
CERN-ACC-NOTE-2013-0005
August 14, 2013

revised April 15, 2014
laurent.deniau@cern.ch

Ndiff Reference Manual
Laurent Deniau

CERN – BE/ABP

Keywords: Numeric diff, numeric constraints, regression tests, data validation.

Summary

ndiff is an efficient and flexible tool designed to compare unformatted text
files with numerical content. It is well suited for regression testing, for vali-
dating data versus templates, and for filtering data following templates. This
technical note is the reference manual of the ndiff tool initially developed
for the MAD-X test system and subsequently extended for data validation.

1

Contents

1 Motivation 4

2 Principle 4

2.1 Configuration . 5

3 Rules 5

3.1 Format . 6

3.2 Numbers and identifiers . 6

3.3 Comments . 8

3.4 Ranges . 8

3.5 Constraints . 8

3.6 Actions . 11

3.7 Operations . 11

3.8 Alternates rules . 14

3.9 Debugging rules . 15

4 Examples 16

4.1 Basic constraints . 16

4.2 Basic actions . 17

4.3 Basic operations . 17

4.4 Advanced constraints . 17

4.5 Advanced actions . 19

4.6 Advanced operations . 20

5 Output 20

5.1 Setup strategy . 21

6 Running modes 22

6.1 Single mode . 22

6.2 Filter mode . 23

6.3 Recycle mode . 23

2

6.4 Serie mode . 24

6.5 List mode . 24

6.6 Test mode . 24

6.7 Suite mode . 25

6.8 Compressed files . 26

7 Applications 26

7.1 Data validation . 26

7.2 Regression tests . 26

7.3 Test system . 27

8 Installation 28

8.1 Compiling ndiff . 28

8.2 AFS clients . 29

9 Future work 30

A ndiff help 32

B MAD-X test system 35

3

1 Motivation

The ndiff tool is a program developed for the test system of the MAD-X ap-
plication [1]. The purpose of this tool is to compare line by line unformatted
text files with numerical content in a portable way. The portability of the
comparison is resulting from the acceptance of (user-defined) small numer-
ical differences and varying number representation that occur across runs,
compilers and platforms. For example, ndiff will consider to be equal the
numbers 0.001, 1e-3, 100.00e-5 and 0.0001e+001, while diff-like Unix
tools will report differences.

To the knowledge of the author, the ndiff tool does not seem to have
any equivalent freely available on the world wide web, despite the obvious
interest and need for the scientific community. Other similar open source
tools exist like numdiff [2] or ndiff [3] (same name but not same tool), but
they do not provide the flexibility required by the test system of MAD-X.
Many options and commands have been added to ndiff in order to solve
problems related to testing MAD-X, hence examples will often refer to the
MAD-X test system.

The ndiff tool is written entirely in the C programming language with
no external dependencies to ensure maximum portability and performance.
It is very efficient to deal with both large input of data and large number of
rules (i.e. user-defined constraints). ndiff can process more than 100 MB of
data per second (i.e. nearly at the rate of disk I/O) and compare few millions
numbers per second on recent computers.

2 Principle

The main application of the ndiff tool is to compare line by line unformat-
ted text files with numerical content in a portable way. Comparing two files
is as simple as:

ndiff fileA fileB

During the comparison, ndiff recognizes and interprets numbers and com-
pares their respective values. In its simplest form, the accepted error ε be-
tween two numbers x and y read from the two input files is computed using
the formula |x−y| ≤ ε. For each rejected difference between numbers, ndiff
reports the discrepancy on the console with a message starting with the tag
numbers:. This indicates that the content of the input files has been effec-
tively recognized and interpreted as numbers.

Everything not interpreted as numbers in the input files is compared as
strings, that is compared character by character for strict equality. For each
encountered difference between strings, ndiff reports the discrepancy on the

4

console with a message starting with the tag strings:. This indicates that
the content of the input files has NOT been interpreted as numbers, even if
digits are present in the sequence of characters.

Unlike the diff-like Unix tools, ndiff does not try to match shifted
inputs, and immediately reports any difference between strings.

2.1 Configuration

The command used previously to compare two files relies on the default be-
havior of ndiff (i.e. rule #0). In the absence of user-defined configuration
file, ndiff compares numbers within the machine precision. For IEEE 754
standard representation, the smallest positive value for double precision float-
ing point numbers is eps = 2.22507e-308. This value is often too small to
ensure good portability of the comparisons due to the variations inherent to
floating point numbers: code generated by compilers, libraries provided by
platforms, type of architectures, precision of conversions and representations
of numbers, rounding errors in numerical expressions, non-associativity of
associative operations on floating point numbers, etc... Hence the user will
often need to provide extra settings to ndiff to relax on purpose the error
tolerances applied to the encountered differences. Comparing two files with
a custom configuration is as simple as:

ndiff fileA fileB config

The configuration file is optional, but generally needed to customize the com-
parison of the two files and tune it for portability. It contains the definition
of the rules that configures each comparison of numbers encountered in the
input files, and much more as we will see in the next section.

3 Rules

The ndiff configuration file is a sequence of rule definitions that apply to
the two files under comparison. The configuration is not persistent, that is
all the rules are loaded before the comparison starts and discarded afterward.
This might be important in the case of chaining multiple comparisons into a
single ndiff command (see 6, Running modes).

The remaining of this section describes the syntax and the meaning of the
rules defined in the configuration file in order to customize the comparison
of two input files. In the following of this document, optional content is
enclosed with matching pairs of square brackets.

5

Test config for the Jacobian knobs

file test-jacobian-knobs.cfg

rows cols constraints

1-7 * skip # head banner

149-$ * skip # tail banner

first matching

37-38 1-2 rel=1e-12

39 2 abs=1e-21 # from job

41 1 rel=1e-12

second matching

109-110 1-2 rel=1e-12

111 2 abs=1e-21 # from job

113 1 rel=1e-12

Figure 1: Example of ndiff configuration file used for the regression test of
the MAD-X matching command using the Jacobian algorithm with knobs.

3.1 Format

The format of the configuration file is simple and line–oriented as shown in
figure 1. Each line can define a single rule with three fields: the range
of rows, the range of columns and the actions or constraints relevant over
these ranges. For each numbers comparison, ndiff selects the active rule
amongst these definitions. If some rules are defined with overlapping ranges,
rules defined first have lower priority than rules defined last in the
configuration file. This allows to ndiff to always uniquely determine the
active rule.

3.2 Numbers and identifiers

The range of column is defined in term of the count of encountered numbers
on the current line scanned. Because the text representation of numbers
varies between compilers and platforms, using the count of characters col-
umn would be improper to specify the active rules. Therefore we need an
unambiguous definition of what must be interpreted as a number to get the
proper count of columns.

Numbers A number is defined by the following formatting:

6

• Signs are optional for mantissa and exponent; a single space is accepted
as a replacement for the optional + sign in front of the mantissa.

• Decimal point is optional, but at least one digit must appear before or
after the decimal point (if any).

• Exponent is optional; valid exponent separators are d, e, D, E.

• Prefix delimiters can be spaces (white space, \t, \n, \r), and any
punctuation character that is not part of identifiers.

• Suffix delimiters are any non-digit characters following the decimal
point or the exponent (if any).

