CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-PAS-EXO-21-008
Search for long-lived particles decaying in the CMS muon detectors in proton-proton collisions at $ \sqrt{s}= $ 13 TeV
Abstract: A search for long-lived particles (LLPs) decaying in the CMS muon detectors is presented. The data sample consists of 138 fb$ ^{-1} $ of proton-proton collisions at $ \sqrt{s}= $ 13 TeV, recorded at the LHC in 2016-2018. A unique technique is employed to reconstruct decays of LLPs in the muon detectors. The search is sensitive to LLP masses from 0.4 to 55 GeV and a broad range of LLP decay modes, including decays to a pair of quarks, kaons, pions, electrons, photons, or $ \tau $ leptons. No excess of events above the standard model background is observed. The most stringent LHC limits to date on the branching fraction of the Higgs boson to a pair of LLPs with masses below 10 GeV are set. This search also provides the most stringent limit for proper decay lengths in the range 0.04-0.4 m and above 4 m for an LLP mass of 15 GeV, in the range 0.3-0.9 m and above 3 m for an LLP mass of 40 GeV, and above 0.8 m for an LLP mass of 55 GeV. Finally, this search sets the first LHC limits on a dark quantum chromodynamic sector that couples to the Higgs boson through gluon, Higgs, photon, vector, and dark photon portals, and is sensitive to branching fractions of the Higgs boson to dark quarks as low as 10$^{-3} $.
Figures & Tables Summary Additional Figures References CMS Publications
Figures

png pdf
Figure 1:
Diagram of twin Higgs model and dark shower model. The SM Higgs boson decays to a pair of neutral long-lived scalars (S) in the twin Higgs model or to a pair of dark sector quarks ($ \Psi $) in the dark shower model.

png pdf
Figure 2:
The cluster reconstruction efficiencies, including both DT and CSC clusters, as a function of the simulated $ r $ and $ |z| $ decay positions of the particle S decaying to $ \mathrm{d}\overline{\mathrm{d}} $, for a mass of 40 GeV and a range of $ c\tau $ values between 1 and 10 m. The barrel and endcap muon stations are drawn as black boxes and labeled by their station names. Regions occupied by steel shielding are shaded in gray.

png pdf
Figure 3:
The DT (left) and CSC (right) cluster reconstruction efficiency as a function of the simulated $ r $ or $ |z| $ decay positions of S decaying to $ \mathrm{d}\overline{\mathrm{d}} $, for a mass of 40 GeV and a range of $ c\tau $ values between 1 and 10 m. Regions occupied by steel shielding are shaded in gray.

png pdf
Figure 3-a:
The DT (left) and CSC (right) cluster reconstruction efficiency as a function of the simulated $ r $ or $ |z| $ decay positions of S decaying to $ \mathrm{d}\overline{\mathrm{d}} $, for a mass of 40 GeV and a range of $ c\tau $ values between 1 and 10 m. Regions occupied by steel shielding are shaded in gray.

png pdf
Figure 3-b:
The DT (left) and CSC (right) cluster reconstruction efficiency as a function of the simulated $ r $ or $ |z| $ decay positions of S decaying to $ \mathrm{d}\overline{\mathrm{d}} $, for a mass of 40 GeV and a range of $ c\tau $ values between 1 and 10 m. Regions occupied by steel shielding are shaded in gray.

png pdf
Figure 4:
The geometric acceptance and the efficiency of the $ p_{\mathrm{T}}^\text{miss} \geq $ 200 GeV selection as a function of S proper decay length for a mass of 40 GeV.

png pdf
Figure 5:
Distributions of cluster time are shown for S decaying to $ \mathrm{d}\overline{\mathrm{d}} $ for a proper decay length of 1 m and mass of 40 GeV, and for a background-enriched sample in data selected by inverting the $ N_\text{hits} $ requirement. The distributions are normalized to unit area.

png pdf
Figure 6:
Distributions of $ N_\text{hits} $ (left) and $ \Delta\phi{\mathrm{(}{\vec p}_{\mathrm{T}}^{\ \text{miss}}\mathrm{, cluster)}} $ (right) are shown for S decaying to $ \mathrm{d}\overline{\mathrm{d}} $ for a proper decay length of 1 m and various masses compared to the OOT background ($ t_\text{cluster} < - $ 12.5 ns). The distributions are normalized to unit area. The OOT background is representative of the overall background shape, because the background passing all the selections described above is dominated by pileup and underlying events.

png pdf
Figure 6-a:
Distributions of $ N_\text{hits} $ (left) and $ \Delta\phi{\mathrm{(}{\vec p}_{\mathrm{T}}^{\ \text{miss}}\mathrm{, cluster)}} $ (right) are shown for S decaying to $ \mathrm{d}\overline{\mathrm{d}} $ for a proper decay length of 1 m and various masses compared to the OOT background ($ t_\text{cluster} < - $ 12.5 ns). The distributions are normalized to unit area. The OOT background is representative of the overall background shape, because the background passing all the selections described above is dominated by pileup and underlying events.

png pdf
Figure 6-b:
Distributions of $ N_\text{hits} $ (left) and $ \Delta\phi{\mathrm{(}{\vec p}_{\mathrm{T}}^{\ \text{miss}}\mathrm{, cluster)}} $ (right) are shown for S decaying to $ \mathrm{d}\overline{\mathrm{d}} $ for a proper decay length of 1 m and various masses compared to the OOT background ($ t_\text{cluster} < - $ 12.5 ns). The distributions are normalized to unit area. The OOT background is representative of the overall background shape, because the background passing all the selections described above is dominated by pileup and underlying events.

png pdf
Figure 7:
Distributions of $ N_\text{hits} $ (left) and $ \Delta\phi{\mathrm{(}{\vec p}_{\mathrm{T}}^{\ \text{miss}}\mathrm{, cluster)}} $ (right) for DT clusters are shown for S decaying to $ \mathrm{d}\overline{\mathrm{d}} $ for a proper decay length of 1 m and various masses compared to the shape of background in a selection where the cluster is not matched to any RPC hit. The distributions are normalized to unit area.

png pdf
Figure 7-a:
Distributions of $ N_\text{hits} $ (left) and $ \Delta\phi{\mathrm{(}{\vec p}_{\mathrm{T}}^{\ \text{miss}}\mathrm{, cluster)}} $ (right) for DT clusters are shown for S decaying to $ \mathrm{d}\overline{\mathrm{d}} $ for a proper decay length of 1 m and various masses compared to the shape of background in a selection where the cluster is not matched to any RPC hit. The distributions are normalized to unit area.

png pdf
Figure 7-b:
Distributions of $ N_\text{hits} $ (left) and $ \Delta\phi{\mathrm{(}{\vec p}_{\mathrm{T}}^{\ \text{miss}}\mathrm{, cluster)}} $ (right) for DT clusters are shown for S decaying to $ \mathrm{d}\overline{\mathrm{d}} $ for a proper decay length of 1 m and various masses compared to the shape of background in a selection where the cluster is not matched to any RPC hit. The distributions are normalized to unit area.

