration method 6, which has seven kicks per
integration step.

Table 9.3 and the list below show the results for Part 1A of Example 3.

Method ? ?

2 40 40

4 0 0

6 30 6230 Table 9.3: Results of Exam-
ple 3 for Part 1A.

• Number of slices: 6270.
• Total NST: 930.
• Total NST due to Bend Closed Orbit: 0.
• Biggest ds: 0.115885454545455.

The quadrupoles and the dipoles are split using integration method 6 with a
grand total of 6240 slices.

In Part 1B, compute the tunes and betas around the ring. The fractional tunes are:

0.142192063715077 0.854078356314425

90 symplectic integration and splitting

And the betas are stored for future use.
In Part 2A, the magnet is resplit less and less finely, the tune is refitted, and finally

the delta beta around the ring is estimated as a measure of the splitting adequacy.
The results for THIN = 0.01 are:
• <DBETA/BETA> = 4.025629639896395E-006
• MAXIMUM OF DBETA/BETA = 6.034509389788590E-006
The results for THIN = 0.04 are:
• <DBETA/BETA> = 2.065365900468319E-003
• MAXIMUM OF DBETA/BETA = 4.014532098810251E-003
The results for THIN = 0.07 are:
• <DBETA/BETA> = 5.779446473894797E-003
• MAXIMUM OF DBETA/BETA = 1.068563516341058E-002
One can also look at the chromaticities. For example, the chromaticities at the

beginning were:

-2.87009384223620 -2.03916389491785

At the end, the chromaticities are:

-2.86244921970493 -2.03671376872069

At this point, we can freeze the lattice for good. Of course refitting the tune was
only an example: in other lattices we may want to rematch a more complete set of
properties: dispersion, alphas, phase advances, etc.

XBEND Optional Argument

This section discusses usage of the XBEND optional argument when exact=.true.
The lattice uses sector bends. Because this is an ideal lattice, the tune should be

the same regardless of whether with exact_model=true or false. Therefore we will
fit to the same tune as before, passing it through the same algorithm.

Example 4

WRITE(6,*) " "
WRITE(6,*) "!!!! SBEND ORBIT SMALL PROBLEM !!!!! !!!!! EXAMPLE 4"
WRITE(6,*) " "

CALL APPEND_EMPTY_LAYOUT(M_U) ! NUMBER 2
CALL SET_UP(M_U%END)
R1=>M_U%END

EXACT=.TRUE.
METHOD=DRIFT_KICK_DRIFT
CALL RUN_PSR(R1,EXACT,METHOD)

WRITE(6,*) " "
WRITE(6,*) " NOW REDUCING THE NUMBER OF STEPS AND REFITTING "
WRITE(6,*) " "
DO I=0,2
THIN=0.01D0+I*0.03

9.3 splitting the lattice 91

CALL THIN_LENS_RESPLIT(R1,THIN,LIM=LIMITS) ! REDUCING NUMBER OF CUTS
! FITTING TO PREVIOUS TUNES

CALL READ_PTC_COMMAND77("FIT_TO_BETA0_RESULTS_2.TXT")
! COMPUTING DBETA/BETA AROUND THE RING

CALL READ_PTC_COMMAND77("FILL_BETA1_2.TXT")
ENDDO

The results of the last iteration for the closed orbit are:

-3.129618316516444E-002 3.357101188909470E-003 0.000000000000000E+000
0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000

The results of the last iteration for the stability is T.
The results of the last iteration for the tunes are:

0.142192063715077 0.854078356314425

In addition:
• <DBETA/BETA> = 1.184251326377263E-002
• MAXIMUM OF DBETA/BETA = 2.032348481520253E-002
We notice that the closed orbit is wild and that the fluctuation of the beta functions

is twice as big as before.
This problem can be alleviated by enforcing a finer split of the bend. This is done

by setting the XBEND argument to some small value that corresponds approximately
to the norm of the residual orbit.

Example 5

In example 5, the splitting line is replaced by this one:

CALL THIN_LENS_RESPLIT(R1,THIN,LIM=LIMITS,XBEND=1.D-4)

The results of the final iteration steps for the closed orbit are:

-3.377915412576128E-003 3.670253104757456E-004 0.000000000000000E+000
0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000

The results of the final iteration for the stability is T.
The results of the final iteration for the tunes are:

0.142192063715077 0.854078356314425

In addition:
• <DBETA/BETA> = 3.542348342695508E-003
• MAXIMUM OF DBETA/BETA = 5.551255781973659E-003

EVEN Optional Argument

There are three possibilities for the EVEN optional argument:
• EVEN=true enforces an even split,
• EVEN=false enforces an odd split,
• EVEN is not in the call statement: an even or odd split is acceptable.

92 symplectic integration and splitting

Example 6

EVEN=true is important if the motion must be observed at the center of a magnet.
This is useful during matching procedures in particular.

The data in table 9.4 show the “indifferent” splitting. T1 is a pointer to the
integration node at the beginning of the fibre. TM points to the center if it exists. T2
points to the end of the fibre. TM and T1 are identical when the number of steps is
odd; there is no center of the magnet, and by default TM points to T1.

Table 9.4: Results
of Example 6 when
even is not specified.

Name Method Steps T1%pos TM%pos T2%pos

QF 6 3 35 35 41

QD 4 6 52 57 61

B 4 5 67 67 75

The data in table 9.5 shows that when we use EVEN=true, TM is always different
from T1. TM points directly at the center of the magnet.

Table 9.5: Results of Ex-
ample 6 when even=.true.

Name Method Steps T1%pos TM%pos T2%pos

QF 6 4 39 43 46

QD 4 6 59 64 68

B 4 6 75 80 84

LMAX0 Optional Argument

The lmax0 optional argument must be used in conjunction with the resplit_cutting
global parameter set to 1 or 2. The resplit_cutting global parameter is normally
defaulted to zero.

If resplit_cutting=1, the ordinary magnets are left as is. However, the drifts are
split so that the maximum length of an integration node cannot exceed lmax0.

Example 7

call move_to(r1,d1,"D1",pos)
call move_to(r1,d1_next,"D1",pos)
call move_to(r1,d2,1) !!! Put the pointer for search back at position 1
call move_to(r1,d2,"D2",pos)
call move_to(r1,qf,"QF",pos)
call move_to(r1,qd,"QD",pos)
call move_to(r1,b,"B",pos)
resplit_cutting=1
call THIN_LENS_restart(r1)
thin=0.01d0
CALL THIN_LENS_resplit(R1,THIN,even=.true.,lmax0=0.05d0,xbend=1.d-4)

Table 9.6 shows the results of the above run.

9.3 splitting the lattice 93

Name Method Steps T1%pos TM%pos T2%pos

D1 2 46 1 26 102

D1 2 46 103 26 152

D2 2 10 57 64 70

QF 6 4 95 99 102

QD 6 2 203 206 208

B 4 6 223 228 232

Table 9.6: Results
of Example 7 for
resplit_cutting=1.

Notice that only the drifts D1 and D2 were split.
If resplit_cutting=2, then all the magnets and the drifts are split to achieve a

maximum length of lmax0. This is useful in space-charge calculations. See table 9.7.

Name Method Steps T1%pos TM%pos T2%pos

D1 2 46 1 26 166

D1 2 46 167 26 216

D2 2 10 67 74 80

QF 6 12 151 159 166

QD 6 12 267 275 282

B 4 52 297 325 352

Table 9.7: Results
of Example 7 for
resplit_cutting=2.

Now all the magnets are split.

FIB Optional Argument

Continuing with the previous example, we make the following call.

Example 8

WRITE(6,*) "!!!! FIB KEYWORD !!!!! !!!!! EXAMPLE 8"
CALL THIN_LENS_RESTART(R1)
CALL THIN_LENS_RESPLIT(R1,THIN,EVEN=.TRUE.,LMAX0=0.005D0,XBEND=1.D-4,FIB=D1_NEXT)

Table 9.8 shows the results.

Name Method Steps T1%pos TM%pos T2%pos

D1 2 46 1 26 50

D1 2 458 167 26 628
D2 2 10 67 74 80

QF 6 12 151 159 166

QD 6 12 679 687 694

B 4 52 709 737 764 Table 9.8: Results of Exam-
ple 8.

94 symplectic integration and splitting

Only the fibre D1_NEXT is affected. All the others are left intact. This allows the
splitting of a single fibre.

USEKNOB Optional Argument

We can use the type pol_block to produce a splitting of the lattice.

Example 9

FAM=0
FAM%NAME="D1"
R1=FAM
CALL THIN_LENS_RESTART(R1) ! PUTS BACK METHOD =2 AND NST=1 EVERYWHERE
CALL THIN_LENS_RESPLIT(R1,THIN,EVEN=.TRUE.,LMAX0=0.005D0,XBEND=1.D-4,
USEKNOB=.TRUE.)

If useknob is true, then the magnets with the knob flag “on” are split, assuming
no other flags prevent it. In this particular case, resplit_cutting=2, therefore, the
drifts will be split on the basis of LMAX0=0.005D0.

Table 9.9 shows the results.

Table 9.9: Results of Exam-
ple 9 when useknob=.true.

Name Method Steps T1%pos TM%pos T2%pos

D1 2 458 1 232 462
D1 2 458 488 232 949
D2 2 1 468 468 472

QF 2 1 483 483 487

QD 2 1 1412 1412 1416

B 2 1 1422 1422 1426

If we perform the same call with useknob=.false., then the magnets with
knob=true are masked and the other magnets are split.

CALL THIN_LENS_RESPLIT(R1,THIN,EVEN=.TRUE.,LMAX0=0.005D0,XBEND=1.D-4,
USEKNOB=.FALSE.)

Table 9.10 shows the results.

Table 9.10: Results of Exam-
ple 9 when useknob=.false.

Name Method Steps T1%pos TM%pos T2%pos

D1 2 1 1 1 5

D1 2 1 924 1 928

D2 2 92 112 160 207
QF 6 102 818 871 923
QD 6 102 934 987 1039
B 4 510 1136 1393 1649

9.4 other splitting routines 95

9.4 Other Splitting Routines

This section discusses PTC integration methods 1, 3, and 5.

Splitting a Single Fibre

This routine splits one fibre.
RECUT_KIND7_ONE(FIBRE,LMAX0,DRIFT)
In the presence of space charge or for other reasons, it may be more important

to observe the beam at many locations “approximately” than to use a high-order
integration method.

PTC provides integration method 1 for certain magnets.

Drift-Kick-Drift: Strict Talman Interpretation

For this type of algorithm, the exact_model = true and the exact_model = false
can be switched into method 1 if and only if the original method was method 2, i.e.,
second-order integrator. Basically, negative propagators (drifts) are not acceptable:
this is the strict Talman interpretation to which PTC does not adhere except in the
case of switching to integration method 1.

Figure 9.1 shows a pictorial example.

Figure 9.1: Drift-kick-drift
for integration methods 1

and 2.

The blue bars and green lines represent the original drift-kick-drift of integration
method 2. The figure shows four kicks and five drifts. There are four steps, separated
by the cyan bars. The new integration method 1 split is simply a splitting of the
drifts. There are now 16 drifts (but still four kicks). Obviously, the results should be
the same to machine precision.