The following regular expression [4] defines the input format of numbers:

sign ::= [-+]

integer ::= sign? [0-9]+

decimal ::= ([0-9]+\.[0-9]*) | ([0-9]*\.[0-9]+)

exponent ::= [edED] [+-]? [0-9]+

float ::= sign? decimal exponent?

number ::= integer | float

Examples of numbers (enclosed in boxes):

3 , .3 , 3. , 3.2 , 1.5e5 , 3.4d3 , 1.e5 , .2e−3

−15 , +12 , + −10 , % 05 f, ? 5 , < 5 , = 5 , 0.15 .6, .15 .6, .15 .6

15 MB, MB 15 , MB 15. , MB .15 , 15.9e−2 m.s−1

Identifiers An identifier is any sequence of non-space characters that is not
interpreted as a number. Identifiers can contain sequence of digits as long as
that sequence cannot be interpreted as a number, generally because of the
prefix delimiters. By default, ndiff accepts the punctuation characters $

(dollar), _ (underscore) and . (dot) as part of identifiers, i.e. valid MAD-X
tokens. This can be configured at runtime through the command line option
--punct ’chrs’ (see 6), or permanently at compile time (see 8). Note that
allowing ‘+-’ and spaces as valid identifier characters can lead to unexpected
results.

The following regular expression [4] defines the input format of identifiers:

letter ::= [A-Za-z]

digit ::= [0-9]

punct ::= [_.$]

identifier ::= (letter | punct)(letter | digit | punct)*

7

Examples of identifiers with sequence of digits not interpreted as numbers:

15MB, MB15, MB15., MB.15, MB.15A, MB15.0e-3, MQ.A2.3, 15, 15.6d3

3.3 Comments

A comment starts with the characters # or ! and lasts until the end of the
line.

3.4 Ranges

A range selects the rows or the columns affected by an action or a constraint.
The count of rows and columns starts from one and increases as the compar-
ison of the two input files progresses. The row number corresponds to the
count of lines read in the current file. The column number corresponds to
the count of numbers read on the current line: the first number is at column
one, the second number is at column two, etc... The column zero exists and
is used to activate rules that apply while scanning for the first number of the
current line. It is worth understanding what ndiff interprets as a number
(see 3.2) to specify correctly the column ranges.

Row and column ranges can take the following forms:

• An integer n to specify the single n-th row or column. The special
character $ represents the last row or column.

• A slice start : size [/ stride] to specify size rows or columns starting
from start, optionally with steps of stride. For example, 5:2 specifies
the range {5, 6}, and 11:3/5 specifies the range {11, 16, 21}.

• A range start - end [/ stride] to specify rows or columns starting from
start, ending at end (included), optionally with steps of stride. For
example, 5-6 specifies the range {5, 6}, and 9-21/5 specifies the range
{9, 14, 19}.

• An asterisk * to specify all rows or columns, this is a shortcut for 0-$.

3.5 Constraints

The constraints are at the heart of ndiff, as they allow to release the ac-
cepted error difference ε between two input numbers x and y, i.e. |x− y| ≤ ε.
Constraints can include any combination of the following commands and
qualifiers:

8

• abs=ε specifies the absolute error ε in −ε ≤ x− y ≤ ε, with ε ∈ [0, 1].

• rel=ε specifies the relative error ε in −ε ≤ x−y
min(|x|,|y|) ≤ ε, with ε ∈ [0, 1].

If min(|x|, |y|) = 0, the relative error becomes infinite so it is converted
to an absolute error, i.e. min(|x|, |y|) = 1. This constraint does not
apply to comparison of integer numbers.

• dig=ε specifies the relative digital error ε in −ε ≤ x−y
min(|x|,|y|) ≤ ε, with

ε = ε · 10−max(#x,#y) and ε ≥ 1, and where #a is the number of digits
in the mantissa of a as read from the input file after discarding the
leading zeros. Hence, ε is the amount of precision (e.g. number of
trailing digits) that the user is ready to discard. If min(|x|, |y|) = 0,
the error becomes absolute, i.e. min(|x|, |y|) = 1. This constraint does
not apply to comparison of integer numbers.

• -abs=ε′ specifies the negative absolute error in ε′ ≤ x − y ≤ ε, with
ε′ ∈ [−1, 0], and where ε is defined by the previous abs in the rule.

• -rel=ε′ specifies the negative relative error in ε′ ≤ x−y
min(|x|,|y|) ≤ ε, with

ε′ ∈ [−1, 0], and where ε is defined by the previous rel in the rule.

• -dig=ε′ specifies the negative relative error in ε′ ≤ x−y
min(|x|,|y|) ≤ ε, with

ε′ = ε′ · 10−max(#x,#y) and ε′ ≤ −1, and where ε (resp. ε) is defined by
the previous dig in the rule.

• large (qualifier) allows for large error ε > 1 for the following abs, rel
and ε′ < −1 for the following -abs, -rel.

• scl=a specifies the error scale a in a(x− y) + b for error calculation in
abs, rel and dig (default a = 1).

• off=b specifies the error offset b in a(x− y) + b for error calculation in
abs, rel and dig (default b = 0).

• lhs=x specifies the left hand side value x to use for error calculation in
abs, rel and dig. The corresponding number in the left input file is
still read and saved but not used in error calculation.

• rhs=y specifies the right hand side value y to use for error calculation
in abs, rel and dig. The corresponding number in the right input file
is still read and saved but not used in error calculation.

• equ specifies strict equality, i.e. numbers must compare equal character
by character. This is different from abs=0 as it requires the exact same
textual representation and has a higher precedence.

• ign specifies that differences between numbers should be ignored. This
is equivalent to abs=+∞ except that it has a higher precedence.

9

• istr specifies that differences between strings, including sequence of
digits, should be ignored while scanning for numbers. Combining ign

and istr allows for missing numbers in the input files. It makes sense
to combine istr and omit as the latter also applies to numbers.

• omit=’tag’ specifies that differences between sequence of digits (i.e. in-
side strings) or numbers preceded by ‘tag’ should be ignored. It can
be used standalone or in combination with other constraints with lower
precedence. The maximum length of ‘tag’ is 64 characters.

• any (qualifier) specifies that constraints are disjunctive.

• all (qualifier) specifies that constraints are conjunctive (default).

• alt (qualifier) specifies that the rule is an alternate rule that remain
hidden until the previous rule in the configuration file fails.

• eval (qualifier) specifies that the operations must be evaluated even if
the rule fails.

• nofail (qualifier) specifies that failure of the rule will not be counted
nor displayed.

In case of multiple constraints defined in the same rule, the precedence is the
following:

ign > omit > equ > abs = rel = dig

Constraints with equal precedence can be combined into conjunctive con-
straints (default, optional all) or into disjunctive constraints using the qual-
ifier any (last qualifier wins).

When no constraint or action is present in a rule, the constraint
abs=eps becomes the default, where eps is the smallest representable positive
floating point number (see 2.1).

When no rule are active during the comparison of two numbers, the
special rule #0 defined by:

* * abs=eps

becomes automatically active. Because of the rule #0, ndiff always inter-
prets the numerical content of the compared files, unless a rule like:

* * equ

is defined last in the file, i.e. with higher priority, and no action are present.

10

3.6 Actions

Actions are line-based exclusive commands interpreted with higher priorities
than any constraint, independently of their respective line position in the
configuration file. Hence any information present in the range of columns is
ignored for activating actions. Note however that line positions still matter
for overlapping actions. The list of supported actions is:

• skip is the action to skip the lines covered by the specified range of
rows. This action is useful to discard lines that contain information
changing from run to run, such as timings or platform information.

• goto=’tag’ is the action to skip the lines starting from the range of
rows, and until the string ‘tag’ is encountered in both input files. Be-
cause the number of lines read to find ‘tag’ can differ between the two
files, ndiff always favors the smallest row count as the new count for
further rule selection. The maximum length of ‘tag’ is 64 characters.
This action is useful to discard content with varying number of lines
from run to run, such as intermediate output of iterative algorithms.