png pdf
Figure 8:
Diagrams illustrating the ABCD plane for the DT-CSC category (left) and for the DT-DT and CSC-CSC categories (right). The variable $ c_1 $ is the pass-fail ratio of the $ N_\text{hits} $ selection for the background cluster. Bin A is the signal region for all categories.

png pdf
Figure 9:
Diagram illustrating the ABCD plane for the single CSC cluster category. Bin A is the signal region.

png pdf
Figure 10:
Distributions of $ N_\text{clusters} $ passing the $ N_\text{hits} $ selection in the search region for CSC-CSC (left), DT-DT (center), and DT-CSC (right) categories. The background predicted by the fit is shown in blue with the shaded region showing the fitted uncertainty. The expected signal with $ \mathcal{B}(\mathrm{H}\to\mathrm{S}\mathrm{S}) = $ 1%, $ \mathrm{S}\to\mathrm{d}\overline{\mathrm{d}} $, and $ c\tau= $ 1 m is shown for $ m_\mathrm{S} $ of 3, 7, 15, 40, and 55 GeV in various colors and dotted lines.

png pdf
Figure 10-a:
Distributions of $ N_\text{clusters} $ passing the $ N_\text{hits} $ selection in the search region for CSC-CSC (left), DT-DT (center), and DT-CSC (right) categories. The background predicted by the fit is shown in blue with the shaded region showing the fitted uncertainty. The expected signal with $ \mathcal{B}(\mathrm{H}\to\mathrm{S}\mathrm{S}) = $ 1%, $ \mathrm{S}\to\mathrm{d}\overline{\mathrm{d}} $, and $ c\tau= $ 1 m is shown for $ m_\mathrm{S} $ of 3, 7, 15, 40, and 55 GeV in various colors and dotted lines.

png pdf
Figure 10-b:
Distributions of $ N_\text{clusters} $ passing the $ N_\text{hits} $ selection in the search region for CSC-CSC (left), DT-DT (center), and DT-CSC (right) categories. The background predicted by the fit is shown in blue with the shaded region showing the fitted uncertainty. The expected signal with $ \mathcal{B}(\mathrm{H}\to\mathrm{S}\mathrm{S}) = $ 1%, $ \mathrm{S}\to\mathrm{d}\overline{\mathrm{d}} $, and $ c\tau= $ 1 m is shown for $ m_\mathrm{S} $ of 3, 7, 15, 40, and 55 GeV in various colors and dotted lines.

png pdf
Figure 10-c:
Distributions of $ N_\text{clusters} $ passing the $ N_\text{hits} $ selection in the search region for CSC-CSC (left), DT-DT (center), and DT-CSC (right) categories. The background predicted by the fit is shown in blue with the shaded region showing the fitted uncertainty. The expected signal with $ \mathcal{B}(\mathrm{H}\to\mathrm{S}\mathrm{S}) = $ 1%, $ \mathrm{S}\to\mathrm{d}\overline{\mathrm{d}} $, and $ c\tau= $ 1 m is shown for $ m_\mathrm{S} $ of 3, 7, 15, 40, and 55 GeV in various colors and dotted lines.

png pdf
Figure 11:
Distributions of $ N_\text{hits} $ (left) and $ \Delta\phi{\mathrm{(}{\vec p}_{\mathrm{T}}^{\ \text{miss}}\mathrm{, cluster)}} $ (right) in the search region of the single CSC cluster category. The background predicted by the fit is shown in blue with the shaded region showing the fitted uncertainty. The expected signal with $ \mathcal{B}(\mathrm{H}\to\mathrm{S}\mathrm{S}) = $ 1%, $ \mathrm{S}\to\mathrm{d}\overline{\mathrm{d}} $, and $ c\tau= $ 1 m is shown for $ m_\mathrm{S} $ of 3, 7, 15, 40, and 55 GeV in various colors and dotted lines. The $ N_\text{hits} $ distribution includes only events in bins A and D, while the $ \Delta\phi{\mathrm{(}{\vec p}_{\mathrm{T}}^{\ \text{miss}}\mathrm{, cluster)}} $ one includes only events in bins A and B. The last bin in the $ N_\text{hits} $ distribution includes overflow events.

png pdf
Figure 11-a:
Distributions of $ N_\text{hits} $ (left) and $ \Delta\phi{\mathrm{(}{\vec p}_{\mathrm{T}}^{\ \text{miss}}\mathrm{, cluster)}} $ (right) in the search region of the single CSC cluster category. The background predicted by the fit is shown in blue with the shaded region showing the fitted uncertainty. The expected signal with $ \mathcal{B}(\mathrm{H}\to\mathrm{S}\mathrm{S}) = $ 1%, $ \mathrm{S}\to\mathrm{d}\overline{\mathrm{d}} $, and $ c\tau= $ 1 m is shown for $ m_\mathrm{S} $ of 3, 7, 15, 40, and 55 GeV in various colors and dotted lines. The $ N_\text{hits} $ distribution includes only events in bins A and D, while the $ \Delta\phi{\mathrm{(}{\vec p}_{\mathrm{T}}^{\ \text{miss}}\mathrm{, cluster)}} $ one includes only events in bins A and B. The last bin in the $ N_\text{hits} $ distribution includes overflow events.

png pdf
Figure 11-b:
Distributions of $ N_\text{hits} $ (left) and $ \Delta\phi{\mathrm{(}{\vec p}_{\mathrm{T}}^{\ \text{miss}}\mathrm{, cluster)}} $ (right) in the search region of the single CSC cluster category. The background predicted by the fit is shown in blue with the shaded region showing the fitted uncertainty. The expected signal with $ \mathcal{B}(\mathrm{H}\to\mathrm{S}\mathrm{S}) = $ 1%, $ \mathrm{S}\to\mathrm{d}\overline{\mathrm{d}} $, and $ c\tau= $ 1 m is shown for $ m_\mathrm{S} $ of 3, 7, 15, 40, and 55 GeV in various colors and dotted lines. The $ N_\text{hits} $ distribution includes only events in bins A and D, while the $ \Delta\phi{\mathrm{(}{\vec p}_{\mathrm{T}}^{\ \text{miss}}\mathrm{, cluster)}} $ one includes only events in bins A and B. The last bin in the $ N_\text{hits} $ distribution includes overflow events.

png pdf
Figure 12:
Distributions of $ N_\text{hits} $ (left) and $ \Delta\phi{\mathrm{(}{\vec p}_{\mathrm{T}}^{\ \text{miss}}\mathrm{, cluster)}} $ (right) in the search region of the single DT cluster category. The background predicted by the fit is shown in blue with the shaded region showing the fitted uncertainty. The expected signal with $ \mathcal{B}(\mathrm{H}\to\mathrm{S}\mathrm{S}) = $ 1%, $ \mathrm{S}\to\mathrm{d}\overline{\mathrm{d}} $, and $ c\tau= $ 1 m is shown for $ m_\mathrm{S} $ of 3, 7, 15, 40, and 55 GeV in various colors and dotted lines. The $ N_\text{hits} $ distribution includes only events in bins A and D, while the $ \Delta\phi{\mathrm{(}{\vec p}_{\mathrm{T}}^{\ \text{miss}}\mathrm{, cluster)}} $ one includes only events in bins A and B. The last bin in the $ N_\text{hits} $ distribution includes overflow events.