Example with the 36-degree bend of the PSR (Los Alamos):

BE = SBEND("B", 2.54948D0, TWOPI*36.D0/360.D0);
X=0.001D0
CALL TRACK(BE,X,DEFAULT)
WRITE(6,*) BE%MAG%P%METHOD,BE%MAG%P%NST
WRITE(6,*) X

CALL RECUT_KIND7_ONE(BE,2.54948D0/16,.FALSE.)
X=0.001D0
CALL TRACK(BE,X,DEFAULT)

96 symplectic integration and splitting

WRITE(6,*) BE%MAG%P%METHOD,BE%MAG%P%NST
WRITE(6,*) X

X=0.001D0
CALL ALLOC(Y)
Y=X
CALL TRACK(BE,Y,DEFAULT)
X=Y
WRITE(6,*) BE%MAG%P%METHOD,BE%MAG%P%NST
WRITE(6,*) X
PAUSE 888

Integration results are:

2 4 ------ ! ORIGINAL METHOD AND NUMBER OF STEPS
3.962104445927857E-003 1.253543855340728E-003 3.546933066933068E-003
1.000000000000000E-003 1.000000000000000E-003 2.523695791724136E-003

1 16
3.962104445927856E-003 1.253543855340728E-003 3.546933066933066E-003
1.000000000000000E-003 1.000000000000000E-003 2.523695791724136E-003

1 16
3.962104445927856E-003 1.253543855340728E-003 3.546933066933066E-003
1.000000000000000E-003 1.000000000000000E-003 2.523695791724136E-003

Note that method 2 has four integration steps, and method 1 has 16 integration
steps. A larger number of integration steps for method 1 does not change the
accuracy.

Matrix-Kick-Matrix

Integration methods 2, 4, and 6 switching to methods 1, 3, and 5.
PTC has a matrix-kick-matrix method where the matrix is energy independent.

The delta dependence is buried in the kick.
Our comments here apply to exact_model=.false.
Integration methods 2, 4, and 6—shown in figure 9.2—always split the integra-

tion step using matrices of equal length. These methods are the so-called biased
integration methods. Although they have existed in accelerators since the days of
SSC, recently they have been discussed at length by McLachlan and also by Laskar
and Robutel.

Figure 9.2: Matrix-kick-
matrix for integration

methods 2, 4, and 6.

9.4 other splitting routines 97

In accelerators, integration methods 2, 4, and 6 have the advantage of producing
the “exact” tune for a typical ideal machine. The effect of the matrix on the kicks is of
order 2, 4, or 6, although all three methods are truly second-order integrators strictly
speaking—the word biased refers to this uneven way of ordering the perturbation
due to the kicks Hamiltonian that produced the matrices.

Let us retry the above example with the Bode-like integrator:

6 4 ------ ! ORIGINAL METHOD AND NUMBER OF STEPS
3.966179536791447E-003 1.252157150179758E-003 3.546933066933068E-003
1.000000000000000E-003 1.000000000000000E-003 2.529326133576445E-003

5 16
3.966179536791447E-003 1.252157150179758E-003 3.546933066933068E-003
1.000000000000000E-003 1.000000000000000E-003 2.529326133576445E-003

5 16
3.966179536791447E-003 1.252157150179758E-003 3.546933066933068E-003
1.000000000000000E-003 1.000000000000000E-003 2.529326133576445E-003

Please note that exact_model=true works only with straight elements if the
matrix-kick-matrix method (kind7) is selected. Bends should use the drift-kick-drift
method (integration method 2) if exact_model=true.

Drifts

Drifts can be split using:
RECUT_KIND7_ONE(D1,0.45D0/16.D0,.TRUE.)

Splitting an Entire Lattice

This routine applies RECUT_KIND7_ONE over the entire layout.
RECUT_KIND7(LAYOUT,LMAX0,DRIFT)

Appendices

A

Internal States

PTC contains a series of flags held in the global variable DEFAULT. These internal-state
flags allow you to control certain aspects of PTC’s behavior based on the needs of
your simulation. For example, you could run one simulation with the RADIATION
flag off and another simulation with the flag on. By comparing the results, you
would answer the question: “How important is radiation to my simulation?”

Here are six internal-state flags and the PTC behavior each flag controls:

1. TOTALPATH ensures a computation of the total path length or total time of
flight.

2. TIME selects time of flight rather than path length (cT to be precise).
3. RADIATION turns on classical radiation.
4. NOCAVITY forces the code to ignore RF cavities. It has also implications on

the normal form if performed in three degrees of freedom.
5. FRINGE turns on quadrupole fringe fields based on the b2 and a2 components

in the element.
6. EXACTMIS forces the misalignments to be treated exactly.

PTC has a special internal state called DEFAULT that selects path length rather
than time of flight, does not ensure a computation of the total path length, turns off
classical radiation, includes RF cavities, turns off quadrupole fringe fields, and does
not treat misalignments exactly.

This example shows how to set the default internal-state environment described
above:

CALL MAKE_STATES(.FALSE.)
EXACT_MODEL=.TRUE.
DEFAULT=DEFAULT
CALL UPDATE_STATES

MAKE_STATES is TRUE for electrons and FALSE for protons. When EXACT_MODEL is
TRUE, PTC uses the full square-root Hamiltonian.

The next example shows how to set the default internal-state environment with
the NOCAVITY and EXACTMIS flags:

CALL MAKE_STATES(.FALSE.)
EXACT_MODEL=.TRUE.

102 internal states

DEFAULT=DEFAULT+NOCAVITY+EXACTMIS
CALL UPDATE_STATES

The following six flags are strictly related to TPSA calculations:

1. If PARA_IN is specified, TPSA knobs are included in the calculation. It is
activated by a unary + on a state, for example, TRACK(PSR,Y,1,+DEFAULT).

2. If ONLY_4D is specified, then neither path length nor time is a TPSA variable.
This means that the phase-space dimension in the normal form will be 4 (X,
Px, Y, Py). Also X(5) will not be TPSA unless DELTA is also specified (see
next the item). This flag has no effect on PTC tracking. PTC always tracks six
phase-space variables.

3. If DELTA is specified, then ONLY_4D is also true. However, in this case, X(5) is
the fifth TPSA variable: X, Px, Y, Py plus Energy as the fifth variable. The phase-
space dimension in the normal form will also be 4; momentum compaction
cannot be computed.

4. SPIN
5. SPIN_ONLY
6. SPIN_DIM

This example shows how to set the default internal-state environment with a
four-dimensional phase space in the normal form:

DEFAULT=DEFAULT+ONLY_4D

The next example shows how to set the default internal-state environment with
a four-dimensional phase space in the normal form and with energy as the fifth-
dimension TPSA variable:

DEFAULT=DEFAULT+DELTA

B

Data Types

This appendix contains descriptions and examples of the Fortran90 data that PTC
uses for s-based tracking and time-based tracking.

B.1 S-based Tracking

This section discusses the following PTC data types for s-based tracking and gives
the Fortran90 definitions for several important types:

• layout,
• fibre,
• chart, including magnet frame,
• patch.

Layout

The LAYOUT type is a doubly linked list whose nodes, of data type FIBRE, contain
the magnet, the local charts, and the patches.

TYPE LAYOUT
CHARACTER(120), POINTER :: NAME ! IDENTIFICATION
INTEGER, POINTER :: INDEX,HARMONIC_NUMBER ! IDENTIFICATION, CHARGE SIGN
LOGICAL(LP),POINTER :: CLOSED
INTEGER, POINTER :: N ! TOTAL ELEMENT IN THE CHAIN
INTEGER,POINTER :: NTHIN
! NUMBER IF THIN LENSES IN COLLECTION (FOR SPEED ESTIMATES)
REAL(DP), POINTER :: THIN
! PARAMETER USED FOR AUTOMATIC CUTTING INTO THIN LENS
! POINTERS OF LINK LAYOUT
INTEGER, POINTER :: LASTPOS ! POSITION OF LAST VISITED
TYPE (FIBRE), POINTER :: LAST ! LAST VISITED
!
TYPE (FIBRE), POINTER :: END
TYPE (FIBRE), POINTER :: START
TYPE (FIBRE), POINTER :: START_GROUND
! STORE THE GROUNDED VALUE OF START DURING CIRCULAR SCANNING
TYPE (FIBRE), POINTER :: END_GROUND
! STORE THE GROUNDED VALUE OF END DURING CIRCULAR SCANNING

104 data types

TYPE (LAYOUT), POINTER :: NEXT
TYPE (LAYOUT), POINTER :: PREVIOUS
TYPE(NODE_LAYOUT), POINTER :: T ! ASSOCIATED CHILD THIN LENS LAYOUT
TYPE (MAD_UNIVERSE), POINTER :: PARENT_UNIVERSE
TYPE(LAYOUT_ARRAY), POINTER :: DNA(:)
! TYPE(SIAMESE_ARRAY), POINTER :: GIRDER(:)
! TYPE(JUNCTION_ARRAY), POINTER :: CON2(:)

END TYPE LAYOUT

The first lines of the TYPE definition contain data specific to the layout itself: data
concerning steps of integration statistics.

Besides the fibres, the two most important quantities in this layout are N and
CLOSED. The variable N is the number of fibres in the layout. N is updated each time
magnets are inserted or deleted. The boolean CLOSED refers to the topology of the
so-called “base space” or, in accelerator parlance, the s-variable. Is the variable s
periodic (a ring), or is the variable s defining an interval (a straight beam line)? In
the case of a ring, CLOSED is set to true, otherwise it is set to false. This does not
happen automatically: the user must set it to the desired value.

The pointer T points to the layout’s its associated NODE_LAYOUT. This pointer is
normally grounded because PTC does not systematically create node layouts or
thin layouts. When not grounded, the pointer contains the expanded representation
displayed on the left side of figure B.5.

Figure B.1 illustrates the roles of the pointer variables. The figure shows a layout
with four elements. Obviously, the number of elements in an actual beam line could
be enormous.

First of all, a linked list must have at least one pointer; this allows the creation of
a simple linked list rather than a doubly linked list. In our case this role is played
by the pointer PREVIOUS. In a simple linked list, each node has the red PREVIOUS
pointer. The pointer END points to the end of the list, in our case fibre 4. Then the
list is traversed backwards using the pointer PREVIOUS.

A more complex structure is required to handle two-way traversing. To do
this, we use the pointer START. At each node we add the green pointer NEXT. The
green pointer points to the next element until it finally ends on the START pointer.
The START pointer as well as the END pointer are nullified or grounded. Thus one
can perform an “ASSOCIATED” check on either NODE%NEXT or NODE%PREVIOUS to
determine if the extremities of the list have been reached.

We want to have a circular linked list for tracking a ring. When circular, the
magenta link pointing to the grounded START is cut. The last fibre’s green pointer
now points to fibre 1 (blue link). Thus the list is made circular in the forward
direction. The purpose of the START GROUND pointer is to remember the location of
the grounded START pointer to re-establish the ordinary two-way terminated list if
necessary. The same type of operation is performed on the magenta link pointing to
the END pointer. The list is the fully circular. PTC routines permit a programmer to
toggle back and fourth between terminated and circular lists.

The LAST pointer remembers the last fibre which was accessed by any of the
maintenance routines. This allows the routine MOVE TO, which locates an actual fibre,
to find its target faster. In our case speed is not of great importance. We tend to
traverse a LAYOUT in the order of tracking.

b.1 s-based tracking 105

Figure B.1: A layout is a
linked list of fibres.

Fibre

The type FIBRE is recursively defined. This allows the creation of a linked list. One
can think of a linked list as a chain; data potentially hangs on each link. In our case,
the fundamental datum is the object CHART of data type CHART. This contains three
actual charts (affine frames of reference): one at each end of the fibre and one in the
middle.