• goto=’num’ is the action to skip the lines starting from the range of
rows, and until the number ‘num’ is encountered in both input files.
Because the number of lines read to find ‘num’ can differ between the
two files, ndiff always favors the smallest row count as the new count
for further rule selection. This action can be combined with range of
columns and constraints that will be applied when searching for ‘num’,
using x as the input numbers and y=‘num’ for both input files. This
action is useful to discard content with varying number of lines from
run to run, and where the (re)synchronization of the input files is based
on numbers. To treat ‘num’ like a ‘tag’ (i.e. previous action), the rule
must have * (or 0-$) for the range of columns and equ in its constraints.

In case of multiple actions (accidentally) defined in the same rule, the prece-
dence is the following:

skip > goto=’tag’ > goto=’num’

It is considered as good style to group the actions before the constraints at
the beginning of the configuration file for quick identification, since anyway
they have a higher priority than any constraint.

3.7 Operations

Operations are based on registers used in conjunction with constraints and
actions. ndiff has 99 registers named Rn for 1 ≤ n ≤ 99, i.e. registers

11

R1 (or R01) to R99, that allow to store and reuse numbers read from input
files and build complex recursive constraints. Registers store numbers in
their numerical form, which means that the exact representation of the saved
numbers is lost. Hence, rules loading values from registers and involving the
constraint equ are likely to fail.

Saving numbers to registers The basics of operations is to use numbers
read from input files and stored into registers. ndiff uses the read-only
registers R1 to R9 to save special values each time a number is encountered in
the input files, and the write-only register R0 to print values on the console:

• R0 prints the values on the right hand side of the assignment.

• R1 contains the number read from the left hand side input file.

• R2 contains the number read from the right hand side input file.

• R3 contains the computed difference x− y.

• R4 contains the computed scaled error a R3.

• R5 contains the computed absolute error R4+b.

• R6 contains the computed relative error R5/R8.

• R7 contains the computed digital relative error R6/R9.

• R8 contains the computed relative normalization min(|x|, |y|).

• R9 contains the computed input precision 10−max(#x,#y).

Note that registers R1 and R2 always contain the values read from the two
input files, while the registers R3..R9 may contain values not computed from
R1 and R2 if the commands lhs or rhs are present in the rule. Remember
that rule #0 applies if no user-defined rule is active, and it will update the
register R1 to R9 as any other rule.

Loading numbers from registers All the constraints and actions that ex-
pect a number can replace this number by a reference to a register, with
the possibility to perform simple operations on the value when it is loaded.
Loading values from registers has a higher precedence than loading constant
numbers. Loading a value from an uninitialized register, i.e. where no value
was saved before, leads to an undefined behavior.

12

• abs=Rn, -abs=Rn, rel=Rn, -rel=Rn, dig=Rn, -dig=Rn, scl=Rn,
off=Rn, lhs=Rn and rhs=Rn are all equivalent to their homologous
commands described in 3.5 except that they take their values from the
specified registers.

• goto=Rn is equivalent to its homologous commands goto=’num’ de-
scribed in 3.6 except that it takes the value of ‘num’ from the specified
register.

Note that values are (re)loaded from registers each time a rule becomes active.
Therefore, if a rule is activated periodically and it uses values loaded from
registers, each activation can see different constraint specifications depending
if the registers were updated between the activations or not.

Operations on registers It is possible to perform operations when loading
values from registers or when moving values between registers. ndiff can
record up to 10 operations per rule, not including the special loads described
in the previous paragraph:

• =Rn loads the value from register n.

• =-Rn loads the negated value from register n.

• =/Rn loads the inverted value from register n.

• =\Rn loads the negated and inverted value from register n.

• =^Rn loads the exponential value from register n.

• =|Rn loads the absolute value from register n.

• =[Rn loads the value from register n rounded toward zero.

• =]Rn loads the value from register n rounded toward infinity.

• Rn=Rp+Rq loads the sum of registers p and q to register n.

• Rn=Rp-Rq loads the difference of registers p and q to register n.

• Rn=Rp*Rq loads the product of registers p and q to register n.

• Rn=Rp/Rq loads the ratio of registers p and q to register n.

• Rn=Rp%Rq loads the reminder of registers p and q to register n.

• Rn=Rp^Rq loads the power of registers p and q to register n.

• Rn=Rp<Rq loads the min of registers p and q to register n.

13

• Rn=Rp>Rq loads the max of registers p and q to register n.

• Rn=Rp~Rq moves the registers from p to q, p < q, to registers from n to
n+ q − p. The sequence of registers specified on the right can overlap
with the sequence specified on the left of the assignment.

The first nine operations with nothing specified on the left hand side of the
assignment also apply to special loads of the previous paragraph. Note that
moving a sequence of registers allows to save or print the read-only registers
R1..R9 in one command or to shift an ‘array’ of numbers before saving new
values.

Precedence of operations Multiple operations can appear at different
places in a rule definition. Hence, understanding how registers are updated
during the execution of the rules is important:

1. The read-only registers R1 and R2 are updated.

2. The loads for lhs, rhs, scl and off are performed.

3. The errors are computed from lhs, rhs, scl and off.

4. The read-only registers R3..R9 are updated.

5. The non-numerical constraints ign, omit and equ are checked.

6. The loads for [-]abs, [-]rel and [-]dig are performed.

7. The numerical constraints abs, rel and dig are checked.

8. The operations are performed in the order specified.

If any of the non-numerical constraints of step 5 fail, the subsequent steps
are skipped. If any of the numerical constraints (or all if the any qualifier is
present) of step 7 fail, the subsequent steps are skipped. If the eval qualifier
is present in the rule, the last step is still performed even if step 5 or step 7
failed.

3.8 Alternates rules

An alternate rule is a rule that contains the qualifier alt (see 3.5). Such
rule remains hidden until the rule preceding it in the configuration file fails.
Hidden rules cannot become active and have to wait for being visible first
before becoming selectable for activation, which may never happen. Once the
rule become visible, its selection will follow the normal range-based activation
process.

14

debug: (args.c:197): debug mode on

debug: (args.c:319): summary set to ’../tests-summary.txt’

debug: (args.c:265): test name set to ’test-match’

processing test-match

debug: (utils.c:102): file test-match.out open for reading

debug: (utils.c:102): file test-match.ref open for reading

debug: (utils.c:102): file test-match.cfg open for reading

debug: (main.c:133): rules list:

[#0:0] * * abs=eps

[#1:3] 1-7 * skip

[#2:4] 234 * skip

[#3:7] 21 1 rel=1e-12

[#4:8] 23 * goto=’Final difference norm:’

[#5:9] 24 1 rel=1e-12

[#6:10] 33-53/5 1 abs=1e-10

[#7:11] 57 1 abs=1e-16

[#8:12] 69 1 abs=1e-16

[#9:15] 77 1 rel=1e-12

[#10:16] 79 * goto=’Final difference norm:’

[#11:17] 80 1 rel=1e-12

[#12:18] 89-109/5 1 abs=1e-10

[#13:19] 113 1 abs=1e-16

[#14:20] 125 1 abs=1e-16

[#15:23] 133 1 rel=1e-10

files test-match from test test-match do not differ

236 lines have been diffed in files test-match

Figure 2: Example of ndiff output in debug mode for test-match suite.

3.9 Debugging rules

Internally, ndiff can use two different algorithms to select the active rules.
The default linear algorithm always enabled is a stack-based automata that
exhibits linear algorithmic complexity to select active rules. Another brute
force algorithm with quadratic algorithmic complexity is also available for
crosscheck and debugging purpose, and can be enabled by the command line
option --xcheck.