png pdf
Figure 12-a:
Distributions of $ N_\text{hits} $ (left) and $ \Delta\phi{\mathrm{(}{\vec p}_{\mathrm{T}}^{\ \text{miss}}\mathrm{, cluster)}} $ (right) in the search region of the single DT cluster category. The background predicted by the fit is shown in blue with the shaded region showing the fitted uncertainty. The expected signal with $ \mathcal{B}(\mathrm{H}\to\mathrm{S}\mathrm{S}) = $ 1%, $ \mathrm{S}\to\mathrm{d}\overline{\mathrm{d}} $, and $ c\tau= $ 1 m is shown for $ m_\mathrm{S} $ of 3, 7, 15, 40, and 55 GeV in various colors and dotted lines. The $ N_\text{hits} $ distribution includes only events in bins A and D, while the $ \Delta\phi{\mathrm{(}{\vec p}_{\mathrm{T}}^{\ \text{miss}}\mathrm{, cluster)}} $ one includes only events in bins A and B. The last bin in the $ N_\text{hits} $ distribution includes overflow events.

png pdf
Figure 12-b:
Distributions of $ N_\text{hits} $ (left) and $ \Delta\phi{\mathrm{(}{\vec p}_{\mathrm{T}}^{\ \text{miss}}\mathrm{, cluster)}} $ (right) in the search region of the single DT cluster category. The background predicted by the fit is shown in blue with the shaded region showing the fitted uncertainty. The expected signal with $ \mathcal{B}(\mathrm{H}\to\mathrm{S}\mathrm{S}) = $ 1%, $ \mathrm{S}\to\mathrm{d}\overline{\mathrm{d}} $, and $ c\tau= $ 1 m is shown for $ m_\mathrm{S} $ of 3, 7, 15, 40, and 55 GeV in various colors and dotted lines. The $ N_\text{hits} $ distribution includes only events in bins A and D, while the $ \Delta\phi{\mathrm{(}{\vec p}_{\mathrm{T}}^{\ \text{miss}}\mathrm{, cluster)}} $ one includes only events in bins A and B. The last bin in the $ N_\text{hits} $ distribution includes overflow events.

png pdf
Figure 13:
The 95% CL expected (dotted curves) and observed (solid curves) upper limits on the branching fraction $ \mathcal{B}(\mathrm{H}\to\mathrm{S}\mathrm{S}) $ as a function of $ c\tau $ for the $ \mathrm{S}\to\mathrm{d}\overline{\mathrm{d}} $ (top left), $ \mathrm{S}\to\pi^{0}\pi^{0} $ (top right), and $ \mathrm{S}\to\tau^{+}\tau^{-} $ (bottom) decay modes. The exclusion limits are shown for different mass hypotheses: 0.4, 1, 3, 7, 15, 40, and 55 GeV.

png pdf
Figure 13-a:
The 95% CL expected (dotted curves) and observed (solid curves) upper limits on the branching fraction $ \mathcal{B}(\mathrm{H}\to\mathrm{S}\mathrm{S}) $ as a function of $ c\tau $ for the $ \mathrm{S}\to\mathrm{d}\overline{\mathrm{d}} $ (top left), $ \mathrm{S}\to\pi^{0}\pi^{0} $ (top right), and $ \mathrm{S}\to\tau^{+}\tau^{-} $ (bottom) decay modes. The exclusion limits are shown for different mass hypotheses: 0.4, 1, 3, 7, 15, 40, and 55 GeV.

png pdf
Figure 13-b:
The 95% CL expected (dotted curves) and observed (solid curves) upper limits on the branching fraction $ \mathcal{B}(\mathrm{H}\to\mathrm{S}\mathrm{S}) $ as a function of $ c\tau $ for the $ \mathrm{S}\to\mathrm{d}\overline{\mathrm{d}} $ (top left), $ \mathrm{S}\to\pi^{0}\pi^{0} $ (top right), and $ \mathrm{S}\to\tau^{+}\tau^{-} $ (bottom) decay modes. The exclusion limits are shown for different mass hypotheses: 0.4, 1, 3, 7, 15, 40, and 55 GeV.

png pdf
Figure 13-c:
The 95% CL expected (dotted curves) and observed (solid curves) upper limits on the branching fraction $ \mathcal{B}(\mathrm{H}\to\mathrm{S}\mathrm{S}) $ as a function of $ c\tau $ for the $ \mathrm{S}\to\mathrm{d}\overline{\mathrm{d}} $ (top left), $ \mathrm{S}\to\pi^{0}\pi^{0} $ (top right), and $ \mathrm{S}\to\tau^{+}\tau^{-} $ (bottom) decay modes. The exclusion limits are shown for different mass hypotheses: 0.4, 1, 3, 7, 15, 40, and 55 GeV.

png pdf
Figure 14:
The 95% CL observed upper limits on the branching fraction $ \mathcal{B}(\mathrm{H}\to\mathrm{S}\mathrm{S}) $ as a function of mass and $ c\tau $ for the $ \mathrm{S}\to\mathrm{d}\overline{\mathrm{d}} $ (top left), $ \mathrm{S}\to\pi^{0}\pi^{0} $ (top right), and $ \mathrm{S}\to\tau^{+}\tau^{-} $ (bottom) decay modes.

png pdf
Figure 14-a:
The 95% CL observed upper limits on the branching fraction $ \mathcal{B}(\mathrm{H}\to\mathrm{S}\mathrm{S}) $ as a function of mass and $ c\tau $ for the $ \mathrm{S}\to\mathrm{d}\overline{\mathrm{d}} $ (top left), $ \mathrm{S}\to\pi^{0}\pi^{0} $ (top right), and $ \mathrm{S}\to\tau^{+}\tau^{-} $ (bottom) decay modes.

png pdf
Figure 14-b:
The 95% CL observed upper limits on the branching fraction $ \mathcal{B}(\mathrm{H}\to\mathrm{S}\mathrm{S}) $ as a function of mass and $ c\tau $ for the $ \mathrm{S}\to\mathrm{d}\overline{\mathrm{d}} $ (top left), $ \mathrm{S}\to\pi^{0}\pi^{0} $ (top right), and $ \mathrm{S}\to\tau^{+}\tau^{-} $ (bottom) decay modes.

png pdf
Figure 14-c:
The 95% CL observed upper limits on the branching fraction $ \mathcal{B}(\mathrm{H}\to\mathrm{S}\mathrm{S}) $ as a function of mass and $ c\tau $ for the $ \mathrm{S}\to\mathrm{d}\overline{\mathrm{d}} $ (top left), $ \mathrm{S}\to\pi^{0}\pi^{0} $ (top right), and $ \mathrm{S}\to\tau^{+}\tau^{-} $ (bottom) decay modes.

png pdf
Figure 15:
The 95% CL observed upper limits on the branching fraction $ \mathcal{B}(\mathrm{H}\to\mathrm{S}\mathrm{S}) $ as a function of mass and $ c\tau $, assuming the branching fractions for S calculated in Ref. [67].