TYPE FIBRE
! BELOW ARE THE DATA CARRIED BY THE NODE
INTEGER,POINTER ::DIR
TYPE(PATCH),POINTER ::PATCH

106 data types

TYPE(CHART),POINTER ::CHART
TYPE (ELEMENT), POINTER :: MAG
TYPE (ELEMENTP),POINTER :: MAGP
! END OF DATA
! POINTER TO THE MAGNETS ON EACH SIDE OF THIS NODE
TYPE (FIBRE),POINTER :: PREVIOUS
TYPE (FIBRE),POINTER :: NEXT
! POINTING TO PARENT LAYOUT AND PARENT FIBRE DATA
TYPE (LAYOUT),POINTER :: PARENT_LAYOUT
TYPE(INFO),POINTER ::I
TYPE(INTEGRATION_NODE),POINTER :: T1,T2
! FIRST AND LAST INTEGRATION_NODE CHILDREN CORRESPOUNDING TO PATCHES
TYPE(INTEGRATION_NODE),POINTER :: TM ! MIDDLE INTEGRATION_NODE
INTEGER,POINTER ::POS ! POSITION IN LAYOUT
! NEW STUFF....
REAL(DP), POINTER :: BETA0,GAMMA0I,GAMBET,MASS !,P0C
INTEGER, POINTER :: CHARGE
REAL(dDP), POINTER :: AG
! TO TIE LAYOUTS
TYPE (FIBRE),POINTER :: P
TYPE (FIBRE),POINTER :: N
INTEGER,POINTER :: LOC

END TYPE FIBRE

The type definition includes the beam element MAG and its polymorphic version
MAGP. MAG is the generic magnet to which we attach a single particle propagator. MAGP
is almost a carbon copy of MAG. The integer DIR defines the direction of propagation
through the fibre. We can enter the magnet either from the front or from the back.
P0C and BETA0 define a preferential frame of reference for the energy of this fibre. It
is usually the same as the energy of the element MAG.

T1 and T2 are pointers to the first and last integration-node children. The integer
POS locates the fibre in the node layout. See figure B.5.

Chart

Type CHART contains the information that locates an element in three-dimensional
space at the position where we want it to be.

TYPE CHART
TYPE(MAGNET_FRAME), POINTER :: F
! FIBRE MISALIGNMENTS
REAL(DP),DIMENSION(:), POINTER:: D_IN,ANG_IN
REAL(DP),DIMENSION(:), POINTER:: D_OUT,ANG_OUT

END TYPE CHART

CHART refers to the data type MAGNET_FRAME.

TYPE MAGNET_FRAME
REAL(DP), POINTER,DIMENSION(:) :: A
REAL(DP), POINTER,DIMENSION(:,:):: ENT

b.1 s-based tracking 107

REAL(DP), POINTER,DIMENSION(:) :: O
REAL(DP), POINTER,DIMENSION(:,:):: MID
REAL(DP), POINTER,DIMENSION(:) :: B
REAL(DP), POINTER,DIMENSION(:,:):: EXI

END TYPE MAGNET_FRAME

Figure B.2 shows the three charts (affine frames of reference) attached to an
element.

Figure B.2: Three charts
attached to an element.

The variables (A,ENT), (O,MID), and (B,EXI) define the three charts. The vari-
ables L and ALPHA characterize the gray plane of the magnet. At the center of this
plane lies the chart at Ω. This is where a magnet is compressed for misalignment
purposes.

The TRACK routine sends a ray from the cyan entrance chart (A,ENT) through the
middle chart (O,MIS) to the green exit chart (B,EXI).

Misalignment

The CHART contains the misalignment information for a fibre (which, of course,
points to an element).

The variables D_IN,ANG_IN and D_OUT,ANG_OUT are the displacements and rota-
tions at the entrance and exit of the fibre. In figure B.3, the purple arrows represent
D_IN and D_OUT. The dotted purple arcs represent the angles ANG_IN and ANG_OUT.

Figure B.4 provides a three-dimensional view of a misaligned planar fibre. The
position FIBRE%CHART%F%A(3) and the vector triad basis FIBRE%CHART%F%ENT(3,3)
specify the fibre’s desired location.

Patch

The data type PATCH contains variables used in the main tracking loop to perform
certain adjustments if the exit chart of one element does not connect smoothly with
the entrance chart of the element that follows it, for example, when transferring
from one beam line to another.

TYPE PATCH
INTEGER(2), POINTER:: PATCH

108 data types

Figure B.3: Misalign-
ments for a element.

! IF TRUE, SPACIAL PATCHES NEEDED
INTEGER, POINTER :: A_X1,A_X2
! FOR ROTATION OF PI AT ENTRANCE = -1, DEFAULT = 1 ,
INTEGER, POINTER :: B_X1,B_X2
! FOR ROTATION OF PI AT EXIT = -1 , DEFAULT = 1
REAL(DP),DIMENSION(:), POINTER:: A_D,B_D
! ENTRANCE AND EXIT TRANSLATIONS A_D(3)
REAL(DP),DIMENSION(:), POINTER:: A_ANG,B_ANG
! ENTRANCE AND EXIT ROTATIONS A_ANG(3)
INTEGER(2), POINTER:: ENERGY
! IF TRUE, ENERGY PATCHES NEEDED
INTEGER(2), POINTER:: TIME
! IF TRUE, TIME PATCHES NEEDED
REAL(DP), POINTER:: A_T,B_T
! TIME SHIFT NEEDED SOMETIMES WHEN RELATIVE TIME IS USED

END TYPE PATCH

B.2 Time-based Tracking

This section discusses the following PTC data types for time-based tracking and
gives the FORTRAN90 code:

• integration node, including probe, temporal probe, and temporal beam,

• node layout, including beam.

b.2 time-based tracking 109

Figure B.4: Misaligned
planar fibre in three dimen-
sions.

Integration Node

Integration nodes allow us to look at any point in the layout. One of the most
important applications is to permit collective forces. Moreover, we can extend the
coordinates of a particle to permit first-order time-based tracking within the higher
order s framework. To do so, we add to two coordinates to the particle:

(~z = x, p_x, y, p_y, t, p_t, δs, p_n)

The coordinate δs is the distance from the beginning of the integration node
measured in the coordinate s used by the integrator.

The variable p_n is a pointer to the integration node in which the particle finds
itself at time t.

During normal s-based tracking, δs is always zero. In a time-tracking mode, a
drift is assumed between nodes to estimate the time of a particle; the result δs is
computed. Since inverse drifts are exactly known, this reduces to the normal s-based
tracking when collective effects are absent.

One immediate application is the tracking of several macro-particles in a recircu-
lator with important wake field effects between the macro-particles: time ordering
of the bunches is crucial and painlessly done in our framework.

The data type INTEGRATION_NODE is defined as follows:

TYPE INTEGRATION_NODE

110 data types

INTEGER, POINTER :: pos_in_fibre, CAS
INTEGER, POINTER :: pos
real(dp), POINTER :: S(:)
real(dp), POINTER :: ref(:)
real(dp), pointer :: ent(:,:),a(:)
real(dp), pointer :: exi(:,:),b(:)
real(dp), POINTER :: delta_rad_in
real(dp), POINTER :: delta_rad_out
INTEGER, POINTER :: TEAPOT_LIKE
TYPE (INTEGRATION_NODE), POINTER :: NEXT
TYPE (INTEGRATION_NODE), POINTER :: PREVIOUS
TYPE (NODE_LAYOUT), POINTER :: PARENT_NODE_LAYOUT
TYPE(FIBRE), POINTER :: PARENT_FIBRE
! TYPE(EXTRA_WORK), POINTER :: WORK
TYPE(BEAM_BEAM_NODE), POINTER :: BB

END TYPE INTEGRATION_NODE

Each integration node is either

1. the entrance patch/misalignment/tilt of its parent fibre (integration_node%cas=-
1);

2. the entrance fringe field (integration_node%cas=1);
3. one of N steps in the body of the element (integration_node%cas=0);
4. the exit fringe field (integration_node%cas=2);
5. the exit patch/misalignment/tilt of its parent fibre (integration_node%cas=-2).

See figure B.5.
NEXT and PREVIOUS are the pointers necessary to create the NODE_LAYOUT, which

is patterned closely on the LAYOUT.
PARENT_FIBRE points to the parent fibre which engendered the INTEGRATION_NODE.
POS is the position in the NODE_LAYOUT.
POS_IN_FIBRE is the position in the PARENT_FIBRE.
TEAPOT_LIKE indicates whether the internal frame of reference is curved or

straight. This is useful to move approximately inside an integration-node step.
For S:
• S(1) contains the ideal arc length position LD,
• S(2) contains the local integration position 0<S(2)<L,
• S(3) contains the total L up to that integration node,11 This is similar to the sur-

vey L of MAD8 in the sense
that for a “real” Cartesian

bend the distance between
the two parallel faces is

used. In other words, it is
the sum around the ring of

the integration variables,
whatever they may be. For a
MAD-type RBEND it is still
LD because these bends are
really sectors with wedges.

• S(4) contains the length of the integration step DL : FIBRE%MAG%L/FIBRE%MAG%P%NST.

Probe

The data type probe holds information about the location of a particle.

TYPE PROBE
REAL(DP) X(6)
TYPE(SPINOR) S
LOGICAL U
TYPE(INTEGRATION_NODE),POINTER :: LOST_NODE

END TYPE PROBE

b.2 time-based tracking 111

Figure B.5: Type
integration_node and
type fibre.

The probe tracks position X(6) and spin S. The logical U is true if the particle is
unstable.

Here is the definition of the data type PROBE_8:

TYPE PROBE_8
TYPE(REAL_8) X(6)
TYPE(SPINOR_8) S
REAL(DP) E_IJ(NDIM2,NDIM2)
LOGICAL U
TYPE(INTEGRATION_NODE),POINTER :: LOST_NODE

END TYPE PROBE_8

112 data types

Temporal Probe

The data type temporal probe holds a probe and information relevant to time-
based tracking.

TYPE TEMPORAL_PROBE
TYPE(PROBE) XS
TYPE(INTEGRATION_NODE), POINTER :: NODE
REAL(DP) DS,POS(6)
TYPE(INTERNAL_STATE) STATE

END TYPE TEMPORAL_PROBE

The probe XS contains the coordinates.
The NODE points to the integration node that the particle is in.
The distance DS is the approximate distance that the particle traveled inside the

node, assuming a drift.
POS(6) is the position of the particle in an absolute 3D frame.
STATE is the tracking state of that beam/machine.

Temporal Beam

The data type temporal beam is a collection of particles (probes).

TYPE TEMPORAL_BEAM
TYPE(TEMPORAL_PROBE), POINTER :: TP(:)
REAL(DP) A(3),ENT(3,3),P0C,TOTAL_TIME
INTEGER N
TYPE(INTEGRATION_NODE),POINTER :: C ! POINTER CLOSE TO A(3)
TYPE(INTERNAL_STATE) STATE

END TYPE TEMPORAL_BEAM

A temporal beam must be allocated:

CALL ALLOC(TB,N,P0C)

P0C is the reference momentum of the beam.
We must set the initial conditions of the layout:

CALL POSITION_TEMPORAL_BEAM(LAYOUT,TB,STATE)

The subroutine POSITION_TEMPORAL_BEAM

• locates the beam in three dimensions and stores TB%TP(i)%POS(1:3)=(X,Y,Z),
which is PTC’s global frame;

• calls the LOCATE_TEMPORAL_BEAM routine, which in turn calls the ORIGINAL_P_TO_PTC
routine, which adjusts the momenta.

The beam’s values of TB%TP(i)%XS%X(1:6) are now in PTC’s local coordinates.

b.2 time-based tracking 113

Node Layout

The data type NODE_LAYOUT is a linked list of nodes, which represents an expanded
beam line. The nodes do not contain new data; their fibres contain their data.

