ClientHowTo < ETICS < TWiki

Overview

You will find here the recipe for installing the ETICS client.

Installation instructions

On Linux and Mac 0S-X

Here are the instructions for installing the ETICS client (if the ETICS_HOME environment variable is set the
installation will be executed in the directory pointed at by ETICS_HOME and not in the current directory. We
recommend to unset ETICS_HOME for a first installation):

1. Prerequisites (these packages are not installed by the ETICS installation script and have to be present
before running it): python-devel, openssl, openssl-devel, flex , gcc

2. wget
"http://eticssoft.web.cern.ch/eticssoft/repository/etics—-client—-setup.py"
-0 etics-client-setup

3.python etics—-client-setup

Executing this command will fetch and install the ETICS client in the current directory, as well as required
dependencies. The client will be installed by default in the directory 'etics' in the current directory.
Alternatively the client can be installed in a different directory by using the ——pre fix option of the script.
Finally set the following environment variables:

1. export ETICS_HOME=<etics installation location>/etics (i.e.theetics
directory from which you've run et ics—-client-setup)
2. export PATH=$ETICS_HOME/bin:$PATH

(use the appropriate syntax for your shell, you may also want to set the variables in your login script). Once
the client is installed and configured, you can create a workspace by running the
etics-workspace-setup command in a directory of your choice prior to calling any other ETICS

commands. This operation can be repeated to create as many workspaces as required.

Voila you're good to go! All ETICS commands start with et ics—*, and you can use the ——help or -h
option to view the possible options.

Frequently Asked Questions

If you have questions, read the ClientFAQ first!

Quick tour

To get you started and also test your installation, here's a quick tour of the build and test commands available
on the client. For the purpose of this quick tour, we'll assume that we're working under CVS, but don't worry,
we can also use other types of Version Control Systems.

We'll use to start with a dummy project called myproject. This project is actually used for unit testing the

client (remember, on ETICS we eat our own dog food ;-). This project is actually virtual (dummy) and doesn't
correspond to any code in CVS, but it's good enough to start with.

Overview 1


https://twiki.cern.ch/twiki/bin/view/ETICS/ClientFAQ

ClientHowTo < ETICS < TWiki

Workspace setup

Make sure you setup your workspace using the et i cs-workspace-setup command. See the installation
instructions above for details.

List project

Once you've setup your workspace, you can use all the ETICS command. To start with, you might want to list
the existing projects you can work with. This can be done using the etics-1ist-project command:

>etics—-list-project
You should get the following:

Get a list of projects

org.etics

externals

org.glite
myproject
org.glite.test
quattor
org.diligentproject
Done!

These project can then be used with the et ics-get-project command, as shown next.

List platform

Once you've setup your workspace, you can use all the ETICS command. To start with, you might want to list
the existing platforms you can work with. This can be done using the etics-1ist-platform command:

>etics-list-platform

You should get the following:

Get a list of platforms

slc4_x86-64_gcc345
default
slc3_ia32_gcc323
slc4_ia32_gcc345
other

windows

The default platform definition is a catch-all cross-platform entry representing all platforms. It is used

when more specific definitions do not exist. These platforms can then be used with the
etics—-remote-buildand etics—-remote—test commands, as shown next.

Get project

Once you know which project you want to work with, you can set it up in your workspace using the
etics—-get-project command. In our example here, we'll work with myproject:

>etics—get-project myproject
You should get the following:

Workspace setup 2



ClientHowTo < ETICS < TWiki

Downloading the project 'myproject'...

Done!

Here the client will contact the ETICS server and get the metadata describing the layout of your project (e.g.
project/subsystem/component relationships), and save it on your workspace.

Note: You can alternatively specify a project name to the et ics—-workspace—-setup command, which
would save you having to call etics-get-project.

List configuration

The next step, in order to be able to build something, is to specify the concrete instance you want to work
with, which in turns corresponds to a CVS tag. By default, unless you specify it otherwise, the client will fetch
the tag HEAD of the project configuration called < project-name >.HEAD (where < project-name > is
the name of your project, as specified while calling et ics—get-project. If you don't know the exact
configuration name you want to checkout, you can list existing configurations. Here's an example, where we
don't provide a module name, which by default will use the current project name:

>etics—-list-configuration

You should get the following:

Loading workspace definition...Reparsing workspace definition... Done.

Done.

The following configurations are defined for module 'myproject':
myconfig

myproject .HEAD

Checkout

You can now use the checkout command, with the —-c¢ < configuration—-name > < module-name
> option, if you want to checkout a specific configuration, corresponding to a specific module. In the
following example, we checkout the default configuration:

>etics—checkout

You should get the following:

Loading workspace definition...Reparsing workspace definition... Done.
Done.
Source preference is from source code (-—-fromsource this is the default)

Module not specified, using default project: 'myproject'
Configuration not specified, using default configuration: 'myproject.HEAD'
Downloading the configuration 'myproject.HEAD' of module 'myproject'

Merging project and configuration information... Done.
Saving data to workspace... Done.
Loading workspace definition...Reparsing workspace definition... Done.
Done.
Checking out configuration 'anothersubsys.acompconf'
[checkout]: echo checkout
checkout

configuration 'anothersubsys.anothercompconf' is missing vcs commands for platfo
rm 'default'

Contacting ETICS Server.Done
configuration 'anothersubsysconf' is missing vcs commands for platform 'default'

Get project 3



ClientHowTo < ETICS < TWiki

configuration 'asubsys.acompconf' is missing vcs commands for platform 'default'

configuration 'asubsysconf' is missing vcs commands for platform 'default'

configuration 'anothercompconf' is missing vcs commands for platform 'default'

Checking out configuration 'acompconf'
[checkout]: echo checkout
checkout

configuration 'myproject.HEAD' is missing vcs commands for platform 'default'

Done!