png pdf
Figure 16:
The 95% CL observed upper limits on the branching fraction $ \mathcal{B}(\mathrm{h}^0\to\Psi\Psi) $ as functions of $ c\tau $ for the gluon portal (top left) assuming $ (x_{i\omega} $, $ x_{i\Lambda}) = $ (2.5, 1), photon portal (top right) assuming $ (x_{i\omega} $, $ x_{i\Lambda}) = $ (2.5, 1), and vector portal (bottom) assuming $ (x_{i\omega} $, $ x_{i\Lambda}) = $ (1, 1). The exclusion limits are shown for different LLP mass hypotheses: 2, 5, 10, 15, and 20 GeV.

png pdf
Figure 16-a:
The 95% CL observed upper limits on the branching fraction $ \mathcal{B}(\mathrm{h}^0\to\Psi\Psi) $ as functions of $ c\tau $ for the gluon portal (top left) assuming $ (x_{i\omega} $, $ x_{i\Lambda}) = $ (2.5, 1), photon portal (top right) assuming $ (x_{i\omega} $, $ x_{i\Lambda}) = $ (2.5, 1), and vector portal (bottom) assuming $ (x_{i\omega} $, $ x_{i\Lambda}) = $ (1, 1). The exclusion limits are shown for different LLP mass hypotheses: 2, 5, 10, 15, and 20 GeV.

png pdf
Figure 16-b:
The 95% CL observed upper limits on the branching fraction $ \mathcal{B}(\mathrm{h}^0\to\Psi\Psi) $ as functions of $ c\tau $ for the gluon portal (top left) assuming $ (x_{i\omega} $, $ x_{i\Lambda}) = $ (2.5, 1), photon portal (top right) assuming $ (x_{i\omega} $, $ x_{i\Lambda}) = $ (2.5, 1), and vector portal (bottom) assuming $ (x_{i\omega} $, $ x_{i\Lambda}) = $ (1, 1). The exclusion limits are shown for different LLP mass hypotheses: 2, 5, 10, 15, and 20 GeV.

png pdf
Figure 16-c:
The 95% CL observed upper limits on the branching fraction $ \mathcal{B}(\mathrm{h}^0\to\Psi\Psi) $ as functions of $ c\tau $ for the gluon portal (top left) assuming $ (x_{i\omega} $, $ x_{i\Lambda}) = $ (2.5, 1), photon portal (top right) assuming $ (x_{i\omega} $, $ x_{i\Lambda}) = $ (2.5, 1), and vector portal (bottom) assuming $ (x_{i\omega} $, $ x_{i\Lambda}) = $ (1, 1). The exclusion limits are shown for different LLP mass hypotheses: 2, 5, 10, 15, and 20 GeV.
Tables

png pdf
Table 1:
Comparison between the ABCD predicted and observed yields in both validation regions for the double cluster category. The uncertainty of the prediction is the statistical uncertainty propagated from bins B, C, and D or bins BD and C. The symbol $ \lambda_\mathrm{X} $ is the expected background event rate in bin X, while $ N_\mathrm{X} $ is the observed number of events in bin X.

png pdf
Table 2:
Comparison between the ABCD predicted and observed yields in the validation regions for the single CSC cluster category. The uncertainty of the prediction is the statistical uncertainty propagated from bins B, C, and D. The symbol $ \lambda_\mathrm{X} $ is the expected background event rate in bin X, while $ N_\mathrm{X} $ is the observed number of events in bin X.

png pdf
Table 3:
Comparison between the ABCD predicted and observed yields in a pileup-enriched region for the single DT cluster category. The uncertainty of the prediction is the statistical uncertainty propagated from bins B, C, and D. Bins C and D for MB3 and MB4 categories are combined to reduce statistical uncertainty in the two regions. The final ABCD fit in the signal region will also be performed with those bins combined.

png pdf
Table 4:
Validation of the punch-through jet background prediction method for the single DT cluster category. The uncertainty of the prediction is the statistical uncertainty propagated from the extrapolated MB1/MB2 hit veto efficiency.

png pdf
Table 5:
Number of predicted background and observed events in the double cluster category.

png pdf
Table 6:
Number of predicted background and observed events in the single CSC cluster category.

png pdf
Table 7:
Number of predicted background and observed events in the single DT cluster category.

png pdf
Table 8:
Number of signal events in bin A for each category for a few benchmark signal models assuming $ \mathcal{B}(\mathrm{H}\to\mathrm{S}\mathrm{S}) = $ 1%.
Summary
In summary, proton-proton collision data at $ \sqrt{s} = $ 13 TeV recorded by the CMS experiment in 2016--2018, corresponding to an integrated luminosity of 138 fb$ ^{-1} $, have been used to conduct the first search that uses both the barrel and endcap CMS muon detectors to detect hadronic and electromagnetic showers from long-lived particle (LLP) decays. Based on the unique detector signature, the search is largely model-independent, with sensitivity to a broad range of LLP decay modes and masses below the GeV scale. With the excellent shielding provided by the inner CMS detector, the CMS magnet, and the steel return yoke, the background is suppressed to a low level and a search for both single and double LLP decays is possible. No significant deviation from the standard model background is observed. The most stringent LHC constraints to date are set on the branching fraction of the Higgs boson to LLPs with masses below 10 GeV and decaying to particles other than muons. The search provides the most stringent branching fraction limit for proper decay lengths in the range 0.04-0.4 m and above 4 m for an LLP mass of 15 GeV, in the range 0.3-0.9 m and above 3 m for an LLP mass of 40 GeV, and above 0.8 m for an LLP mass of 55 GeV. Finally, the first LHC limits on models of dark showers produced via Higgs boson decay are set, and constrain branching fractions of the Higgs boson decay to dark quarks as low as 10$^{-3} $.
Additional Figures

png pdf
Additional Figure 1:
The 95% CL expected (dotted curves) and observed (solid curves) upper limits on the branching fraction $ \mathcal{B}(\mathrm{H}\to\mathrm{S}\mathrm{S}) $ as functions of $ c\tau $ for the $ \mathrm{S}\to\mathrm{b}\overline{\mathrm{b}} $ (top left), $ \mathrm{S}\to\pi^{+}\pi^{-} $ (top center), and $ \mathrm{S}\to \mathrm{K^+}\mathrm{K^-} $ (top right), $ \mathrm{S}\to \mathrm{K^0}\mathrm{K^0} $ (bottom left), $ \mathrm{S}\to \gamma\gamma $ (bottom center), $ \mathrm{S}\to \mathrm{e}^+\mathrm{e}^- $ (bottom right) decay modes. The exclusion limits are shown for different mass hypotheses: 0.4, 1, 1.5, 3, 15, 40, and 55 GeV.

png pdf
Additional Figure 1-a:
The 95% CL expected (dotted curves) and observed (solid curves) upper limits on the branching fraction $ \mathcal{B}(\mathrm{H}\to\mathrm{S}\mathrm{S}) $ as functions of $ c\tau $ for the $ \mathrm{S}\to\mathrm{b}\overline{\mathrm{b}} $ (top left), $ \mathrm{S}\to\pi^{+}\pi^{-} $ (top center), and $ \mathrm{S}\to \mathrm{K^+}\mathrm{K^-} $ (top right), $ \mathrm{S}\to \mathrm{K^0}\mathrm{K^0} $ (bottom left), $ \mathrm{S}\to \gamma\gamma $ (bottom center), $ \mathrm{S}\to \mathrm{e}^+\mathrm{e}^- $ (bottom right) decay modes. The exclusion limits are shown for different mass hypotheses: 0.4, 1, 1.5, 3, 15, 40, and 55 GeV.