The type NODE_LAYOUT is defined as follows:

TYPE NODE_LAYOUT
CHARACTER(120), POINTER :: NAME ! IDENTIFICATION
INTEGER, POINTER :: INDEX ! IDENTIFICATION
LOGICAL(LP),POINTER ::CLOSED
INTEGER, POINTER :: N ! TOTAL ELEMENT IN THE CHAIN
! POINTERS OF LINK LAYOUT
INTEGER, POINTER :: LASTPOS ! POSITION OF LAST VISITED
TYPE (INTEGRATION_NODE), POINTER :: LAST ! LAST VISITED
!
TYPE (INTEGRATION_NODE), POINTER :: END
TYPE (INTEGRATION_NODE), POINTER :: START
TYPE (INTEGRATION_NODE), POINTER :: START_GROUND
! STORE THE GROUNDED VALUE OF START DURING CIRCULAR SCANNING
TYPE (INTEGRATION_NODE), POINTER :: END_GROUND
! STORE THE GROUNDED VALUE OF END DURING CIRCULAR SCANNING
TYPE (LAYOUT), POINTER :: PARENT_LAYOUT
TYPE(ORBIT_LATTICE), POINTER :: ORBIT_LATTICE

END TYPE NODE_LAYOUT

Beam

The purpose of the node layout is to track a beam. We now define the data type
BEAM.

TYPE BEAM
! TYPE(REAL_8), POINTER :: Y(:)
REAL(DP), POINTER :: X(:,:)
! REAL(DP), POINTER :: SIGMA(:),DX(:),BBPAR,ORBIT(:)
LOGICAL(LP), POINTER :: U(:)
TYPE(BEAM_LOCATION), POINTER::POS(:)
INTEGER, POINTER :: N,LOST
! INTEGER, POINTER :: CHARGE
! LOGICAL(LP),POINTER :: TIME_INSTEAD_OF_S
! LOGICAL(LP),POINTER :: BEAM_BEAM,BBORBIT

END TYPE BEAM

We also define the data type BEAM_LOCATION:

TYPE BEAM_LOCATION
TYPE (INTEGRATION_NODE), POINTER :: NODE

END TYPE BEAM_LOCATION

LOST is the number of lost particles.

114 data types

In a normal mode, the BEAM is pushed integration node to integration node. It
can also be pushed from a location S1 to S2.

Additionally, time tracking is possible with TOTALPATH=true. In that case, the
position of the particle is given by specifying the actual integration node immediately
proceeding the particle and the distance from that integration node measured in
the integration variable L. The node is located using the pointer POS(:)%Node, and
the distance is located in X(:,:). Drifting back and forth to that position is done
approximately with a drift either in Cartesian or Polar coordinates depending on
the variable TEAPOT_LIKE of the type INTEGRATION_NODE.

TYPE BEAM
REAL(DP), POINTER~:: X(N,1:7)
LOGICAL(LP), POINTER :: U(N)
TYPE(BEAM_LOCATION), POINTER::POS(N)
INTEGER, POINTER :: N,LOST
INTEGER, POINTER :: CHARGE
LOGICAL(LP),POINTER :: TIME_INSTEAD_OF_S

END TYPE BEAM

The array X(N,1:7) contains N (macro)particles whose PTC coördinates are
located in X(N,1:6). The array U(N) contains a stability flag: true is unstable. LOST
is the number of lost particles.

In the “additionally” paragraph, the third sentence originally read as follows:
“The node is located using the pointer POS(N)%Node and the distance is located

in X(N,7).”

C

PTC Geometry Tutorial Source File:
ptc_geometry.f90

This appendix contains the complete Fortran90 listing for the PTC example
ptc_geometry. Most of this example is discussed in Modeling an Accelerator with
PTC, chapter 3. More advanced aspects of this example are discussed in Linking
Magnets Together and Moving Them as a Group, chapter 4.

ptc_geometry.f90

program ptc_geometry
use madx_ptc_module
use pointer_lattice
implicit none

5

character*48 :: command_gino
logical(lp) :: doit
integer :: i, j, mf, pos, example
real(dp) :: b0

10 real(dp), dimension(3) :: a, d
real(dp), dimension(6) :: fix1, fix2, mis, x
type(real_8), dimension(6) :: y1, y2
type(layout), pointer :: L1, L2, L3, L4, L5, L6
type(layout), pointer :: PSR1, PSR2, Fig8, Col1, Col2

15 type(fibre), pointer :: p1, p2, b, f
type(internal_state) :: state

type(pol_block) :: qf(2), qd(2)
type(normalform) :: n1, n2

20 type(damap) :: id
type(taylor) :: eq(4)
type(gmap) :: g
!-----------------------------------

25 Lmax = 100.d0
use_info = .true.

!== user stuff : one layout necessary before starting GUI

116 ptc geometry tutorial source file: ptc_geometry.f90

call ptc_ini_no_append
30

!thin=-1
!call thin_lens_resplit(m_u%end, thin, xbend = 1.d-10)

!==========================!
35 !== set up DNA sequences ==!

!==========================!
call append_empty_layout(m_u) ! DNA sequence 1
call set_up(m_u%end)
L1 => m_u%end

40 call build_PSR(L1)

call append_empty_layout(m_u) ! DNA sequence 2
call set_up(m_u%end)
L2 => m_u%end

45 call build_Quad_for_Bend(L2)

call append_empty_layout(m_u) ! DNA sequence 3
call set_up(m_u%end)
L3 => m_u%end

50 call build_PSR_minus(L3)

call append_empty_layout(m_u) ! DNA sequence 4
call set_up(m_u%end)
L4 => m_u%end

55 call build_PSR(L4)

call append_empty_layout(m_u) ! DNA sequence 5
call set_up(m_u%end)
L5 => m_u%end

60 call build_PSR_minus(L5)

call append_empty_layout(m_u) ! DNA sequence 6
call set_up(m_u%end)
L6 => m_u%end

65 call build_PSR(L6)

!================================!
!== create "trackable" layouts ==!

70 !================================!

!== PSR1 : forward ring (layout 7)
call append_empty_layout(m_u)
PSR1 => m_u%end

75

p1 => L1%start
p2 => L2%start
do i = 1, L1%n
if(p1%mag%name == "B") then

ptc geometry tutorial source file: ptc_geometry.f90 117

80 ! read bends from L2
call append_point(PSR1, p2)
f => PSR1%end
d = p1%chart%f%o - f%chart%f%o
call translate(f, d)

85 call compute_entrance_angle(f%chart%f%mid, p1%chart%f%mid, a)
call rotate(f, f%chart%f%o, a, basis = f%chart%f%mid)
p2 => p2%next

else
call append_point(PSR1, p1)

90 end if
p1 => p1%next

end do ! elements in PSR1 now in correct locations

f => PSR1%start
95 do i = 1, PSR1%n

if(f%mag%name == "B_QUAD") then
call find_patch(f%previous, f, next = .true.)
call find_patch(f, f%next, next = .false.)

end if
100 f => f%next

end do ! PSR1 now patched

PSR1%name = "PSR 1"
PSR1%closed = .true.

105 call ring_L(PSR1, .true.) ! make it a ring topologically

!== PSR2 : backward ring (layout 8)
call append_empty_layout(m_u)

110 PSR2 => m_u%end

p1 => L1%end
p2 => L2%end
do i = 1, L1%n

115 if(p1%mag%name == "B") then
call append_point(PSR2, p2)
p2 => p2%previous

else
call append_point(PSR2, p1)

120 end if
f => PSR2%end
f%dir = -1
f%charge = -1
p1 => p1%previous

125 end do

f => PSR2%start
do i = 1, PSR2%n
if(f%mag%name == "B_QUAD") then

130 call find_patch(f%previous, f, next = .true.)

118 ptc geometry tutorial source file: ptc_geometry.f90

call find_patch(f, f%next, next = .false.)
end if
f => f%next

end do
135

PSR2%name = "PSR 2"
PSR2%closed = .true.
call ring_l(PSR2, .true.) ! make it a ring topologically

140

!== Fig8 : figure-eight lattice (layout 9)
d = zero
d(3) = -40.d0
call translate(L4, d)

145 a = zero
a(2) = pi
call rotate(L3, L3%start%chart%f%a, a)
call move_to(L4, p1, "B", pos)
d = p1%chart%f%a - L3%end%chart%f%b

150 call translate(L3, d)

call append_empty_layout(m_u)
Fig8 => m_u%end
p1 => L4%start

155 do i = 1, L4%n
call append_point(Fig8, p1)
p1 => p1%next

end do

160 write(6,*) p1%mag%name
call append_point(Fig8, p1)
p1 => p1%next
write(6,*) p1%mag%name
call append_point(Fig8, p1)

165 p1 => p1%next
write(6,*) p1%mag%name
call append_point(Fig8, p1)

p1 => L3%end
170 do i = 1, L3%n

call append_point(Fig8, p1)
Fig8%end%dir = -1
if(p1%mag%name == "B") p1%mag%bn(1) = -p1%mag%bn(1)
p1 => p1%previous

175 end do

p1 => L4%end%previous%previous
write(6,*) p1%mag%name
call append_point(Fig8, p1)

180 p1 => p1%next
write(6,*) p1%mag%name

ptc geometry tutorial source file: ptc_geometry.f90 119

call append_point(Fig8, p1)
p1 => p1%next
write(6,*) p1%mag%name

185 call append_point(Fig8, p1)

write(6,*) "Fig8 has ", Fig8%n, " fibres"
Fig8%name = "Figure-Eight"
Fig8%closed = .true.

190 call ring_l(Fig8, .true.) ! make it topologically closed

p1 => Fig8%start
do i = 1, Fig8%n
call check_need_patch(p1, p1%next, 1.d-10, pos)

195 if(pos /= 0) call find_patch(p1, p1%next, next = .false.)
p1 => p1%next

end do

200 !== Col1 : lower collider ring (layout 10)
!== Col2 : upper collider ring (layout 11)
d = zero
d(3) = 40.d0
call translate(L6, d)

205 a = zero
a(2) = pi
call rotate(L5, L5%start%chart%f%a, a)
call move_to(L6, p1, "B", pos)
d = p1%chart%f%a - L5%end%chart%f%b

210 call translate(L5, d)

call append_empty_layout(m_u)
Col1 => m_u%end
p1 => L6%start

215 do i = 1, L6%n
call append_point(Col1, p1)
p1 => p1%next

end do

220 write(6,*) "Collider 1 has ", Col1%n, " fibres"
Col1%name = "Collider 1"
Col1%closed = .true.
call ring_l(Col1, .true.) ! make it a ring topologically

225 call append_empty_layout(m_u)
Col2 => m_u%end
p1 => L6%start%next%next
do i = 1, 6
write(6,*) p1%mag%name

230 call append_point(Col2, p1)
Col2%end%dir = -1
p1 => p1%previous

120 ptc geometry tutorial source file: ptc_geometry.f90

end do
p1 => L5%start

235 do i = 1, L3%n
call append_point(Col2, p1)
p1 => p1%next

end do

240 write(6,*) "Collider 2 has ", Col2%n, " fibres"
Col2%name = "Collider 2"
Col2%closed = .true.
call ring_l(Col2, .true.) ! make it a ring topologically

245 p1 => Col2%start
do i = 1, Col2%n
call check_need_patch(p1, p1%next, 1.d-10, pos)
if(pos /= 0) call find_patch(p1, p1%next, next = .false.)
p1 => p1%next

250 end do

!=======================!
!== set up DNA arrays ==!