The command line option --debug can be used to display debugging
information during the run, including the list of rules known by ndiff after
the loading of the configuration file, as shown in the figure 2. This option
includes the option --xcheck.

The command line option --trace can be used to display even more
debugging information during the run. This option includes the options

15

--debug.

Because the --trace option is very verbose, another mechanism has been
implemented with the rule qualifier trace to trace only the active rules:

• trace (qualifier) specifies to trace only when the rule is active. It
is useful for debugging purpose and provides finer control than the
command line option --trace (global setup).

• traceR (qualifier) same as trace but trace also the registers modified
by the rule.

Note that qualifying rules with trace does NOT enable the options --debug
and --xcheck. Hence qualifying all rules with trace is not equivalent to the
command line option --trace.

4 Examples

Many examples of configuration files can be found in the MAD-X tests reposi-
tory [5], where the files can be browsed directly from the web. In the following
of this section, we show only some simple and typical use cases of ndiff rules.

4.1 Basic constraints

The rule:

3-$ 5-$ ign

specifies that all numbers after line 3 and column 5 included must be ignored
in both input files.

The rule (conjunctive):

3 * abs=1e-10 rel=1e-8

specifies that all numbers (i.e. all columns) on line 3 must be equal between
the two input files within an absolute error of 10−10 AND a relative error of
10−8; that is both constraints must be fulfilled.

The rule (disjunctive):

5-$ 2-5 any abs=1e-12 rel=1e-9 dig=100

specifies that all numbers in columns 2 to 5 after line 5 included must be
equal between the two input files within an absolute error of 10−12 OR a
relative error of 10−9 OR accepts that they differ on the tailing one or two
digits; that is one of the three constraints must be fulfilled. It is common

16

to tighten the constraints when the any qualifier is present to avoid lazy
acceptance.

The rule (large error):

* 3 rel=1e6

is invalid. The constraint should be either rel=1e-6, or preceded by the
large qualifier. The explicit requirement of the large qualifier avoids to
forget the minus sign of the exponent and accidentally validate all the differ-
ences.

4.2 Basic actions

The two rules:

1-7 * skip # banner

119-$ * skip # trailer

specify that the lines from 1 to 7 and from 119 to the end of both files are
ignored. The specification of the range of columns is ignored (see actions).

4.3 Basic operations

The two rules:

1-$/2 3 ign R10=R1 # save R1

2-$/2 2 abs=1e-4 scl=R10 # scale error

save the number read from the left input file at column 3 for all odd lines
into register R10, whatever the difference is with the right input file. Then
reuse the previous saved value to scale the absolute error computed for all
even lines at column 2 between the two input files.

4.4 Advanced constraints

The rule:

3-$ 5-$ ign abs=1e-2

specifies that all numbers after line 3 and column 5 included must be ignored
in both input files. The constraint abs is never considered because of its
lower precedence than the command ign.

The rule:

* 3 abs=1e-6 -abs=0

specifies that all numbers in column 3 must be must be equal between the two

17

input files within an absolute asymmetric error of 10−6, and where negative
error are forbidden. This command is useful to validate data (e.g. measure-
ments) versus some references (e.g. template).

The rule:

3-$ * abs=1e-9 large rel=1e2 scl=1e-2

specifies that all numbers after line 3 must be must be equal between the
two input files within an absolute error of 10−9 AND a relative error of
102, both after scaling the errors by 10−2. The large qualifier must be
explicitly mentioned to avoid common mistakes, like typing abs=1e9 instead
of abs=1e-9 in this example making the rule accidentally ineffective. The
purpose of the large qualifier is to accept absolute errors between very large
numbers or relative errors between very small numbers. The purpose of
the scl command is to scale the error such that for example relative errors
remain sensible.

The following four pairs of rules:

* 3 abs=INF * 3 equ * 3 equ * 3 ign

1-$/2 3 equ 2-$/2 3 abs=INF 2-$/2 3 ign 1-$/2 3 equ

are all equivalent and specify that all numbers in column 3 must be strictly
equal (i.e. same representation) for odd rows and ignored (i.e. infinite absolute
error) for even rows during the comparison of the two input files.

The rule:

8-$ 0-3 abs=1e-9 rel=1e-7 omit=’DRIFT ’

specifies that all numbers in columns 1 to 3 after line 8 included must be equal
between the two input files within an absolute error of 10−9 AND a relative
error of 10−7. During the scan for numbers — starting from column zero —
any sequence of digits not interpreted as a number and preceded by the string
‘DRIFT ’ will be ignored. This command is useful to accept identifiers that
contain sequence of digits that may vary across runs, compilers and platforms
(e.g. shared implicit drift elements in MAD-X Twiss table).

The rule:

8-$ 2 any abs=1e-9 rel=1e-7 dig=1e2 omit=’sec.s since start: ’

specifies that all numbers in column 2 after line 8 included must be equal be-
tween the two input files within an absolute error of 10−9 OR a relative error
of 10−7 OR accepts that they differ on the tailing one or two digits. Dur-
ing the interpretation of numbers in column 2, any number preceded by the
string ‘sec.s since start: ’ including the trailing space will be ignored.
This command is useful to accept varying numbers that occurs from time to
time in the middle of large numerical content (e.g. tables, measurements).

18

4.5 Advanced actions

The rule:

13 * goto=’penalty function: ’

read lines starting at line 13, and until it encounters the string ‘penalty
function: ’ including the trailing space in both input files. Assuming that
the string was encountered at lines 57 and 119 respectively, the new row
count of both files becomes 57 for further rule activation (see goto action).
Hence, the goto command requires that one of the two input files is used
as a reference file, which must always be shorter than its companion input
file in order to get a deterministic row count during the comparison. This
reference row count must be used to setup the range of rows for the rules
selectable after the execution of the goto command. As a rule of thumb, the
activation of goto command must take place at least one line before the next
supposedly active constraint, otherwise the later will never be effective due
to its lower priority.

The two rules:

13-120 * goto=’penalty function: ’

57 * abs=1e-10

read lines starting at line 13, and until it encounters the string ‘penalty
function: ’ including the trailing space in both input files right after the
specified range of rows. Assuming that the first string was encountered at
lines 57 and 119 respectively (as before), the new row count of both files
becomes 57 for further rule activation. Therefore this rule will remains the
active rule due its highest priority (once activated), and until it encounters
the string ‘penalty function: ’ outside its own range of rows using the
row count of the shortest input file. Note that the rule containing the abs

constraint is never activated despite that its definition appears after the goto
action in the configuration file and that its range for rows corresponds to the
line of the first occurrence of the string searched. If the goto action had
12-40 for its range of rows, the abs constraint would have been applied to
the values on the line 57, e.g. the value of the penalty function.

The rule:

251 2 goto=’11850’ large abs=0.5 -abs=-10

read lines starting at line 251, and until it encounters a number 11840 ≤
x ≤ 11850.5 in the second column for both input files. Note that number
2 in the range of columns is used for searching the number that fulfills the
constraints, not for triggering the action that will be active as soon as the
line 251 is reached. The rest of the behavior is similar to goto on strings. If
you need to search for a number as if it were a tag, you can use the rule:

251 * goto=’11850.20’ equ

19

This will have the same effect as searching for the string ’11850.20’. Note that
the * (or 0-$) in the range of columns matters to obtain the same behavior.

4.6 Advanced operations

The two rules (delay):

1-11 2 ign R11=R10~R20 R10=R1 R0=R10~R20 # init

11-$ 2 abs=1e-9 lhs=R20 R11=R10~R20 R10=R1 # delay

implement a delay of 11 rows in the column 2 of the left input file using 10
registers before checking for the absolute error. The first rule prints the con-
tent of the registers R10..R20 on the console to check the shift initialization.