png pdf
Additional Figure 1-b:
The 95% CL expected (dotted curves) and observed (solid curves) upper limits on the branching fraction $ \mathcal{B}(\mathrm{H}\to\mathrm{S}\mathrm{S}) $ as functions of $ c\tau $ for the $ \mathrm{S}\to\mathrm{b}\overline{\mathrm{b}} $ (top left), $ \mathrm{S}\to\pi^{+}\pi^{-} $ (top center), and $ \mathrm{S}\to \mathrm{K^+}\mathrm{K^-} $ (top right), $ \mathrm{S}\to \mathrm{K^0}\mathrm{K^0} $ (bottom left), $ \mathrm{S}\to \gamma\gamma $ (bottom center), $ \mathrm{S}\to \mathrm{e}^+\mathrm{e}^- $ (bottom right) decay modes. The exclusion limits are shown for different mass hypotheses: 0.4, 1, 1.5, 3, 15, 40, and 55 GeV.

png pdf
Additional Figure 1-c:
The 95% CL expected (dotted curves) and observed (solid curves) upper limits on the branching fraction $ \mathcal{B}(\mathrm{H}\to\mathrm{S}\mathrm{S}) $ as functions of $ c\tau $ for the $ \mathrm{S}\to\mathrm{b}\overline{\mathrm{b}} $ (top left), $ \mathrm{S}\to\pi^{+}\pi^{-} $ (top center), and $ \mathrm{S}\to \mathrm{K^+}\mathrm{K^-} $ (top right), $ \mathrm{S}\to \mathrm{K^0}\mathrm{K^0} $ (bottom left), $ \mathrm{S}\to \gamma\gamma $ (bottom center), $ \mathrm{S}\to \mathrm{e}^+\mathrm{e}^- $ (bottom right) decay modes. The exclusion limits are shown for different mass hypotheses: 0.4, 1, 1.5, 3, 15, 40, and 55 GeV.

png pdf
Additional Figure 1-d:
The 95% CL expected (dotted curves) and observed (solid curves) upper limits on the branching fraction $ \mathcal{B}(\mathrm{H}\to\mathrm{S}\mathrm{S}) $ as functions of $ c\tau $ for the $ \mathrm{S}\to\mathrm{b}\overline{\mathrm{b}} $ (top left), $ \mathrm{S}\to\pi^{+}\pi^{-} $ (top center), and $ \mathrm{S}\to \mathrm{K^+}\mathrm{K^-} $ (top right), $ \mathrm{S}\to \mathrm{K^0}\mathrm{K^0} $ (bottom left), $ \mathrm{S}\to \gamma\gamma $ (bottom center), $ \mathrm{S}\to \mathrm{e}^+\mathrm{e}^- $ (bottom right) decay modes. The exclusion limits are shown for different mass hypotheses: 0.4, 1, 1.5, 3, 15, 40, and 55 GeV.

png pdf
Additional Figure 1-e:
The 95% CL expected (dotted curves) and observed (solid curves) upper limits on the branching fraction $ \mathcal{B}(\mathrm{H}\to\mathrm{S}\mathrm{S}) $ as functions of $ c\tau $ for the $ \mathrm{S}\to\mathrm{b}\overline{\mathrm{b}} $ (top left), $ \mathrm{S}\to\pi^{+}\pi^{-} $ (top center), and $ \mathrm{S}\to \mathrm{K^+}\mathrm{K^-} $ (top right), $ \mathrm{S}\to \mathrm{K^0}\mathrm{K^0} $ (bottom left), $ \mathrm{S}\to \gamma\gamma $ (bottom center), $ \mathrm{S}\to \mathrm{e}^+\mathrm{e}^- $ (bottom right) decay modes. The exclusion limits are shown for different mass hypotheses: 0.4, 1, 1.5, 3, 15, 40, and 55 GeV.

png pdf
Additional Figure 1-f:
The 95% CL expected (dotted curves) and observed (solid curves) upper limits on the branching fraction $ \mathcal{B}(\mathrm{H}\to\mathrm{S}\mathrm{S}) $ as functions of $ c\tau $ for the $ \mathrm{S}\to\mathrm{b}\overline{\mathrm{b}} $ (top left), $ \mathrm{S}\to\pi^{+}\pi^{-} $ (top center), and $ \mathrm{S}\to \mathrm{K^+}\mathrm{K^-} $ (top right), $ \mathrm{S}\to \mathrm{K^0}\mathrm{K^0} $ (bottom left), $ \mathrm{S}\to \gamma\gamma $ (bottom center), $ \mathrm{S}\to \mathrm{e}^+\mathrm{e}^- $ (bottom right) decay modes. The exclusion limits are shown for different mass hypotheses: 0.4, 1, 1.5, 3, 15, 40, and 55 GeV.

png pdf
Additional Figure 2:
The 95% CL observed upper limits on the branching fraction $ \mathcal{B}(\mathrm{H}\to\mathrm{S}\mathrm{S}) $ as a function of mass and $ c\tau $ for the $ \mathrm{S}\to\mathrm{b}\overline{\mathrm{b}} $ (top left), $ \mathrm{S}\to\pi^{+}\pi^{-} $ (top center), and $ \mathrm{S}\to \mathrm{K^+}\mathrm{K^-} $ (top right), $ \mathrm{S}\to \mathrm{K^0}\mathrm{K^0} $ (bottom left), $ \mathrm{S}\to\gamma\gamma $ (bottom center), $ \mathrm{S}\to \mathrm{e}^+\mathrm{e}^- $ (bottom right) decay modes.

png pdf
Additional Figure 2-a:
The 95% CL observed upper limits on the branching fraction $ \mathcal{B}(\mathrm{H}\to\mathrm{S}\mathrm{S}) $ as a function of mass and $ c\tau $ for the $ \mathrm{S}\to\mathrm{b}\overline{\mathrm{b}} $ (top left), $ \mathrm{S}\to\pi^{+}\pi^{-} $ (top center), and $ \mathrm{S}\to \mathrm{K^+}\mathrm{K^-} $ (top right), $ \mathrm{S}\to \mathrm{K^0}\mathrm{K^0} $ (bottom left), $ \mathrm{S}\to\gamma\gamma $ (bottom center), $ \mathrm{S}\to \mathrm{e}^+\mathrm{e}^- $ (bottom right) decay modes.

png pdf
Additional Figure 2-b:
The 95% CL observed upper limits on the branching fraction $ \mathcal{B}(\mathrm{H}\to\mathrm{S}\mathrm{S}) $ as a function of mass and $ c\tau $ for the $ \mathrm{S}\to\mathrm{b}\overline{\mathrm{b}} $ (top left), $ \mathrm{S}\to\pi^{+}\pi^{-} $ (top center), and $ \mathrm{S}\to \mathrm{K^+}\mathrm{K^-} $ (top right), $ \mathrm{S}\to \mathrm{K^0}\mathrm{K^0} $ (bottom left), $ \mathrm{S}\to\gamma\gamma $ (bottom center), $ \mathrm{S}\to \mathrm{e}^+\mathrm{e}^- $ (bottom right) decay modes.