255 !=======================!

allocate(PSR1%DNA(2))
PSR1%DNA(1)%L => L1
do i = 2, 2

260 PSR1%DNA(i)%L => PSR1%DNA(i-1)%L%next ! L2
end do

allocate(PSR2%DNA(2))
PSR2%DNA(1)%L => L1

265 do i = 2, 2
PSR2%DNA(i)%L => PSR2%DNA(i-1)%L%next ! L2

end do

allocate(Fig8%DNA(2))
270 Fig8%DNA(1)%L => L3

do i = 2, 2
Fig8%DNA(i)%L => Fig8%DNA(i-1)%L%next ! L4

end do

275 allocate(Col1%DNA(2))
Col1%DNA(1)%L => L5
do i = 2, 2
Col1%DNA(i)%L => Col1%DNA(i-1)%L%next ! L6

end do
280

allocate(Col2%DNA(2))
Col2%DNA(1)%L => L5
do i = 2, 2

ptc geometry tutorial source file: ptc_geometry.f90 121

Col2%DNA(i)%L => Col2%DNA(i-1)%L%next ! L6
285 end do

!== maps with polymorphs
!== simple fit

290

qf(1) = 0
qf(1)%name = "qf"
qf(1)%ibn(2) = 1
qf(2) = 0

295 qf(2)%name = "qf"
qf(2)%ibn(2) = 3
qd(1) = 0
qd(1)%name = "qd"
qd(1)%ibn(2) = 2

300 qd(2) = 0
qd(2)%name = "qd"
qd(2)%ibn(2) = 4
Col1%dna(1)%L = qf(1)
Col1%dna(1)%L = qd(1)

305 CoL1%dna(2)%L = qf(2)
CoL1%dna(2)%L = qd(2)

101 continue
state = default0 + only_4d0

310

fix1 = 0.d0
fix2 = 0.d0;
call init(state, 2, c_%np_pol) ! c_%np_pol is automatically computed
call find_orbit(CoL1, fix1, 1, state, 1.d-6)

315 call find_orbit(Col2, fix2, 1, state, 1.d-6)
call alloc(y1)
call alloc(y2)
call alloc(id)
call alloc(n1)

320 call alloc(n2)
call alloc(eq);
id=1 ! identity damap
y1 = id + fix1 ! this is permitted in ptc only (not fpp)
y2 = id + fix2 ! closed orbit added to map

325 call track(Col1, y1, 1, +state) ! unary + activates knobs
call track(Col2, y2, 1, +state)
n1 = y1 ! normal forms: abused of language permitted by ptc
n2 = y2 ! normally one should do => damap=y; normalform=damap
write(6,*) " tunes 1 "

330 write(6,*) n1%tune(1:2)
write(6,*) " tunes 2 "
write(6,*) n2%tune(1:2)
eq(1) = n1%dhdj%v(1) - 0.254d0
eq(2) = n1%dhdj%v(2) - 0.255d0

122 ptc geometry tutorial source file: ptc_geometry.f90

335 eq(3) = n2%dhdj%v(1) - 0.130d0
eq(4) = n2%dhdj%v(2) - 0.360d0
do i = 1, 4
eq(i) = eq(i) <= c_%npara

end do
340

call kanalnummer(mf,"eq.txt")
do i=1,4
call daprint(eq(i), mf)

end do
345 close(mf)

call kill(y1)
call kill(y2)
call kill(id)

350 call kill(n1)
call kill(n2)
call kill(eq)
call init(1,4)
call alloc(g,4)

355 call kanalnummer(mf,"eq.txt")
do i = 1, 4
call read(g%v(i), mf)

end do
close(mf)

360

g = g.oo.(-1)
tpsafit(1:4) = g
set_tpsafit = .true.
set_element = .true.

365 Col1%dna(1)%L = qf(1)
Col1%dna(1)%L = qd(1)
Col1%dna(2)%L = qf(2)
Col1%dna(2)%L = qd(2)
set_tpsafit = .false.

370 set_element = .false.
call kill(g)
write(6,*) " more "
read(5,*) i
if(i == 1) goto 101

375 call kill_para(Col1%dna(1)%l)
call kill_para(Col1%dna(2)%l)

!===============================!
380 !== set up Siamese and Girder ==!

!===============================!

call move_to(Col1, p1, 67)
call move_to(Col2, p2, 7)

385 p1%mag%siamese => p2%mag

ptc geometry tutorial source file: ptc_geometry.f90 123

p2%mag%siamese => p1%mag
call move_to(Col1, p1, 4)
call move_to(Col2, p2, 70)
p1%mag%siamese => p2%mag

390 p2%mag%siamese => p1%mag

call move_to(Col1, p1, 68)
f => p1 ! remember start of girder linked-list
do i = 2, 7

395 p2 => p1%next
p1%mag%girders => p2%mag
p1 => p1%next

end do
call move_to(Col2, p2, 7)

400 p1%mag%girders => p1%mag%siamese
p1%mag%siamese%girders => p2%mag
p2%mag%girders => p2%mag%siamese
call move_to(Col1, p1, 67)
call move_to(Col2, p2, 14)

405 p1%mag%girders => p2%mag
p2%mag%girders => f%mag

call move_to(Col1, p1, 1)
call alloc_af(p1%mag%girder_frame, girder = .true.)

410 p1%mag%girder_frame%ent = p1%mag%parent_fibre%chart%f%ent
p1%mag%girder_frame%a = p1%mag%parent_fibre%chart%f%a
p1%mag%girder_frame%exi = p1%mag%parent_fibre%chart%f%ent
p1%mag%girder_frame%b = p1%mag%parent_fibre%chart%f%a

415 a = p1%mag%girder_frame%a
a(3) = a(3) - 5.d0
call move_to(Col1, b, 67)
call alloc_af(b%mag%siamese_frame)
call find_patch(b%mag%p%f%a, b%mag%p%f%ent, &

420 a, p1%mag%girder_frame%ent, &
b%mag%siamese_frame%d, b%mag%siamese_frame%angle)

a = p1%mag%girder_frame%a
a(3) = a(3) + 5.d0
call move_to(Col1, b, 4)

425 call alloc_af(b%mag%siamese_frame)
call find_patch(b%mag%p%f%a, b%mag%p%f%ent, &

a, p1%mag%girder_frame%ent, &
b%mag%siamese_frame%d, b%mag%siamese_frame%angle)

430

!===========================!
!== example misalignments ==!
!===========================!

435 write(6,*) "Example # (from the manual) 1--11 ?"
read(5,*) example

124 ptc geometry tutorial source file: ptc_geometry.f90

call move_to(Col2, p2, 7)
if(example == 1) then

440 mis = 0.d0
mis(5) = pi / 8.d0
call misalign_girder(p2, mis)

elseif(example == 2) then
mis = 0.d0

445 mis(1) = 2.0d0
call misalign_girder(p2, mis)

elseif(example == 3) then
mis = 0.d0
mis(5) = pi / 8.d0

450 call misalign_girder(p2, mis)
mis = 0.d0
mis(1) = 2.d0
call misalign_girder(p2, mis, add = .false.)

elseif(example == 4) then
455 mis = 0.d0

mis(5) = pi / 8.d0
call misalign_girder(p2, mis)
mis = 0.d0
mis(1) = 2.d0

460 call misalign_girder(p2, mis, add = .true.)
elseif(example == 5) then
mis = 0.d0
mis(1) = 2.d0
mis(5) = pi / 8.d0

465 call misalign_girder(p2, mis)
elseif(example == 6) then
mis = 0.d0
mis(1) = 2.d0
call misalign_siamese(p2, mis)

470 elseif(example == 7) then
mis = 0.d0
mis(1) = 2.d0
call misalign_siamese(p2, mis)
mis = 0.d0

475 mis(1) = 2.d0
mis(5) = pi / 8.d0
call misalign_girder(p2, mis, add = .false.)

elseif(example == 8) then
mis = 0.d0

480 mis(1) = 2.d0
call misalign_siamese(p2, mis)
mis = 0.d0
mis(1) = 2.d0
mis(5) = pi / 8.d0

485 call misalign_girder(p2, mis, add = .true.)
elseif(example == 9) then
mis = 0.d0

ptc geometry tutorial source file: ptc_geometry.f90 125

mis(1) = 2.d0
mis(5) = pi / 8.d0

490 call misalign_girder(p2, mis)
mis = 0.d0
mis(1) = 2.d0
call misalign_siamese(p2, mis, add = .false.)

elseif(example == 10) then
495 mis = 0.d0

mis(1) = 2.d0
mis(5) = pi / 8.d0
call misalign_girder(p2, mis)
mis = 0.d0

500 mis(1) = 2.d0
call misalign_siamese(p2, mis, add = .true.)

elseif(example == 11) then
mis = 0.d0
mis(1) = 2.d0

505 mis(5) = pi / 8.d0
call misalign_girder(p2, mis)
mis = 0.d0
mis(1) = 2.d0
call misalign_siamese(p2, mis, add = .false., &

510 preserve_girder = .true.)
end if

999 command_gino = "opengino"
call context(command_gino) ! context makes them capital

515 call call_gino(command_gino)
111 command_gino = "mini"
call context(command_gino) ! context makes them capital
call call_gino(command_gino)

520 !== vaguely necessary baloney ==
command_gino = "closegino"
call call_gino(command_gino)
call ptc_end
end program ptc_geometry

525

!===
subroutine build_PSR(PSR)
use madx_ptc_module

530 use pointer_lattice
implicit none

type(layout), target :: PSR

535 real(dp) :: ang, brho, kd, kf, Larc
type(fibre) :: b, d1, d2, qd, qf
type(layout) :: cell
!-----------------------------------

126 ptc geometry tutorial source file: ptc_geometry.f90

540 call make_states(.false.)
exact_model = .true.
default = default + nocavity + exactmis
call update_states
madlength = .false.

545

ang = (twopi * 36.d0 / 360.d0)
Larc = 2.54948d0
brho = 1.2d0 * (Larc / ang)
call set_mad(brho = brho, method = 2, step = 10)

550 madkind2 = drift_kick_drift

kf = 2.72d0 / brho
kd = -1.92d0 / brho

555 d1 = drift("D1", 2.28646d0)
d2 = drift("D2", 0.45d0)
qf = quadrupole("QF", 0.5d0, kf)
qd = quadrupole("QD", 0.5d0, kd)
b = rbend("B", Larc, ang)

560 cell = d1 + qd + d2 + b + d2 + qf + d1

PSR = 10 * cell
PSR = .ring.PSR

565 call survey(PSR)
end subroutine build_PSR

!===
570 subroutine build_PSR_minus(PSR)

use madx_ptc_module
use pointer_lattice
implicit none

575 type(layout), target :: PSR

real(dp) :: ang, brho, kd, kf, Larc
type(fibre) :: b, d1, d2, qd, qf
type(layout) :: cell

580 !-----------------------------------

call make_states(.false.)
exact_model = .true.
default = default + nocavity + exactmis

585 call update_states
madlength = .false.

ang = (twopi * 36.d0 / 360.d0)
Larc = 2.54948d0

ptc geometry tutorial source file: ptc_geometry.f90 127

590 brho = 1.2d0 * (Larc / ang)
call set_mad(brho = brho, method = 6, step = 10)
madkind2 = drift_kick_drift

kf = 2.72d0 / brho
595 kd = -1.92d0 / brho

d1 = drift("D1", 2.28646d0)
d2 = drift("D2", 0.45d0)
qf = quadrupole("QF", 0.5d0, kf)

600 qd = quadrupole("QD", 0.5d0, kd)
b = rbend("B", Larc, ang)
cell = d1 + qd + d2 + b + d2 + qf + d1

PSR = b + d2 + qf + d1 + 8 * cell + d1 + qd + d2 + b
605 PSR = .ring.PSR

call survey(PSR)
end subroutine build_PSR_minus

610

!===
subroutine build_Quad_for_Bend(PSR)
use madx_ptc_module
use pointer_lattice

615 implicit none

type(layout),target :: PSR

real(dp) :: ang, ang2, brho, b1, Larc, Lq
620 type(fibre) :: b

!-----------------------------------

call make_states(.false.)
exact_model = .true.