The four rules (derivative):

Goal: check that X Y points (left file)

follow reference derivatives (right file)

Compute:

-e_k <= (y_k-y_{k-1})/(x_k-x_{k-1}) - (dy/dx)_k <= e_k

Inputs: (left file) (right file)

x y dy/dx e

initialization (k=0)

1 1 ign R10=R1 # R10 = x_k

1 2 ign R11=R1 # R11 = y_k

row iterations (k>0)

R12=x_k-x_{k-1}, R13=(dy/dx)_k, R10=x_k, R11=y_k

2-$ 1 ign R12=R1-R10 R13=R2 R10=R1

2-$ 2 lhs=R1 rhs=R11 scl=/R12 off=-R13 abs=R2 R11=R1 eval

compare the derivatives of the x and y coordinates read from the left input file
with the reference derivatives dy/dx and the error tolerances e read from the
right file, using the backward difference approximation. The eval qualifier is
required to ensure that the value yk is saved even if the rule fails. Otherwise
ndiff would always report differences after encountering the first one because
the backward difference would be broken.

5 Output

When a difference between two strings or two numbers is rejected by the
active rule, ndiff tries to report useful information about the discrepancy
as shown in figure 3.

20

warng: (*) files ’test-match’|’test-match.ref’ from test

--> ’test-match’ differ

warng: (1) files differ at line 21 column 1 between

--> char-columns 30|30 and 52|40

warng: (1) numbers: ’0.2761043129903641e+14’|’0.2761e+14’

warng: (1) relative error (rule #3, line 7: -1e-12<=rel<=1e-12)

--> abs=4.3e+08, rel=1.6e-05, ndig=16

warng: (=) 236 lines have been diffed

warng: (=) 1 diff has been detected

Figure 3: Example of ndiff output for a single difference rejected during the
comparison of the files test-match and test-match.ref in the test-match
suite. The symbol --> indicates the continuation of the previous line.

The left marker (*) indicates the beginning of a list of discrepancies, fol-
lowed by the name of the files under comparison. The left markers (num)

group the multi-lines output reported for each difference encountered with its
respective count number. Each group displays the line and column number
where the difference has been rejected as well as the corresponding character
columns; remember that the column number is defined by the count of num-
bers. The symbol ‘|’ is used to separate the information belonging to the
left (first) and the right (second) files under comparison. In the case shown
in figure 3, the character columns are different after the parsing of the input
numbers, while the column number remains the same.

The tag numbers: indicates that the difference occurred between num-
bers after numeric interpretation, and displays within quotes the numbers
belonging to the left and right input files. The other possible tag strings:

would indicate that the difference occurred between sequences of characters
that do not (yet) represent numbers, and would display the first 25 characters
of the difference.

The next line indicates respectively the kind of constraint that triggered
the rejection of the discrepancy, here a relative error, the rule specification
(#3, line 7: −10−12 ≤ rel ≤ 10−12), and the computed absolute and
relative errors as well as the maximum number of significant digits of the
mantissa read from the two input files.

5.1 Setup strategy

The strategy to setup quickly a configuration file for ndiff is to run it the first
time without any configuration file while keeping a large number of errors
(option --keep). Then the ndiff output will contain useful information
for estimating efficiently the most appropriate kind of constraints and their

21

initial guess, and validate (i.e. accept) the error differences encountered.
ndiff tries to align vertically the computed errors such that quick browsing of
large amount of errors is possible. This strategy proved to be effective during
the setup of the hundreds configuration files of the MAD-X test system.

Another possible strategy for less sensitive data is to release first the
constraint for a large part of the input, like in the following rule (adapted
from test-dynap), and tighten them on purpose for identified cases after few
runs:

4-$ 2 any abs=1e-9 rel=1e-7 dig=1e2 omit=’timing: ’

4-$/5 2 abs=1e-9 rel=1e-7 # special cases

The any qualifier should always be used with care when applied
to large inputs, as it can silently ‘disable’ your comparison and always
succeed.

However, it is considered as a better practice to setup global strict con-
straints first and release the error tolerances afterward, i.e. using constraints
with higher priority defined later in the configuration and active only on
small specific ranges. Hence, the example above should remain exceptional
on sensitive data.

6 Running modes

The command line options of ndiff can be obtained by running the help
(ndiff --help). This will also display some summary information about
the rules; see the appendix A for the complete output of the help.

The ndiff options are recorded or executed as they are parsed on the
command line and should not appear between the files to compare. Hence
the same option can appear more than once to setup different parts of the
command line. In the following of this section, each pair of square brackets
means that its content is optional and can be omitted.

6.1 Single mode

The single mode is the simplest way to compare two files. A typical use
would look like:

ndiff fileA [.out] fileB [.ref] [fileC [.cfg]]

If ndiff is not able to open a file with the name specified on the command
line, it tries again after concatenating the expected extension. Expected ex-
tensions are positional, that is for the first file ndiff will try to open fileA

22

then fileA.out, for the second file it will try to open fileB then fileB.ref,
and finally for the third file (if any), it will try to open fileC then fileC.cfg.

If all the base names are identical, the same effect can be achieved more
concisely with the list mode (see 6.5):

ndiff -l file ⇐⇒ ndiff file [.out] file.ref [file.cfg]

If the file name is ‘-’ for an input file, ndiff reads the data from the
standard input (i.e. stdin).

6.2 Filter mode

The filter mode use ndiff like a data filter, and allows to write all valid lines
into result files. A valid line is a line that fulfills all the constraints of the
rules active for that line. The file name of a result file is the same as its input
file with the extension .res appended. A typical use would look like:

ndiff --nowarn --lhsres fileA [.out] fileB [.ref] [fileC [.cfg]]

The --lhsres and --rhsres options can be used together to filter both
input files. These options are reset after each comparison, and they must
be restated on the command line for each comparison where they should be
enabled. The loop on file numbering, i.e. the serie mode (see 6.4), does not
reset these options; hence all the serie will have result files.

6.3 Recycle mode

The recycle mode is useful when using ndiff with templates that can be
recycled for the same input file, i.e. when they represent digested data or
relative data like derivatives instead of values. A typical use would look like:

ndiff --trunc --rhsrec fileA [.out] fileB [.ref] [fileC [.cfg]]

The --lhsrec and --rhsrec options are exclusive and cannot be used to-
gether, otherwise this would result in an infinite loop. These options can be
used only if the input file can be rewinded, that is not if the input file in
coming from the standard input or through a decompression command.

These options are reset after each comparison, and they must be restated
on the command line for each comparison where they should be enabled.
The loop on file numbering, i.e. the serie mode (see 6.4), does not reset these
options; hence the recycling will be perform on all the serie of files.

23

6.4 Serie mode

The serie mode extends the single mode by adding incremental numbering
between the file name and the expected extension (if any) until a file opening
fails:

ndiff --serie fileA [.out] fileB [.ref] [fileC [.cfg]]

is equivalent to try successively:

ndiff fileA [.out] fileB [.ref] [fileC [.cfg]]

ndiff fileA 1 [.out] fileB 1 [.ref] [fileC 1 [.cfg]]

ndiff fileA 2 [.out] fileB 2 [.ref] [fileC 2 [.cfg]]

ndiff fileA 3 [.out] fileB 3 [.ref] [fileC 3 [.cfg]]

etc ...

The first attempt may freely fail as non-numbered version of the files may or
may not exist. This mode can be combined with the list mode (see 6.5).