png pdf
Additional Figure 2-c:
The 95% CL observed upper limits on the branching fraction $ \mathcal{B}(\mathrm{H}\to\mathrm{S}\mathrm{S}) $ as a function of mass and $ c\tau $ for the $ \mathrm{S}\to\mathrm{b}\overline{\mathrm{b}} $ (top left), $ \mathrm{S}\to\pi^{+}\pi^{-} $ (top center), and $ \mathrm{S}\to \mathrm{K^+}\mathrm{K^-} $ (top right), $ \mathrm{S}\to \mathrm{K^0}\mathrm{K^0} $ (bottom left), $ \mathrm{S}\to\gamma\gamma $ (bottom center), $ \mathrm{S}\to \mathrm{e}^+\mathrm{e}^- $ (bottom right) decay modes.

png pdf
Additional Figure 2-d:
The 95% CL observed upper limits on the branching fraction $ \mathcal{B}(\mathrm{H}\to\mathrm{S}\mathrm{S}) $ as a function of mass and $ c\tau $ for the $ \mathrm{S}\to\mathrm{b}\overline{\mathrm{b}} $ (top left), $ \mathrm{S}\to\pi^{+}\pi^{-} $ (top center), and $ \mathrm{S}\to \mathrm{K^+}\mathrm{K^-} $ (top right), $ \mathrm{S}\to \mathrm{K^0}\mathrm{K^0} $ (bottom left), $ \mathrm{S}\to\gamma\gamma $ (bottom center), $ \mathrm{S}\to \mathrm{e}^+\mathrm{e}^- $ (bottom right) decay modes.

png pdf
Additional Figure 2-e:
The 95% CL observed upper limits on the branching fraction $ \mathcal{B}(\mathrm{H}\to\mathrm{S}\mathrm{S}) $ as a function of mass and $ c\tau $ for the $ \mathrm{S}\to\mathrm{b}\overline{\mathrm{b}} $ (top left), $ \mathrm{S}\to\pi^{+}\pi^{-} $ (top center), and $ \mathrm{S}\to \mathrm{K^+}\mathrm{K^-} $ (top right), $ \mathrm{S}\to \mathrm{K^0}\mathrm{K^0} $ (bottom left), $ \mathrm{S}\to\gamma\gamma $ (bottom center), $ \mathrm{S}\to \mathrm{e}^+\mathrm{e}^- $ (bottom right) decay modes.

png pdf
Additional Figure 2-f:
The 95% CL observed upper limits on the branching fraction $ \mathcal{B}(\mathrm{H}\to\mathrm{S}\mathrm{S}) $ as a function of mass and $ c\tau $ for the $ \mathrm{S}\to\mathrm{b}\overline{\mathrm{b}} $ (top left), $ \mathrm{S}\to\pi^{+}\pi^{-} $ (top center), and $ \mathrm{S}\to \mathrm{K^+}\mathrm{K^-} $ (top right), $ \mathrm{S}\to \mathrm{K^0}\mathrm{K^0} $ (bottom left), $ \mathrm{S}\to\gamma\gamma $ (bottom center), $ \mathrm{S}\to \mathrm{e}^+\mathrm{e}^- $ (bottom right) decay modes.

png pdf
Additional Figure 3:
The 95% CL observed upper limits on the branching fraction $ \mathcal{B}(\mathrm{h}^0\to\Psi\Psi) $ as functions of $ c\tau $ for the gluon portal, assuming $ x_{i\omega} = x_{i\Lambda} = $ 1.0 (left), $ x_{i\omega} = 2.5, x_{i\Lambda} = $ 1.0 (center), and $ x_{i\omega} = x_{i\Lambda} = $ 2.5 (right). The exclusion limits are shown for different mass hypotheses: 5, 10, 15, and 20 GeV. The center panel is shown again in the appendix, for completeness.

png pdf
Additional Figure 3-a:
The 95% CL observed upper limits on the branching fraction $ \mathcal{B}(\mathrm{h}^0\to\Psi\Psi) $ as functions of $ c\tau $ for the gluon portal, assuming $ x_{i\omega} = x_{i\Lambda} = $ 1.0 (left), $ x_{i\omega} = 2.5, x_{i\Lambda} = $ 1.0 (center), and $ x_{i\omega} = x_{i\Lambda} = $ 2.5 (right). The exclusion limits are shown for different mass hypotheses: 5, 10, 15, and 20 GeV. The center panel is shown again in the appendix, for completeness.

png pdf
Additional Figure 3-b:
The 95% CL observed upper limits on the branching fraction $ \mathcal{B}(\mathrm{h}^0\to\Psi\Psi) $ as functions of $ c\tau $ for the gluon portal, assuming $ x_{i\omega} = x_{i\Lambda} = $ 1.0 (left), $ x_{i\omega} = 2.5, x_{i\Lambda} = $ 1.0 (center), and $ x_{i\omega} = x_{i\Lambda} = $ 2.5 (right). The exclusion limits are shown for different mass hypotheses: 5, 10, 15, and 20 GeV. The center panel is shown again in the appendix, for completeness.

png pdf
Additional Figure 3-c:
The 95% CL observed upper limits on the branching fraction $ \mathcal{B}(\mathrm{h}^0\to\Psi\Psi) $ as functions of $ c\tau $ for the gluon portal, assuming $ x_{i\omega} = x_{i\Lambda} = $ 1.0 (left), $ x_{i\omega} = 2.5, x_{i\Lambda} = $ 1.0 (center), and $ x_{i\omega} = x_{i\Lambda} = $ 2.5 (right). The exclusion limits are shown for different mass hypotheses: 5, 10, 15, and 20 GeV. The center panel is shown again in the appendix, for completeness.

png pdf
Additional Figure 4:
The 95% CL observed upper limits on the branching fraction $ \mathcal{B}(\mathrm{h}^0\to\Psi\Psi) $ as functions of $ c\tau $ for the photon portal, assuming $ x_{i\omega} = x_{i\Lambda} = $ 1.0 (left), $ x_{i\omega} = 2.5, x_{i\Lambda} = $ 1.0 (center), and $ x_{i\omega} = x_{i\Lambda} = $ 2.5 (right). The exclusion limits are shown for different mass hypotheses: 2, 5, 10, 15, and 20 GeV. The center limit plot is shown again in the appendix, for completeness.

png pdf
Additional Figure 4-a:
The 95% CL observed upper limits on the branching fraction $ \mathcal{B}(\mathrm{h}^0\to\Psi\Psi) $ as functions of $ c\tau $ for the photon portal, assuming $ x_{i\omega} = x_{i\Lambda} = $ 1.0 (left), $ x_{i\omega} = 2.5, x_{i\Lambda} = $ 1.0 (center), and $ x_{i\omega} = x_{i\Lambda} = $ 2.5 (right). The exclusion limits are shown for different mass hypotheses: 2, 5, 10, 15, and 20 GeV. The center limit plot is shown again in the appendix, for completeness.