625 default = default + nocavity + exactmis
call update_states
madlength = .false.

ang = (twopi * 36.d0 / 360.d0)
630 Larc = 2.54948d0

brho = 1.2d0 * (Larc / ang)
call set_mad(brho = brho, method = 6, step = 10)
madkind2 = drift_kick_drift

635 ang2 = ang / two
b1 = ang / Larc
Lq = Larc * sin(ang2) / ang2

b = quadrupole("B_QUAD", Lq, 0.d0);
640 call add(b, 1, 0, b1)

128 ptc geometry tutorial source file: ptc_geometry.f90

b%mag%permfringe = .true.
b%magp%permfringe = .true.
b%mag%p%bend_fringe = .true.
b%magp%p%bend_fringe = .true.

645

PSR = 10 * b
PSR = .ring.PSR

call survey(PSR)
650 end subroutine build_Quad_for_Bend

D

PTC Splitting Tutorial Source File:
ptc_splitting.f90

This appendix contains the complete Fortran90 listing for the PTC example
ptc_splitting. This example is discussed in Symplectic Integration and Splitting, chap-
ter 9.

ptc_splitting.f90

program ptc_splitting
use run_madx
use pointer_lattice
implicit none

5

character*48 :: command_gino
type(layout), pointer :: r1, r2, r3, r4, r5, r6
type(layout), pointer :: psr1, psr2, fig8, col1, col2
type(fibre),pointer :: p, b, f, qf, qd, d1, d2

10 integer i,pos,j,mf,example
logical(lp) doneit
real(dp) a(3),d(3),x(6),b0,mis(6),thin
type(real_8) y1(6),y2(6)
real(dp) fix1(6),fix2(6)

15 type(normalform) n1,n2
type(damap) id
type(internal_state) state
type(taylor) eq(4)
type(gmap) g

20 integer method,limits(2)
logical exact
!-----------------------------------

lmax=100.d0
25 use_info=.true.

!== user stuff : one layout necessary before starting GUI
call ptc_ini_no_append

130 ptc splitting tutorial source file: ptc_splitting.f90

30 use_info=.true.

!!!!!!!!! producing the dna !!!!!!!!!!!

call append_empty_layout(m_u) ! number 1
35 call set_up(m_u%end)

r1 => m_u%end

exact = .false.
method = drift_kick_drift

40 call build_PSR(r1, exact, method)

call move_to(r1, qf, "qf", pos)
call move_to(r1, qd, "qd", pos)
call move_to(r1, b, "b", pos)

45

!!!! first respliting !!!!! example 1
thin = 0.01d0
limits(1:2) = 100000

50 call thin_lens_resplit(r1, thin, lim = limits)
write(6,*) qf%mag%name, qf%mag%p%method, qf%mag%p%nst
write(6,*) qd%mag%name, qd%mag%p%method, qd%mag%p%nst
write(6,*) b%mag%name, b%mag%p%method, b%mag%p%nst

55 pause 1
!!!! second respliting !!!!! !!!!! example 2
thin = 0.01d0
limits(1) = 8
limits(2) = 24

60

call thin_lens_resplit(r1, thin, lim = limits)
write(6,*) qf%mag%name, qf%mag%p%method, qf%mag%p%nst
write(6,*) qd%mag%name, qd%mag%p%method, qd%mag%p%nst
write(6,*) b%mag%name, b%mag%p%method, b%mag%p%nst

65

pause 2

!!!! Talman algorithm !!!!! !!!!! example 3
write(6,*) " "

70 write(6,*) "!!!! Talman algorithm !!!!! !!!!! example 3"
write(6,*) " "

thin = 0.001d0 ! cut like crazy
call thin_lens_resplit(r1, thin,l im = limits)

75 !!! ptc command file: could be a mad-x command or whatever
call read_ptc_command77("fill_beta0.txt") ! computing tune and beta around the ring

write(6,*) " "
write(6,*) " now reducing the number of steps and refitting "

80 write(6,*) " "

ptc splitting tutorial source file: ptc_splitting.f90 131

do i = 0, 2
thin = 0.01d0 + i * 0.03
call thin_lens_resplit(r1, thin, lim = limits) ! reducing number of cuts
call read_ptc_command77("fit_to_beta0_results.txt") ! fitting to previous tunes

85 call read_ptc_command77("fill_beta1.txt") ! computing dbeta/beta around the ring
end do

pause 3

90 write(6,*) " "
write(6,*) "!!!! sbend orbit small problem !!!!! !!!!! example 4"
write(6,*) " "

call append_empty_layout(m_u) ! number 2
95 call set_up(m_u%end)

r1 => m_u%end

exact = .true.
method = drift_kick_drift

100 call build_PSR(r1, exact, method)

write(6,*) " "
write(6,*) " now reducing the number of steps and refitting "
write(6,*) " "

105 do i = 0, 2
thin = 0.01d0 + i * 0.03
call thin_lens_resplit(r1, thin) ! reducing number of cuts
call read_ptc_command77("fit_to_beta0_results_2.txt") ! fitting to previous tunes
call read_ptc_command77("fill_beta1_2.txt") ! computing dbeta/beta around the ring

110 end do

pause 4
write(6,*) " "
write(6,*) "!!!! sbend orbit small problem !!!!! !!!!! example 5"

115 write(6,*) " "
write(6,*) " "
write(6,*) " now reducing the number of steps and refitting with xbend=1.d-4 "
write(6,*) " "
do i=0,2

120 thin = 0.01d0+i*0.03
call thin_lens_resplit(r1, thin, xbend = 1.d-4) ! reducing number of cuts
call read_ptc_command77("fit_to_beta0_results_2.txt") ! fitting to previous tunes
call read_ptc_command77("fill_beta1_2.txt") ! computing dbeta/beta around the ring

end do
125 pause 5

write(6,*) "!!!! even !!!!! !!!!! example 6"
call move_to(r1, d1, "d1", pos)
call move_to(r1, d2, "d2", pos)

130 call move_to(r1, qf, "qf", pos)
call move_to(r1, qd, "qd", pos)

132 ptc splitting tutorial source file: ptc_splitting.f90

call move_to(r1, b, "b", pos)

call thin_lens_restart(r1) ! puts back method =2 and nst=1 everywhere
135 thin = 0.01d0

call thin_lens_resplit(r1, thin, even = .true., xbend = 1.d-4) ! reducing number of cuts
call make_node_layout(r1)
write(6,*) qf%mag%name, qf%mag%p%method, qf%mag%p%nst, qf%t1%pos, qf%tm%pos, qf%t2%pos
write(6,*) qd%mag%name, qd%mag%p%method, qd%mag%p%nst, qd%t1%pos, qd%tm%pos, qd%t2%pos

140 write(6,*) b%mag%name, b%mag%p%method, b%mag%p%nst, b%t1%pos, b%tm%pos, b%t2%pos

call thin_lens_restart(r1) ! puts back method =2 and nst=1 everywhere
thin = 0.01d0
call thin_lens_resplit(r1, thin, lim = limits, xbend = 1.d-4) ! reducing number of cuts

145 call make_node_layout(r1)
write(6,*) qf%mag%name, qf%mag%p%method, qf%mag%p%nst, qf%t1%pos, qf%tm%pos, qf%t2%pos
write(6,*) qd%mag%name, qd%mag%p%method, qd%mag%p%nst, qd%t1%pos, qd%tm%pos, qd%t2%pos
write(6,*) b%mag%name, b%mag%p%method, b%mag%p%nst, b%t1%pos, b%tm%pos, b%t2%pos

150 write(6,*) "!!!! lmax0 keyword !!!!! !!!!! example 7"
resplit_cutting = 1
call thin_lens_restart(r1) ! puts back method =2 and nst=1 everywhere
thin = 0.01d0
call thin_lens_resplit(r1, thin, even = .true., lmax0 = 0.05d0, xbend = 1.d-4) ! reducing number of cuts

155 call make_node_layout(r1)
write(6,’(a8,2x,5(i4,8x))’) d1%mag%name(1:8), d1%mag%p%method, d1%mag%p%nst, d1%t1%pos, d1%tm%pos, qf%t2%pos
write(6,’(a8,2x,5(i4,8x))’) d2%mag%name(1:8), d2%mag%p%method, d2%mag%p%nst, d2%t1%pos, d2%tm%pos, d2%t2%pos
write(6,’(a8,2x,5(i4,8x))’) qf%mag%name(1:8), qf%mag%p%method, qf%mag%p%nst, qf%t1%pos, qf%tm%pos, qf%t2%pos
write(6,’(a8,2x,5(i4,8x))’) qd%mag%name(1:8), qd%mag%p%method, qd%mag%p%nst, qd%t1%pos, qd%tm%pos, qd%t2%pos

160 write(6,’(a8,2x,5(i4,8x))’) b%mag%name(1:8), b%mag%p%method, b%mag%p%nst, b%t1%pos, b%tm%pos, b%t2%pos
resplit_cutting = 2
call thin_lens_restart(r1) ! puts back method =2 and nst=1 everywhere
thin = 0.01d0
call thin_lens_resplit(r1, thin, even = .true., lmax0 = 0.05d0, xbend = 1.d-4) ! reducing number of cuts

165 call make_node_layout(r1)
write(6,’(a8,2x,5(i4,8x))’) d1%mag%name(1:8), d1%mag%p%method, d1%mag%p%nst, d1%t1%pos, d1%tm%pos, qf%t2%pos
write(6,’(a8,2x,5(i4,8x))’) d2%mag%name(1:8), d2%mag%p%method, d2%mag%p%nst, d2%t1%pos, d2%tm%pos, d2%t2%pos
write(6,’(a8,2x,5(i4,8x))’) qf%mag%name(1:8), qf%mag%p%method, qf%mag%p%nst, qf%t1%pos, qf%tm%pos, qf%t2%pos
write(6,’(a8,2x,5(i4,8x))’) qd%mag%name(1:8), qd%mag%p%method, qd%mag%p%nst, qd%t1%pos, qd%tm%pos, qd%t2%pos

170 write(6,’(a8,2x,5(i4,8x))’) b%mag%name(1:8), b%mag%p%method, b%mag%p%nst, b%t1%pos, b%tm%pos, b%t2%pos

999 command_gino = "opengino"
call context(command_gino) ! context makes them capital
call call_gino(command_gino)

175 111 command_gino = "mini"
call context(command_gino) ! context makes them capital
call call_gino(command_gino)

!!!!!!!!! vaguelynecessary baloney
180 command_gino = "closegino"

call call_gino(command_gino)

ptc splitting tutorial source file: ptc_splitting.f90 133

call ptc_end
end program ptc_splitting

185

!===
subroutine build_PSR(PSR, exactTF, imethod)
use run_madx

190 use pointer_lattice
implicit none

type(layout), target :: PSR
logical(lp) :: exactTF

195 integer :: imethod

real(dp) :: ang, brho, kd, kf, larc, lq
type(fibre) :: b, d1, d2, qd, qf
type(layout) :: cell

200 !-----------------------------------

call make_states(.false.)
default = default + nocavity + exactmis
call update_states

205 madlength = .false.

exact_model = exactTF

ang = (twopi * 36.d0 / 360.d0)
210 larc = 2.54948d0

brho = 1.2d0 * (larc / ang)
call set_mad(brho = brho, method = 6, step = 100)
madkind2 = imethod

215 kf = 2.72d0 / brho
kd = -1.92d0 / brho
lq = 0.5d0
write(6,’(a)’) "kf * lq, kd * lq :"
write(6,*) kf * lq, kd * lq

220

d1 = drift("D1", 2.28646d0)
d2 = drift("D2", 0.45d0)
qf = quadrupole("QF", lq, kf)
qd = quadrupole("QD", lq, kd)

225 !b = rbend("B", larc, ang)
b = sbend("B", larc, ang)
cell = d1 + qd + d2 + b + d2 + qf + d1

PSR = 10 * cell
230 PSR = .ring.PSR

call survey(PSR)
call clean_up

134 ptc splitting tutorial source file: ptc_splitting.f90

end subroutine build_PSR
235

Bibliography

D.P. Barber, K.A. Heinemann, and G. Ripken. A canonical 8-dimensional formalism
for classical spin-orbit motion in storage rings: I. A new pair of canonical spin
variables. Z. Phys. C, 64(1):117–142, Mar. 1994. doi: 10.1007/BF01557243.