The useful option for this mode is:

• --seriefmt "fmt " specifies the printf format of the numbering. For
example --seriefmt "%03d" will generate the numbering 001, 002, ...

6.5 List mode

The list mode allows to compare a list of files where only the base name is
specified and let ndiff build the full name using the expected extensions. A
typical use would look like:

ndiff --list fileA fileB ...

For each base name in the list, ndiff will build the filenames fileA [.out],
fileA .ref and [fileA .cfg], and will try to open them as if it were running in
single mode (see 6.1). This mode can be combined with the serie mode (see
6.4).

6.6 Test mode

The test mode allows to execute multiple comparisons on the same command
line and output some summary for each test:

ndiff --test ’test-1’ fileA [.out] fileB [.ref] [fileC [.cfg]]

--test ’test-2’ fileD [.out] fileE [.ref] fileF [.cfg]

fileG [.out] fileH [.ref] [fileI [.cfg]]

Note that either the configuration file fileF [.cfg], either the extension of the

24

file fileG.out is required to allow ndiff to group correctly the files under
comparison.

The output summary of the commands aforementioned could look like:

+ test-1 (0.00 s) - 1/ 1 : PASS

+ test-2 (0.00 s) - 2/ 2 : PASS

The numbers given on the right represent the number of files successfully
compared versus the total number of files to compare for a given test, which
should be the same if no difference is rejected.

6.7 Suite mode

The suite mode allows to execute multiple times ndiff, i.e. as in a test suite,
and accumulate digested information from each run. This collected informa-
tion can be used to display a summary of the runs. A typical use would look
like:

ndiff -q --accum ’Sum’ --reset

ndiff -q --accum ’Sum’ --suite ’My Tests’ --test ’test-1’ ...

ndiff -q --accum ’Sum’ --test ’test-2’ ...

The first command resets the file Sum (e.g. summary) used to store interme-
diate information between runs. The second command runs the first test but
also displays the banner of the test suite My Tests and the name of the test
test-1. The third command runs the second test and displays the name of
the test test-2 (only).

The useful option for this mode is:

• --suitefmt "fmt " specifies the printf format of the suite title. For
example --suitefmt "-- %s --" displays the title -- My Tests --.

The output summary of the commands aforementioned could look like:

[My Tests]

+ test-1 (0.08 s) - 8/ 8 : PASS

+ test-2 (0.02 s) - 7/ 7 : PASS

Advanced uses of ndiff commonly combine the suite, test, list and serie
modes, and group all these commands and arguments into a single ndiff

command line to run full regression tests in one shot for example.

25

6.8 Compressed files

ndiff is able to process automatically compressed files on the fly by using
available decompressors in a subprocess, where the communications are per-
formed through pipes, that is no temporary files are created. The command
used to uncompress a files is based on its extension, and if no extension is
present (e.g. list mode), ndiff will try all supported extensions and will
build possible extrapolated filenames. The command must uncompress the
files to stdout such that ndiff can capture the uncompress stream and pro-
cess the comparison of the input text files as if they were read directly from
the hard disk.

The useful option for this mode are:

• --unzip "cmd " specifies the command to uncompress files with ex-
tension .zip. The default command is unzip -cq.

• --gzip "cmd " specifies the command to uncompress files with exten-
sions .gz, .z, .Z, .tgz, .taz, or .taZ. The default command is gzip

-cdq.

• --bzip2 "cmd " specifies the command to uncompress files with exten-
sions .bz, .bz2, .tbz, or .tbz2. The default command is bzip2 -cdq.

Adding new file extensions and new commands for decompressing unsup-
ported compression format to ndiff is very simple.

7 Applications

7.1 Data validation

The principle of using ndiff for validating data is to compare a set of un-
known data, for example measurements, with a set of known and validated
data. The ndiff rules should provide enough flexibility to use the refer-
ence data as a template with the required freedom to validate the unknown
data. The validation process would simply consist of running ndiff on the
unknown data versus one or few templates.

7.2 Regression tests

The principle of regression testing is shown in the figure 4 from left to right.
Each regression test runs a single MAD-X job (file .madx) that generates out-
put files (files .out), then each output file is compared with its corresponding

26

test-ptc-twiss.madx

MAD-X
test-ptc-twiss.out

ptc-twiss-table.out

ptc-twiss-map.out

ptc-twiss-table.ref
ptc-twiss-table.cfg

test-ptc-twiss.ref
test-ptc-twiss.cfg

ptc-twiss-map.ref
ptc-twiss-map.cfg

PASSED

FAILED

OR

NUMDIFF

Figure 4: Schematic description of the process used to test MAD-X compo-
nents. This PTC Twiss example runs a single madx job that generates three
output (.out) files. The three reference (.ref) and configuration (.cfg) files
are provided to ndiff by the MAD-X test system for regression testing, and
are part of the test suites repository.

reference file (file .ref) under the rules defined in its corresponding config-
uration file (file .cfg) using ndiff. The latter reports on the console the
passed and failed tests, plus some information on the discrepancies found in
case of failure. In general, the job script as well as the reference and con-
figuration files are distributed with the application as part of its test suites,
while the output files are generated on the fly by the test system.

7.3 Test system

The ndiff command line used by the MAD-X test system is:

ndiff -q [-d] -b -x -l -n -a sum-file -t test-name file-list ...

The appendix A lists the complete set of options supported by ndiff and the
appendix B shows the complete output of the MAD-X test system. Each test
has its own directory named after the name of the test test-name, and the list
of base names file-list is built from the list of all the reference files present in
that directory, that is all the files with the extension .ref or .ref.*, where
the asterisk can be any of the supported extensions for compressed files.

27

8 Installation

The last version of ndiff can be freely downloaded from the releases reposi-
tory [6] where binaries for the Windows, Linux and Mac OS X platforms for
32-bit or 64-bit systems are available.

The source code (tarball) and this manual can be downloaded either from
the same repository, or directly from the SVN web browser [7].

8.1 Compiling ndiff

Compiling ndiff with a C99 compiler offers the opportunity to permanently
setup some default values by defining the following macros at compile time:

• -DVERSION=’str’ specifies the version of ndiff. This string cannot be
changed at runtime.

• -DMAXKEEP=num specifies the default maximum number of warning dis-
played on the output, the original value is 25. This option does not
affect the total count of encountered differences, only the output length.

• -DMAXREGS=num specifies the default number of registers, the original
value is 99, the maximum value is 8192.

• -DMAXREGOP=num specifies the maximum number of operations per
rule, the original value is 10. This number cannot be changed at run-
time.

• -DMAXTAGLEN=num specifies the maximum length of tags, the original
value is 64. This number cannot be changed at runtime.

• -DCMTCHRS=’chrs’ specifies the default set of characters that defined
line of comments, the original set of characters is "" (i.e. empty). If the
first character is a white space, then white spaces are discarded before
scanning for a comment character, otherwise comment character must
sit on the first column.

• -DPUNCTCHRS=’chrs’ specifies the default set of punctuation characters
accepted in identifiers, the original set of punctuation characters is
"_.$" (i.e. MAD-X identifiers).

• -DREG0FMT=’fmt’ specifies the default format for printing the content
of registers, the original format is "%g ".

• -DSUITEFMT=’fmt’ specifies the default format for suite title, the orig-
inal format is "[%s]".

28

• -DSERIEFMT=’fmt’ specifies the default format for serie numbering, the
original format is "%d".

• -DOUTFILEEXT=’str’ specifies the default extension for output files, the
original extension is ‘.out’.

• -DREFFILEEXT=’str’ specifies the default extension for reference files,
the original extension is ‘.ref’.

• -DCFGFILEEXT=’str’ specifies the default extension for configuration
files, the original extension is ‘.cfg’.