png pdf
Additional Figure 4-b:
The 95% CL observed upper limits on the branching fraction $ \mathcal{B}(\mathrm{h}^0\to\Psi\Psi) $ as functions of $ c\tau $ for the photon portal, assuming $ x_{i\omega} = x_{i\Lambda} = $ 1.0 (left), $ x_{i\omega} = 2.5, x_{i\Lambda} = $ 1.0 (center), and $ x_{i\omega} = x_{i\Lambda} = $ 2.5 (right). The exclusion limits are shown for different mass hypotheses: 2, 5, 10, 15, and 20 GeV. The center limit plot is shown again in the appendix, for completeness.

png pdf
Additional Figure 4-c:
The 95% CL observed upper limits on the branching fraction $ \mathcal{B}(\mathrm{h}^0\to\Psi\Psi) $ as functions of $ c\tau $ for the photon portal, assuming $ x_{i\omega} = x_{i\Lambda} = $ 1.0 (left), $ x_{i\omega} = 2.5, x_{i\Lambda} = $ 1.0 (center), and $ x_{i\omega} = x_{i\Lambda} = $ 2.5 (right). The exclusion limits are shown for different mass hypotheses: 2, 5, 10, 15, and 20 GeV. The center limit plot is shown again in the appendix, for completeness.

png pdf
Additional Figure 5:
The 95% CL observed upper limits on the branching fraction $ \mathcal{B}(\mathrm{h}^0\to\Psi\Psi) $ as functions of $ c\tau $ for the Higgs portal, assuming $ x_{i\omega} = x_{i\Lambda} = $ 1.0 (left), $ x_{i\omega} = 2.5, x_{i\Lambda} = $ 1.0 (center), and $ x_{i\omega} = x_{i\Lambda} = $ 2.5 (right). The exclusion limits are shown for different mass hypotheses: 4, 5, 10, 15, and 20 GeV.

png pdf
Additional Figure 5-a:
The 95% CL observed upper limits on the branching fraction $ \mathcal{B}(\mathrm{h}^0\to\Psi\Psi) $ as functions of $ c\tau $ for the Higgs portal, assuming $ x_{i\omega} = x_{i\Lambda} = $ 1.0 (left), $ x_{i\omega} = 2.5, x_{i\Lambda} = $ 1.0 (center), and $ x_{i\omega} = x_{i\Lambda} = $ 2.5 (right). The exclusion limits are shown for different mass hypotheses: 4, 5, 10, 15, and 20 GeV.

png pdf
Additional Figure 5-b:
The 95% CL observed upper limits on the branching fraction $ \mathcal{B}(\mathrm{h}^0\to\Psi\Psi) $ as functions of $ c\tau $ for the Higgs portal, assuming $ x_{i\omega} = x_{i\Lambda} = $ 1.0 (left), $ x_{i\omega} = 2.5, x_{i\Lambda} = $ 1.0 (center), and $ x_{i\omega} = x_{i\Lambda} = $ 2.5 (right). The exclusion limits are shown for different mass hypotheses: 4, 5, 10, 15, and 20 GeV.

png pdf
Additional Figure 5-c:
The 95% CL observed upper limits on the branching fraction $ \mathcal{B}(\mathrm{h}^0\to\Psi\Psi) $ as functions of $ c\tau $ for the Higgs portal, assuming $ x_{i\omega} = x_{i\Lambda} = $ 1.0 (left), $ x_{i\omega} = 2.5, x_{i\Lambda} = $ 1.0 (center), and $ x_{i\omega} = x_{i\Lambda} = $ 2.5 (right). The exclusion limits are shown for different mass hypotheses: 4, 5, 10, 15, and 20 GeV.

png pdf
Additional Figure 6:
The 95% CL observed upper limits on the branching fraction $ \mathcal{B}(\mathrm{h}^0\to\Psi\Psi) $ as functions of $ c\tau $ for the dark photon portal, assuming $ x_{i\omega} = x_{i\Lambda} = $ 1.0 (left), $ x_{i\omega} = 2.5, x_{i\Lambda} = $ 1.0 (center), and $ x_{i\omega} = x_{i\Lambda} = $ 2.5 (right). The exclusion limits are shown for different mass hypotheses: 5, 10, 15, and 20 GeV.

png pdf
Additional Figure 6-a:
The 95% CL observed upper limits on the branching fraction $ \mathcal{B}(\mathrm{h}^0\to\Psi\Psi) $ as functions of $ c\tau $ for the dark photon portal, assuming $ x_{i\omega} = x_{i\Lambda} = $ 1.0 (left), $ x_{i\omega} = 2.5, x_{i\Lambda} = $ 1.0 (center), and $ x_{i\omega} = x_{i\Lambda} = $ 2.5 (right). The exclusion limits are shown for different mass hypotheses: 5, 10, 15, and 20 GeV.

png pdf
Additional Figure 6-b:
The 95% CL observed upper limits on the branching fraction $ \mathcal{B}(\mathrm{h}^0\to\Psi\Psi) $ as functions of $ c\tau $ for the dark photon portal, assuming $ x_{i\omega} = x_{i\Lambda} = $ 1.0 (left), $ x_{i\omega} = 2.5, x_{i\Lambda} = $ 1.0 (center), and $ x_{i\omega} = x_{i\Lambda} = $ 2.5 (right). The exclusion limits are shown for different mass hypotheses: 5, 10, 15, and 20 GeV.