A.W. Chao. SLIM—An early work revisited. In Proceedings of the 11th European Particle
Acelerator Conference, Genoa, Italy, 23–27 June 2008, pages 2963–2967, Geneva, 2008.
European Physical Society.

É. Forest. A Hamiltonian-free description of single particle dynamics for hope-
lessly complex periodic systems. J. Math. Phys., 31(5):1133–1144, May 1990.
doi: 10.1063/1.528795.

É. Forest. Locally accurate dynamical Euclidean group. Phys. Rev. E, 55(4):4665–4674,
Apr. 1997. doi: 10.1103/PhysRevE.55.4665.

É. Forest. Beam Dynamics: A New Attitude and Framework, volume 8 of The Physics
and Technology of Particle and Photon Beams. Harwood Academic Publishers, Ams-
terdam, 1998.

É. Forest. Geometric integration for particle accelerators. J. Phys. A: Math. Gen., 39

(19):5321–5377, May 2006. doi: 10.1088/0305-4470/39/19/S03.
É. Forest and K. Hirata. A contemporary guide to beam dynamics. Technical Report

KEK-92-12, KEK, Tsukuba, Japan, Aug. 1992.
É. Forest, F. Schmidt, and E. McIntosh. Introduction to the Polymorphic Tracking

Code. Technical Report KEK-2002-3, KEK, Tsukuba, Japan, 2002.
É. Forest, Y. Nogiwa, and F. Schmidt. The FPP and PTC libraries. In Int. Conf. Accel.

Phys. 2006, pages 17–21.
É. Forest, Y. Nogiwa, and F. Schmidt. The FPP documentation. In Int. Conf. Accel.

Phys. 2006, pages 191–193.
Int. Conf. Accel. Phys. 2006. Proceedings of the 9th International Computational Acceler-

ator Physics Conference, Chamonix, France, 2–6 October 2006, 2006.
R.I. McLachlan and G.R.W. Quispel. Splitting methods. Acta Numer., 11:341–434,

Jan. 2002. doi: 10.1017/S0962492902000053.

http://dx.doi.org/10.1007/BF01557243
http://dx.doi.org/10.1063/1.528795
http://dx.doi.org/10.1103/PhysRevE.55.4665
http://dx.doi.org/10.1088/0305-4470/39/19/S03
http://dx.doi.org/10.1017/S0962492902000053