• -DRESFILEEXT=’str’ specifies the default extension for result files, the
original extension is ‘.res’.

• -DUNZIPCMD=’str’ specifies the default command to uncompress files
with extension .zip, the original command is ‘unzip -cq’.

• -DGZIPCMD=’str’ specifies the default command to uncompress files
with extensions .gz, .z, .Z, .tgz, .taz, or .taZ, the original command
is ‘gzip -cdq’.

• -DBZIP2CMD=’str’ specifies the default command to uncompress files
with extensions .bz, .bz2, .tbz, or .tbz2, the original command is
‘bzip2 -cdq’.

Note that unless specified, all these values can be overridden with command
line options, see the ndiff options in appendix A.

A typical GNU gcc command line would be :

gcc -std=c99 -W -Wall -Wextra -pedantic -O3 src/*.c -o ndiff -lm

To redefine the default numbering of series using the macro aforementioned:

gcc -std=c99 -W ... -O3 -DSERIEFMT=’"%03d"’ src/*.c -o ndiff -lm

Note that both single and double quotes are needed to form a string within
the shell command that propagates correctly to the C files.

8.2 AFS clients

The ndiff tool can be run directly from AFS clients (e.g. lxplus.cern.ch)
using the MAD repository:

~mad/bin/ndiff

~mad/bin/rel/last-dev/ndiff-linux32

~mad/bin/rel/last-dev/ndiff-linux64

~mad/bin/rel/last-dev/ndiff-macosx32

29

~mad/bin/rel/last-dev/ndiff-macosx64

~mad/bin/rel/last-dev/ndiff-win32.exe

~mad/bin/rel/last-dev/ndiff-win64.exe

The first binary is the default on lxplus servers and it is a link to the last
development release for Linux (i.e. ndiff-linux64). The complete path to
the MAD-X binaries, including ndiff, is:

/afs/cern.ch/user/m/mad/bin

9 Future work

The ndiff tool has been developed for the MAD-X test system and will
continue to evolve according to the needs of this test system. New features
might be implemented in the future if there is a significant demand (and
possibly help) from the users of ndiff.

30

References

[1] MAD-X website,
http://cern.ch/mad

[2] numdiff tool,
http://www.nongnu.org/numdiff

[3] ndiff tool,
http://www.math.utah.edu/~beebe/software/ndiff

[4] POSIX Regular Expression,
http://en.wikipedia.org/wiki/Regular expression

[5] MAD-X tests repository,
http://cern.ch/mad/madX/tests

[6] MAD-X releases repository,
http://cern.ch/mad/releases

[7] MAD-X SVN trunk for ndiff,
http://svnweb.cern.ch/world/wsvn/madx/trunk/madX/tools/ndiff

31

http://cern.ch/mad
http://www.nongnu.org/numdiff
http://www.math.utah.edu/~beebe/software/ndiff
http://en.wikipedia.org/wiki/Regular_expression#POSIX
http://cern.ch/mad/madX/tests
http://cern.ch/mad/releases
http://svnweb.cern.ch/world/wsvn/madx/trunk/madX/tools/ndiff/?op=dl

A ndiff help

$ ndiff --help

usage:

ndiff [options] fileA[.out] fileB[.ref] [fileC[.cfg]]

ndiff [options] --list fileA fileB ...

ndiff [options] --test ’1st’ fileA fileB --test ’2nd’ fileC ...

options:

-a --accum file accumulate tests information in file

-b --blank ignore blank spaces (space and tabs)

--cfgext ext specify the config file extension

-c --comment chrs comment characters set

-d --debug enable debug mode (include xcheck mode)

-h --help display this help

-i --info enable info mode (default)

-k --keep num specify the number of diffs to display per file

--lhsrec recycle next lhs file (exclusive with --rhsrec)

--lhsres echo valid lines of next lhs file to its result file

-l --list enable list mode (list of filenames)

--long disable short options

--noloc disable C file location during trace

--nowarn disable warnings

--nregs num specify the number of registers to allocate

--outext ext specify the output file extension

--punct chrs punctuation characters part of identifiers

-q --quiet enable quiet mode (no output if no diff)

--refext ext specify the reference file extension

--regfmt fmt specify the (printf) format fmt for registers

-r --reset reset accumulated information

--resext ext specify the result file extension

--rhsrec recycle next rhs file (exclusive with --lhsrec)

--rhsres echo valid lines of next rhs file to its result file

-n --serie enable serie mode (indexed filenames)

--seriefmt fmt specify the (printf) format fmt for indexes

-s --suite name set test suite name for output message (title)

--suitefmt fmt specify the (printf) format fmt for test suite

-t --test name set test name for output message (item)

--trace enable trace mode (very verbose, include debug mode)

--trunc allow premature ending of one of the input file

--utest run the ndiff unit tests (still incomplete)

-x --xcheck enable cross check mode (algorithms cross check)

decompression:

--bzip2 cmd command to uncompress .bz .bz2 .tbz .tbz2 files

--gzip cmd command to uncompress .gz .z .Z .tgz .taz .taZ files

--unzip cmd command to uncompress .zip files

rules (.cfg):

#rows cols commands

1-5 * skip # banner

* 2-$ any abs=1e-15 rel=1e-12 dig=1.5 # global

32

41 * goto=’penalty function’ # jump

109:20/5 2-8/3 abs=1e-8 # specific

ranges:

num row or column number, num >= 0

range start - end [/ stride]

slice start : size [/ stride]

$, * last row or column, alias for 0-$

commands:

abs=num or reg absolute error (0 <= num <= 1)

-abs=num or reg negative absolute error (-1 <= num <= 0)

all constraints are conjunctive (default, qualifier)

alt declare the rule as an alternate rule (qualifier)

any constraints are disjunctive (qualifier)

dig=num or reg input-defined relative error (num >= 1)

-dig=num or reg input-defined negative relative error (num <= 1)

equ strict numbers equality (same representation)

eval perform operations even if rule fails

goto=’tag’ skip lines until string ’tag’ is found (action)

goto=’num’ or reg skip lines until number ’num’ is found (action)

ign ignore numbers, accept missing number if with istr

istr ignore strings while scanning for numbers

large allow num > 1 in abs and rel

and num < -1 in -abs and -rel (qualifier)

lhs=num or reg set left hand side ’x’ in a(x-y)+b

nofail do not count nor display warning for failure

off=num or reg set error offset ’b’ in a(x-y)+b

omit=’tag’ ignore strings or numbers if preceded by ’tag’

rel=num or reg relative error (0 <= num <= 1)

-rel=num or reg negative relative error (-1 <= num <= 0)

rhs=num or reg set right hand side ’x’ in a(x-y)+b

scl=num or reg set error scaling factor ’a’ in in a(x-y)+b

skip skip lines (action)

small forbid num > 1 in abs and rel

and num < -1 in -abs and -rel (default, qualifier)

trace trace rule when active (debug, qualifier)

traceR trace rule and modified registers when active

registers:

R1..R9 contain lhs, rhs, dif, err, abs, rel, dig, min, prec

=Rn load value from register n

=-Rn load negated value from register n

=/Rn load inverted value from register n

=\Rn load negated and inverted value from register n

=^Rn load the exponential value from register n

=|Rn load the absolute value from register n

=[Rn load the value from register n rounded toward zero

=]Rn load the value from register n rounded toward infty

R0= print the value(s) on the console

Rn=Rp+Rq load the sum of registers p and q

Rn=Rp-Rq load the difference of registers p and q

Rn=Rp*Rq load the product of registers p and q

Rn=Rp/Rq load the ratio of registers p and q

33

Rn=Rp%Rq load the reminder of registers p and q

Rn=Rp^Rq load the power of registers p and q

Rn=Rp<Rq load the min of registers p and q

Rn=Rp>Rq load the max of registers p and q

Rn=Rp~Rq move registers p..q to registers n..n+q-p

info : http://cern.ch/mad/ndiff

author : laurent.deniau@cern.ch

version: 2013.04.15

licence: GPL v3

34

B MAD-X test system

The numbers given on the right represent the number of files successfully
compared versus the total number of files to compare for a given test, which
should be the same if no failure occurred. The timings given in parenthesis
are the timings of ndiff itself; they do not include the timings of the MAD-X
job run to generate the output files.