Show configuration structure
Once your project is in place, you can visualise its structure using the following command:
>etics-show-configuration-structure

You should get the following:

Loading workspace definition...Reparsing workspace definition... Done.
Done.
Module not specified, using default project: 'myproject'
Printing configuration structure for:
Module name: 'myproject'
Configuration name: 'myproject.HEAD'

Config 'myproject.HEAD' has following children:
Config 'asubsysconf' has following dependencies:
Config 'anothersubsysconf' has following children:
'anothersubsys.acompconf'
'anothersubsys.anothercompconf’
'anothersubsysconf'
Config 'asubsysconf' has following children:
'asubsys.acompconf'
'asubsysconf'
'anothersubsysconf' (already visited)
Config 'acompconf' has following dependencies:
Config 'anothercompconf' has following dependencies:
'asubsys.acompconf' (already visited)
'anothercompconf’
'asubsys.acompconf' (already visited)
'acompconf'
'anothercompconf' (already visited)
'myproject .HEAD'

Build

You can now execute a local build using the following command:
>etics-build

You should get the following:

Loading workspace definition...Reparsing workspace definition... Done.
Done.

Reparsing workspace definition... Done.

Reparsing workspace definition... Done.

Reparsing workspace definition... Done.

Building: anothersubsys.acompconf
Nothing to do for anothersubsys.acompconf
Reparsing workspace definition... Done.

Checkout



ClientHowTo < ETICS < TWiki

Building: anothersubsys.anothercompconf
Nothing to do for anothersubsys.anothercompconf

Building: anothersubsysconf
Nothing to do for anothersubsysconf
Reparsing workspace definition... Done.

Building: asubsys.acompconf
[init]: echo in init
in init

[checkstyle]: echo in checkstyle
in checkstyle

[compile]: echo in compile
in compile

[test]: echo in test
in test

[publish]: echo in publish
in publish

Building: asubsysconf
Nothing to do for asubsysconf

Building: anothercompconf
[init]: echo in init
in init
[checkstyle]: echo in checkstyle

in checkstyle

[compile]: echo in compile
in compile

[test]: echo in test
in test

[publish]: echo in publish
in publish

Building: acompconf
[init]: echo in init
in init

[checkstyle]: echo in checkstyle
in checkstyle

[compile]: echo in compile
in compile

[test]: echo in test
in test

[publish]: echo in publish
in publish

Building: myproject.HEAD
Nothing to do for myproject.HEAD
Done!

Build



ClientHowTo < ETICS < TWiki
Test

The et ics—build allows you to execute a local build, while the et i cs—test command allows you to
execute a test. The build command includes a test target which is intended for unit test. The etics-test is
ment for executing functional and/or system testsuites (e.g. stress tests, performance tests, functionality tests,
deployment tests). Here is how to use the command:

>etics—-test

You should get the following:

Loading workspace definition... Done.

Executing test: anothersubsys.acompconf
Nothing to do for anothersubsys.acompconf

Executing test: anothersubsys.anothercompconf
Nothing to do for anothersubsys.anothercompconf

Executing test: anothersubsysconf
Nothing to do for anothersubsysconf

Executing test: asubsys.acompconf
Nothing to do for asubsys.acompconf

Executing test: asubsysconf
Nothing to do for asubsysconf

Executing test: anothercompconf
Nothing to do for anothercompconf

Executing test: acompconf
Nothing to do for acompconf

Executing test: myproject.HEAD
Nothing to do for myproject.HEAD
Done'!

-- MebSter - 12 Jun 2006

Remote build/test
You can execute remote build and tests using these two commands:
>etics-remote-build>etics—-remote-test

The remote commands permit you to build/test on remote machines with a lot of available platforms. With the
option -p < platforms-list > you can specify the platforms where you want to build/test

You should get the following:

Submission IDs:

(Platform: slc3_ia32_gcc323, ID: tomcat4_1xbll1l9.cern.ch_1150103734_10792)
-- Main.mselmi - 12 Jun 2006

You now know the basics of building with ETICS!

Test 6


https://twiki.cern.ch/twiki/bin/view/Main/MebSter

ClientHowTo < ETICS < TWiki
-- MebSter - 12 Jun 2006

Comments

What other Version Control Systems are supported. You should specify, fully implemented and planned.
-- LaurenceField - 28 Mar 2006

I've now updated the instruction with a sub-section on etics-1list-project.

-- MebSter - 02 Jun 2006

Temporarily removed the Windows installation instructions

-- MebSter - 08 May 2007

This topic: ETICS > ClientHowTo
Topic revision: 146 - 2011-07-06 - SamirBoutaleb

twiki - @Perl copyright &© 2008-2024 by the contributing authors. All material on this
collaboration platform is the property of the contributing authors.

or Ideas, requests, problems regarding TWiki? use Discourse or Send feedback

Remote build/test


https://twiki.cern.ch/twiki/bin/view/Main/MebSter
https://twiki.cern.ch/twiki/bin/edit/Main/LaurenceField?topicparent=ETICS.ClientHowTo;nowysiwyg=1
https://twiki.cern.ch/twiki/bin/view/Main/MebSter
https://twiki.cern.ch/twiki/bin/view/Main/MebSter
http://twiki.org/
http://www.perl.org/
https://discourse.web.cern.ch/c/collaborative-editing/wikis/12
https://twiki.cern.ch/twiki/bin/view/Main/ServiceNow