Index

s-dependent global quantity
defined, 18

3-D information, see three-dimensional
information

accelerator
analysis, 16

modeling, 11, 13

modeling tutorial, 23

properties, 16, 57

accelerator topology
collider, 12

complex, 11, 32

model of collider, 23, 38

model of figure eight, 23, 35

model of ring with forward and
reverse propagation, 23, 32

recirculating, 11

simple, 11

affine basis
geometric routines, 67, 71

affine frame
attached to element, 107

dynamical group, 82

girder, 76

siamese, 75

affine routines
on computer objects, 71

on fibrous structures, 72

on pure geometry, 67

theory, 67

affine_frame, 43

ALLOC_AF
routine, 75, 76

allocate
routine, 40

allocate_af

routine, 45

APPEND_EMPTY
routine, 73

append_empty_layout
routine, 31, 32, 36, 38

APPEND_FIBRE
routine, 73

APPEND_POINT
routine, 73

append_point
routine, 33, 36, 38

backward propagation
example, 12, 32

BEAM
data type, 113

beam line
expanded, 113

BEAM_LOCATION
data type, 113

beamline
defined as layout, 13

expanded, 20

beamline element, see element
bend

defined, 7

Bengtsson, Johan
pioneering work, 3

beta function
computing, 88

block, see LEGO block or polymorphic
block

Brookhaven National Laboratory
example based on, 12

build_PSR
basic ring, 23

example source code, 26

138 build_PSR_minus element

build_PSR_minus
example source code, 28

build_Quad_for_Bend
example source code, 29

CEBAF, see Continuous Electron Beam
Accelerator Facility

CHANGE_BASIS
routine, 70

CHART
data type, 106

chart
contains misalignment, 15

defined, 13, 15, 106

CHECK_NEED_PATCH
routine, 72

check_need_patch
routine, 37, 39

chromaticity
computing, 88

closed orbit
computing, 88

finding, 64

global properties, 57

local properties, 60

collider
example, 12

modeling, 23, 38

COMPUTE_ENTRANCE_ANGLE
routine, 70

compute_entrance_angle
routine, 33

Continuous Electron Beam Accelera-
tor Facility

example based on, 11

coordinate system, see global coordi-
nate system or local coordi-
nate system

cutting, see splitting

data structure
modeling accelerators, 11

data type
integration_node, 20

probe, 21

BEAM_LOCATION, 113

BEAM, 113

CHART, 15, 106

ELEMENT, 13

FIBRE_APPEARANCE, 73

FIBRE, 13, 105

INTEGRATION_NODE, 109

LAYOUT, 13, 103

MAD_UNIVERSE, 73

MAGNET_FRAME, 106

NODE_LAYOUT, 20, 113

PATCH, 15, 107

PROBE_8, 111

PROBE, 110

TEMPORAL_BEAM, 112

TEMPORAL_PROBE, 21, 112

THREE_D_INFO, 64

pol_block, 51

data types
described, 103

database, see DNA database
default

global variable, 101

delta
flag, 102

DNA, see DNA array, DNA database,
or DNA sequence

DNA array
described, 40

DNA database
m_u global variable, 25

defined, 14

example source code, 26

populating, 30, 73

storing trackable layouts, 40

DNA sequence
defined, 14

example source code, 26

populating DNA database, 30, 73

DOKO
pointer, 73

doko
described, 32, 36, 37, 73

drift
defined, 7

drift-kick-drift
integration methods, 85

dynamical group
discussed, 82

dynamical routines
described, 82

ELEMENT
data type, 13

element
bend, 7

element frame geometric transformation 139

composed of integration nodes,
20

defined, 8, 13

doko for multiple use, 32

drift, 7

misaligning, 77

splitting into integration nodes,
85, 86

element frame, see element reference
frame

element reference frame
described, 6

energy
flag, 102

patch, 72

specifying, 27

entrance frame, see entrance reference
frame

entrance fringe field
integration node, 20

entrance patch
integration node, 20

entrance reference frame
described, 6

Euclidean group
discussed, 82

pseudo, 83

exact_model
global parameter, 27, 90, 95

exactmis
flag, 101

exit frame, see exit reference frame
exit fringe field

integration node, 20

exit patch
integration node, 20

exit reference frame
described, 6

FIBRE
data type, 105

fibre
defined, 12, 13, 105

tracking routines, 61

FIBRE_APPEARANCE
data type, 73

figure-eight accelerator
modeling, 23, 35

FIND_ORBIT
routine, 54

find_orbit

routine, 62

FIND_ORBIT_X
routine, 64

FIND_PATCH
routine, 72, 75

find_patch
routine, 33, 37, 39

FIND_PATCH_B
routine, 71

flag
delta, 102

exactmis, 101

fringe, 101

madlength, 27

nocavity, 101

only_4d, 102

para_in, 102

radiation, 101

spin_dim, 102

spin_only, 102

spin, 102

time, 101

totalpath, 101, 114

flags
internal state, 101

forward propagation
example, 11, 12, 32

FPP
defined, 3, 49

documentation, 49

frame of reference
girder, 76

magnet, 6

siamese, 75

fringe
flag, 101

fringe field
integration node, 20

internal state, 101

magnet, 8

Fully Polymorphic Package, see FPP
fuzzy_split

global parameter, 86

GEO_ROT
routine, 69

GEO_TRA
routine, 69

geometric routines
described, 67

geometric transformation

140 geometry linked list

defined, 8

overview, 5

patching, 15

geometry
tutorial source file, 24, 44, 115

girder
affine frame, 76

creating, 44, 76

defined, 43

frame of reference, 43, 76

misaligning, 43, 44, 77

rotating, 77

translating, 77

girder_frame, 45

global coordinate system
global frame, 8

global frame
described, 8

geometric routines, 67

positioning first element in track-
able layout, 35

used to compute local reference
frame, 33

global information, see also global prop-
erty

analysis, 17

defined, 17

global parameter
exact_model, 27, 90, 95

fuzzy_split, 86

radiation_bend_split, 86

resplit_cutting, 86

sixtrack_compatible, 86

global property, see also global infor-
mation

described, 57

global variable
default, 101

lmax, 26

m_u, 25, 31

integration
philosophy, 85

process, 85, 88

steps, 85, 88

integration methods
described, 85, 95, 96

integration node
defined, 20, 109

setting maximum length, 26

splitting, 85, 86

tracking routines, 62, 63

integration nodes
specifying number of, 27

INTEGRATION_NODE
data type, 109

integrator
described, 6

overview, 5

splitting elements into integration
nodes, 85, 86

Taylor map, 3, 49

internal states
described, 101

example source code, 27

setting, 50

INVERSE_FIND_PATCH
routine, 71

JLab, see Thomas Jefferson National
Laboratory

kick
integration method, 85, 96

space-charge, 21

KILL_PARA
routine, 52

knob
creating, 51

defined, 50

flag, 102

tutorial source file, 53

using, 50, 94

Large Hadron Collider
bore magnets, 43

LAYOUT
data type, 103

layout, see also node layout
defined, 13, 103

global frame, 8

non-trackable, 14, 30

trackable, 14, 30, 32, 40

LEGO block
analogy, 6, 8

LHC, see Large Hadron Collider
Lie algebra

discussed, 82

Lie operators
discussed, 83

linked list
m_u global variable, 25

lmax one-turn map 141

appearances of magnet, 73

circular, 43

example for fibres, 12, 13

example for magnets, 11

integration nodes, 20

layout, 103

node layout, 113

lmax
global variable, 26

local coordinate system
defined, 6

local information, see also local prop-
erty

analysis, 17

defined, 17

local property, see also local informa-
tion

described, 60

LOCATE_TEMPORAL_BEAM
routine, 112

m_u
global variable, 25, 31

MAD universe, see PTC universe
MAD8

discussed, 72

MAD_UNIVERSE
data type, 73

madlength
flag, 27

madx_ptc_module
module, 25

magnet
in girder, 43

siamese, 43

magnet frame
defined, 106

magnet-based tracking, see s-based track-
ing

MAGNET_FRAME
data type, 106

magnets
linking together, 43

moving as group, 43

MAKE_STATES
routine, 101

make_states
routine, 27

map, see one-turn map, Poincaré map,
or Taylor map

map-based methods, 17

global, 17

matrix-kick-matrix
integration methods, 86, 96

MISALIGN_FIBRE
routine, 81

MISALIGN_GIRDER
routine, 77

misalign_girder
routine, 47

MISALIGN_SIAMESE
routine, 79

misalign_siamese
routine, 47

misalignment
contained in chart, 107

described, 16

element, 77

exact, 82

girder, 43, 44, 77

inexact, 83

internal state, 101

routines, 77

siamese, 43, 44, 77

misalignment routines
described, 77

modeling
accelerator topologies, 11, 13, 23,

32

particle interactions, 19

module
madx_ptc_module, 25

momenta
adjusting, 112

move_to
routine, 44

nocavity
flag, 101

node, see integration node
node layout

defined, 20, 113

NODE_LAYOUT
data type, 113

normal form
computing, 54

FPP analysis tool, 3

phase-space dimensions, 102

one-turn map, 17

analysis independent of construc-
tion, 17

142 only_4d radiation_bend_split

computing, 50

creating, 61

tracking, 62

only_4d
flag, 102

ORIGINAL_P_TO_PTC
routine, 112

overview
PTC, 5

para_in
flag, 102

particle
interaction, 19, 21

space-charge kick, 21

tracking, 6

particle dynamics
local, 8

PATCH
data type, 107

patch
checking whether needed, 37, 39,

72

defined, 13, 15, 107

inserting, 33, 37, 39, 71, 72

patching
CHECK_NEED_PATCH routine, 72

FIND_PATCH routine, 72

INVERSE_FIND_PATCH routine, 71

check_need_patch routine, 37, 39

find_patch routine, 37, 39

defined, 9

energy, 72

exact, 82

find_patch routine, 33

FIND_PATCH_B routine, 71

inexact, 83

reference frames, 15

routines, 72

patching routines
described, 72

perturbation theory
derived via one-turn map, 17

phase space
flag, 102

variables, 10

Poincaré map
FPP, 3

pointer
DOKO, 73

SIAMESE, 75

pol_block
data type, 51

polymorph
defined, 49

knob, 50

states, 49

tutorial source file, 53

polymorphic block
described, 51

removing from layout, 52

setting values, 52

Polymorphic Tracking Code, see PTC
POSITION_TEMPORAL_BEAM

routine, 112

PROBE
data type, 110

probe, see also temporal probe
defined, 21, 110

tracking routines, 62

PROBE_8
data type, 111

propagation, see backward propaga-
tion or forward propagation

property
accelerator, 16, 57

global, 17, 57

local, 17, 60

pseudo-Euclidean group
discussed, 83

PTC
defined, 3

features, 3

integrator, 6

overview, 5

source file, 24, 44, 53, 86, 115, 129

universe, 25

ptc_geometry.f90
geometry tutorial source file, 24,

115

ptc_splitting.f90
splitting tutorial source file, 129

radiation
internal state, 101

tracking routines on fibres, 61

tracking routines on integration
nodes, 62

radiation
flag, 101

radiation_bend_split
global parameter, 86

recirculator routine 143

recirculator
example, 11

patching beamlines, 15

RECUT_KIND7_ONE
routine, 95, 97

recutting, see splitting
reference frame

described, 6

patching, 15

reference frames
connecting, 8

reference orbit, see reference trajectory
reference trajectory

not used by PTC, 6

Relativistic Heavy Ion Collider
example based on, 12

resplit_cutting
global parameter, 86

resplitting, see splitting
RF cavity

internal state, 101

RHIC, see Relativistic Heavy Ion Col-
lider

ring with forward and reverse propa-
gation

modeling, 23, 32

rotate
routine, 33, 35

ROTATE_FIBRE
routine, 74

ROTATE_FRAME
routine, 69

ROTATE_GIRDER
routine, 77

ROTATE_LAYOUT
routine, 74

ROTATE_MAGNET
routine, 74

ROTATE_SIAMESE
routine, 75

rotation
order of, 70, 78

rotation routines
described, 69, 74

routine
ALLOC_AF, 75, 76

APPEND_EMPTY, 73

APPEND_FIBRE, 73

APPEND_POINT, 73

CHANGE_BASIS, 70

CHECK_NEED_PATCH, 72

COMPUTE_ENTRANCE_ANGLE, 70

FIND_ORBIT_X, 64

FIND_ORBIT, 54

FIND_PATCH, 72, 75

GEO_ROT, 69

GEO_TRA, 69

INVERSE_FIND_PATCH, 71

KILL_PARA, 52

LOCATE_TEMPORAL_BEAM, 112

MAKE_STATES, 101

MISALIGN_FIBRE, 81

MISALIGN_GIRDER, 77

MISALIGN_SIAMESE, 79

ORIGINAL_P_TO_PTC, 112

POSITION_TEMPORAL_BEAM, 112

RECUT_KIND7_ONE, 95, 97

ROTATE_FIBRE, 74

ROTATE_FRAME, 69

ROTATE_GIRDER, 77

ROTATE_LAYOUT, 74

ROTATE_MAGNET, 74

ROTATE_SIAMESE, 75

SET_ELEMENT, 52

SET_TPSAFIT, 52

THIN_LENS_RESPLIT, 86

THIN_LENS_RESTART, 86

TRACK_BEAM, 63

TRACK_FILL_REF, 64

TRACK_NODE_PROBE, 62

TRACK_NODE_V, 63

TRACK_NODE_X, 63

TRACK_PROBE2, 62

TRACK_PROBE_X, 63

TRACK_PROBE, 62

TRACK_TEMPORAL_BEAM, 64

TRACK_TIME, 64

TRACK, 50, 54

TRANSLATE_FIBRE, 73

TRANSLATE_FRAME, 69

TRANSLATE_GIRDER, 77

TRANSLATE_LAYOUT, 73

TRANSLATE_MAGNET, 74

TRANSLATE_SIAMESE, 76

UPDATE_STATES, 101

allocate_af, 45

allocate, 40

append_empty_layout, 31, 32, 36,
38

append_point, 33, 36, 38

check_need_patch, 37, 39

compute_entrance_angle, 33

144 routines Taylor type

find_orbit, 62

find_patch, 33, 37, 39

make_states, 27

misalign_girder, 47

misalign_siamese, 47

move_to, 44

rotate, 33, 35

scan_for_polymorphs, 51–53

set_mad, 27

survey, 28

track, 61

translate, 33

FIND_PATCH_B, 71

routines
affine, 67, 71, 72

dynamical, 82

geometric, 67

object-oriented, 62

splitting elements into integration
nodes, 86, 95

standard tracking, 61

time-based tracking, 64

tracking, 61

tracking fibres, 61

tracking integration nodes, 62, 63

s-based tracking
data types, 103

described, 6

integration node, 20

scan_for_polymorphs
routine, 51–53

SDGQ (s-dependent global quantity),
18

sequence, see DNA sequence
SET_ELEMENT

routine, 52

set_mad
routine, 27

SET_TPSAFIT
routine, 52

SIAMESE
pointer, 75

siamese
affine frame, 75

creating, 44, 75

defined, 43

frame of reference, 43, 75

misaligning, 43, 44, 77

rotating, 75

translating, 76

siamese_frame, 46

sixtrack_compatible
global parameter, 86

source file
geometry tutorial, 24, 44, 115

polymorphs and knobs tutorial,
53

splitting tutorial, 86, 129

space-charge kick
applying, 21

used with time-based tracking, 21

spin
flag, 102

tracking routines on fibres, 61

tracking routines on integration
nodes, 62

spin
flag, 102

spin_dim
flag, 102

spin_only
flag, 102

splitting
drifts, 97

elements into integration nodes,
85, 86

lattices, 97

routines, 86, 95

tutorial source file, 86, 129

stability
computing, 88

state
internal, 27, 50

survey
routine, 28

symplectic integration, see integration
symplectic integrator, see integrator

Talman, Richard
algorithm, 85, 88

integration process, 85, 88

philosophy for symplectic inte-
gration, 85

strict interpretation of drift-kick-
drift, 95

Taylor map
computing, 49

derived from integrator, 3, 49

Taylor polymorphism
described, 49

Taylor type

temporal beam z_ptc_geometry.f90 145

polymorphic, 3

temporal beam
defined, 112

temporal probe
defined, 21

TEMPORAL_BEAM
data type, 112

TEMPORAL_PROBE
data type, 112

THIN_LENS_RESPLIT
routine, 86

THIN_LENS_RESTART
routine, 86

Thomas Jefferson National Laboratory
example based on, 11

three-dimensional information
data type, 64

THREE_D_INFO
data type, 64

time
flag, 101

time-based tracking
data types, 108

described, 21

integration node, 20, 21

topology, see accelerator topology
totalpath

flag, 101, 114

TRACK
routine, 50, 54

track
routine, 61

TRACK_BEAM
routine, 63

TRACK_FILL_REF
routine, 64

TRACK_NODE_PROBE
routine, 62

TRACK_NODE_V
routine, 63

TRACK_NODE_X
routine, 63

TRACK_PROBE
routine, 62

TRACK_PROBE2
routine, 62

TRACK_PROBE_X
routine, 63

TRACK_TEMPORAL_BEAM
routine, 64

TRACK_TIME

routine, 64

tracking, see also s-based tracking or
time-based tracking

automatic, 15

tracking routines
3-D information through integra-

tion node, 63

beam of particles, 63

fibres, 61

integration nodes, 62, 63

list of, 61

object-oriented, 62

radiation, 61, 62

spin, 61, 62

standard, 61

time-based, 64

trajectory
reference, 6

transformation, see geometric transfor-
mation

translate
routine, 33

TRANSLATE_FIBRE
routine, 73

TRANSLATE_FRAME
routine, 69

TRANSLATE_GIRDER
routine, 77

TRANSLATE_LAYOUT
routine, 73

TRANSLATE_MAGNET
routine, 74

TRANSLATE_SIAMESE
routine, 76

translation routines
described, 69, 73

tune
computing, 54, 88

type, see data type

universe
PTC, 25

UPDATE_STATES
routine, 101

variable
phase space, 10

z_ptc_geometry.f90
geometry tutorial source file, 44,

53

146 z_ptc_splitting.f90 z_ptc_splitting.f90

z_ptc_splitting.f90
splitting tutorial source file, 86

	Short contents
	Contents
	List of Figures
	List of Tables
	Note to the Reader
	Acknowledgements
	Introduction
	PTC and FPP
	PTC Library User Guide

	Overview of PTC
	Tracking Particles through an Accelerator
	Modeling Accelerator Topologies
	Analyzing an Accelerator to Understand its Properties
	Modeling Particle Interactions

	Modeling an Accelerator with PTC
	Accelerator Models
	Geometry Tutorial Source File
	Subroutines
	Populating the DNA Database
	Modeling Complex Accelerator Topologies
	DNA Arrays

	Linking Magnets Together and Moving Them as a Group
	Siamese and Girders
	Building Siamese, Girders, and their Reference Frames
	Examples of Misalignments

	Taylor Polymorphism and Knobs
	Polymorphs
	Knobs
	Tutorial Example

	Computing Accelerator Properties
	Global Scalars
	s-Dependent Global Quantities
	Local Quantities

	Tracking Routines
	Standard Tracking Routines on Fibres
	Tracking Routines on Integration Nodes
	Tracking Routines on 3-D Information through an Integration Node
	Time-based Tracking Routines
	Closed-Orbit Routine

	Geometric Routines
	Affine Routines on Pure Geometry
	Affine Routines on Computer Objects
	Dynamical Routines

	Symplectic Integration and Splitting
	Philosophy
	Splitting Tutorial Source File
	Splitting the Lattice
	Other Splitting Routines

	Appendices
	Internal States
	Data Types
	S-based Tracking
	Time-based Tracking

	PTC Geometry Tutorial Source File: ptc_geometry.f90
	PTC Splitting Tutorial Source File: ptc_splitting.f90
	Bibliography
	Index