$ make tests-all

[Special features]

+ test-setvars_lin (0.00 s) - 1/ 1 : PASS

[Makethin testsuite]

+ test-makethin (0.00 s) - 2/ 2 : PASS

+ test-makethin-2 (0.00 s) - 2/ 2 : PASS

[Survey testsuite]

+ test-survey (0.00 s) - 3/ 3 : PASS

+ test-survey-2 (0.00 s) - 2/ 2 : PASS

[Track testsuite]

+ test-track (0.00 s) - 2/ 2 : PASS

+ test-track-2 (0.00 s) - 3/ 3 : PASS

+ test-track-3 (0.00 s) - 3/ 3 : PASS

+ test-track-4 (0.00 s) - 2/ 2 : PASS

+ test-track-5 (0.00 s) - 2/ 2 : PASS

+ test-track-6 (0.00 s) - 8/ 8 : PASS

+ test-track-7 (0.00 s) - 5/ 5 : PASS

+ test-track-8 (0.00 s) - 2/ 2 : PASS

+ test-track-9 (0.00 s) - 4/ 4 : PASS

+ test-track-10 (0.00 s) - 4/ 4 : PASS

+ test-track-11 (0.00 s) - 2/ 2 : PASS

[Twiss testsuite]

+ test-twiss (0.00 s) - 2/ 2 : PASS

+ test-twiss-2 (0.00 s) - 3/ 3 : PASS

+ test-twiss-3 (0.00 s) - 2/ 2 : PASS

+ test-twiss-4 (0.00 s) - 3/ 3 : PASS

+ test-twiss-5 (0.00 s) - 2/ 2 : PASS

+ test-twiss-6 (0.00 s) - 3/ 3 : PASS

+ test-twiss-7 (0.00 s) - 2/ 2 : PASS

[Orbit Correction testsuite]

+ test-cororbit (0.08 s) - 8/ 8 : PASS

+ test-cororbit-2 (0.00 s) - 7/ 7 : PASS

+ test-cororbit-3 (0.00 s) - 3/ 3 : PASS

[Emit testsuite]

+ test-emit (0.00 s) - 1/ 1 : PASS

+ test-emit-2 (0.00 s) - 1/ 1 : PASS

[IBS testsuite]

+ test-ibs (0.03 s) - 3/ 3 : PASS

+ test-ibs-2 (0.00 s) - 3/ 3 : PASS

+ test-ibs-3 (0.03 s) - 3/ 3 : PASS

+ test-ibs-4 (0.02 s) - 2/ 2 : PASS

[Error testsuite]

+ test-error (0.01 s) - 5/ 5 : PASS

35

+ test-error-2 (0.00 s) - 2/ 2 : PASS

[Dynamic Aperture testsuite]

+ test-dynap (0.10 s) - 6/ 6 : PASS

[SixTrack Conversion testsuite]

+ test-c6t (0.01 s) - 4/ 4 : PASS

+ test-c6t-2 (0.00 s) - 4/ 4 : PASS

[Thick Quadrupole testsuite]

+ test-thick-quad (0.00 s) - 3/ 3 : PASS

[Jacobian testsuite]

+ test-jacobian (0.00 s) - 1/ 1 : PASS

+ test-jacobian-2 (0.00 s) - 1/ 1 : PASS

+ test-jacobian-knobs (0.00 s) - 2/ 2 : PASS

[Matching testsuite]

+ test-match (0.00 s) - 1/ 1 : PASS

+ test-match-2 (0.00 s) - 3/ 3 : PASS

+ test-match-3 (0.00 s) - 1/ 1 : PASS

+ test-match-4 (0.00 s) - 1/ 1 : PASS

+ test-match-5 (0.00 s) - 1/ 1 : PASS

+ test-match-6 (0.00 s) - 3/ 3 : PASS

+ test-match-7 (0.00 s) - 2/ 2 : PASS

+ test-match-8 (0.00 s) - 1/ 1 : PASS

[Aperture testsuite]

+ test-aperture (0.00 s) - 2/ 2 : PASS

[RF Multipole testsuite]

+ test-rfmultipole (0.00 s) - 9/ 9 : PASS

+ test-rfmultipole-2 (0.00 s) - 2/ 2 : PASS

+ test-rfmultipole-3 (0.00 s) - 2/ 2 : PASS

+ test-rfmultipole-4 (0.00 s) - 2/ 2 : PASS

[PTC Twiss testsuite]

+ test-ptc-twiss (0.00 s) - 5/ 5 : PASS

+ test-ptc-twiss-2 (0.13 s) - 5/ 5 : PASS

+ test-ptc-twiss-old1 (0.00 s) - 6/ 6 : PASS

+ test-ptc-twiss-old2 (0.00 s) - 6/ 6 : PASS

+ test-ptc-twiss-old3 (0.00 s) - 6/ 6 : PASS

+ test-ptc-twiss-old4 (0.00 s) - 6/ 6 : PASS

+ test-ptc-twiss-old5 (0.01 s) - 4/ 4 : PASS

+ test-ptc-twiss-old6 (0.04 s) - 5/ 5 : PASS

+ test-ptc-twiss-old7 (0.01 s) - 8/ 8 : PASS

+ test-ptc-twiss-5D (0.01 s) - 5/ 5 : PASS

+ test-ptc-twiss-56D (0.01 s) - 3/ 3 : PASS

+ test-ptc-twiss-56Dt (0.01 s) - 3/ 3 : PASS

+ test-ptc-twiss-56Dl (0.01 s) - 3/ 3 : PASS

+ test-ptc-twiss-56Dtl (0.01 s) - 3/ 3 : PASS

[PTC Normal testsuite]

+ test-ptc-normal (0.00 s) - 5/ 5 : PASS

[PTC Trackline testsuite]

+ test-ptc-trackline (0.00 s) - 2/ 2 : PASS

+ test-ptc-trackline-2 (0.00 s) - 2/ 2 : PASS

[Touschek testsuite]

+ test-touschek (0.00 s) - 2/ 2 : PASS

+ test-touschek-2 (0.00 s) - 2/ 2 : PASS

= tests summary (started at 2013.03.21 21:41:19)

total diff time 0.52 s - total lines 219026 - total numbers 1134078

total run time 380 s - total files 234 - PASSED 234 - FAILED 0

36

	Motivation
	Principle
	Configuration

	Rules
	Format
	Numbers and identifiers
	Comments
	Ranges
	Constraints
	Actions
	Operations
	Alternates rules
	Debugging rules

	Examples
	Basic constraints
	Basic actions
	Basic operations
	Advanced constraints
	Advanced actions
	Advanced operations

	Output
	Setup strategy

	Running modes
	Single mode
	Filter mode
	Recycle mode
	Serie mode
	List mode
	Test mode
	Suite mode
	Compressed files

	Applications
	Data validation
	Regression tests
	Test system

	Installation
	Compiling ndiff
	AFS clients

	Future work
	ndiff help
	MAD-X test system