png pdf
Additional Figure 6-c:
The 95% CL observed upper limits on the branching fraction $ \mathcal{B}(\mathrm{h}^0\to\Psi\Psi) $ as functions of $ c\tau $ for the dark photon portal, assuming $ x_{i\omega} = x_{i\Lambda} = $ 1.0 (left), $ x_{i\omega} = 2.5, x_{i\Lambda} = $ 1.0 (center), and $ x_{i\omega} = x_{i\Lambda} = $ 2.5 (right). The exclusion limits are shown for different mass hypotheses: 5, 10, 15, and 20 GeV.
References
1 G. F. Giudice and A. Romanino Split supersymmetry NPB 699 (2004) 65 hep-ph/0406088
2 J. L. Hewett, B. Lillie, M. Masip, and T. G. Rizzo Signatures of long-lived gluinos in split supersymmetry JHEP 09 (2004) 070 hep-ph/0408248
3 N. Arkani-Hamed, S. Dimopoulos, G. F. Giudice, and A. Romanino Aspects of split supersymmetry NPB 709 (2005) 3 hep-ph/0409232
4 P. Gambino, G. F. Giudice, and P. Slavich Gluino decays in split supersymmetry NPB 726 (2005) 35 hep-ph/0506214
5 A. Arvanitaki, N. Craig, S. Dimopoulos, and G. Villadoro Mini-split JHEP 02 (2013) 126 1210.0555
6 N. Arkani-Hamed et al. Simply unnatural supersymmetry 1212.6971
7 P. Fayet Supergauge invariant extension of the Higgs mechanism and a model for the electron and its neutrino NPB 90 (1975) 104
8 G. R. Farrar and P. Fayet Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry PLB 76 (1978) 575
9 S. Weinberg Supersymmetry at ordinary energies. Masses and conservation laws PRD 26 (1982) 287
10 R. Barbier et al. $ R $-parity violating supersymmetry Phys. Rept. 420 (2005) 1 hep-ph/0406039
11 G. F. Giudice and R. Rattazzi Theories with gauge mediated supersymmetry breaking Phys. Rept. 322 (1999) 419 hep-ph/9801271
12 P. Meade, N. Seiberg, and D. Shih General gauge mediation Prog. Theor. Phys. Suppl. 177 (2009) 143 0801.3278
13 M. Buican, P. Meade, N. Seiberg, and D. Shih Exploring general gauge mediation JHEP 03 (2009) 016 0812.3668
14 J. Fan, M. Reece, and J. T. Ruderman Stealth supersymmetry JHEP 11 (2011) 012 1105.5135
15 J. Fan, M. Reece, and J. T. Ruderman A stealth supersymmetry sampler JHEP 07 (2012) 196 1201.4875
16 M. J. Strassler and K. M. Zurek Echoes of a hidden valley at hadron colliders PLB 651 (2007) 374 hep-ph/0604261
17 M. J. Strassler and K. M. Zurek Discovering the Higgs through highly-displaced vertices PLB 661 (2008) 263 hep-ph/0605193
18 T. Han, Z. Si, K. M. Zurek, and M. J. Strassler Phenomenology of hidden valleys at hadron colliders JHEP 07 (2008) 008 0712.2041
19 Y. Cui, L. Randall, and B. Shuve A WIMPy baryogenesis miracle JHEP 04 (2012) 075 1112.2704
20 Y. Cui and R. Sundrum Baryogenesis for weakly interacting massive particles PRD 87 (2013) 116013 1212.2973
21 Y. Cui and B. Shuve Probing baryogenesis with displaced vertices at the LHC JHEP 02 (2015) 049 1409.6729
22 D. Smith and N. Weiner Inelastic dark matter PRD 64 (2001) 043502 hep-ph/0101138
23 Z. Chacko, H.-S. Goh, and R. Harnik Natural electroweak breaking from a mirror symmetry PRL 96 (2006) 231802 hep-ph/0506256
24 D. Curtin and C. B. Verhaaren Discovering uncolored naturalness in exotic Higgs decays JHEP 12 (2015) 072 1506.06141
25 H.-C. Cheng, S. Jung, E. Salvioni, and Y. Tsai Exotic quarks in twin Higgs models JHEP 03 (2016) 074 1512.02647
26 CMS Collaboration The CMS muon project: Technical Design Report CERN-LHCC-97-032, CMS-TDR-3, 1997
CDS
27 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004
28 N. Craig, A. Katz, M. Strassler, and R. Sundrum Naturalness in the dark at the LHC JHEP 07 (2015) 105 1501.05310
29 M. J. Strassler On the phenomenology of hidden valleys with heavy flavor 0806.2385
30 J. E. Juknevich, D. Melnikov, and M. J. Strassler A pure-glue hidden valley I. states and decays JHEP 07 (2009) 055 0903.0883
31 CMS Collaboration Search for long-lived particles using displaced jets in proton-proton collisions at $ \sqrt{s} = $ 13 TeV PRD 104 (2021) 012015 CMS-EXO-19-021
2012.01581
32 ATLAS Collaboration Search for long-lived particles produced in $ pp $ collisions at $ \sqrt{s}= $ 13 TeV that decay into displaced hadronic jets in the ATLAS muon spectrometer PRD 99 (2019) 052005 1811.07370
33 ATLAS Collaboration Search for events with a pair of displaced vertices from long-lived neutral particles decaying into hadronic jets in the ATLAS muon spectrometer in pp collisions at $ \sqrt s = $ 13 TeV PRD 106 (2022) 032005 2203.00587
34 CMS Collaboration Search for Long-Lived Particles Decaying in the CMS End Cap Muon Detectors in Proton-Proton Collisions at $ \sqrt s $ =13 TeV PRL 127 (2021) 261804 CMS-EXO-20-015
2107.04838
35 S. Knapen, J. Shelton, and D. Xu Perturbative benchmark models for a dark shower search program PRD 103 (2021) 115013 2103.01238
36 CMS Collaboration Performance of the CMS cathode strip chambers with cosmic rays JINST 5 (2010) T03018 CMS-CFT-09-011
0911.4992
37 CMS Collaboration Performance of the CMS Level-1 trigger in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 15 (2020) P10017 CMS-TRG-17-001
2006.10165
38 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
39 P. Nason A new method for combining NLO QCD with shower Monte Carlo algorithms JHEP 11 (2004) 040 hep-ph/0409146
40 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
41 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG \textscbox JHEP 06 (2010) 043 1002.2581
42 E. Re Single-top $ \mathrm{W}\mathrm{t} $-channel production matched with parton showers using the POWHEG method EPJC 71 (2011) 1547 1009.2450
43 L. Carloni, J. Rathsman, and T. Sjöstrand Discerning Secluded Sector gauge structures JHEP 04 (2011) 091 1102.3795
44 L. Carloni and T. Sjöstrand Visible Effects of Invisible Hidden Valley Radiation JHEP 09 (2010) 105 1006.2911
45 T. Sjöstrand et al. An introduction to PYTHIA 8.2 Comput. Phys. Commun. 191 (2015) 159 1410.3012
46 CMS Collaboration Event generator tunes obtained from underlying event and multiparton scattering measurements EPJC 76 (2016) 155 CMS-GEN-14-001
1512.00815
47 CMS Collaboration Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements EPJC 80 (2020) 4 CMS-GEN-17-001
1903.12179
48 NNPDF Collaboration Parton distributions for the LHC Run II JHEP 04 (2015) 040 1410.8849
49 NNPDF Collaboration Parton distributions from high-precision collider data EPJC 77 (2017) 663 1706.00428
50 GEANT4 Collaboration GEANT 4---a simulation toolkit NIM A 506 (2003) 250
51 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
52 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
53 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_{\mathrm{T}} $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
54 M. Cacciari, G. P. Salam, and G. Soyez FASTJET user manual EPJC 72 (2012) 1896 1111.6097
55 CMS Collaboration Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV JINST 12 (2017) P02014 CMS-JME-13-004
1607.03663
56 CMS Collaboration Performance of missing transverse momentum reconstruction in proton-proton collisions at $ \sqrt{s} = $ 13 TeV using the CMS detector JINST 14 (2019) P07004 CMS-JME-17-001
1903.06078
57 M. Ester, H.-P. Kriegel, J. Sander, and X. Xu A density-based algorithm for discovering clusters in large spatial databases with noise in Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. Association for the Advancement of Artificial Intelligence, 1996
link
58 CMS Collaboration Missing transverse energy performance of the CMS detector JINST 6 (2011) P09001 CMS-JME-10-009
1106.5048
59 CMS Collaboration Performance of the reconstruction and identification of high-momentum muons in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 15 (2020) P02027 CMS-MUO-17-001
1912.03516
60 CMS Collaboration Precision luminosity measurement in proton-proton collisions at $ \sqrt{s} = $ 13 TeV in 2015 and 2016 at CMS EPJC 81 (2021) 800 CMS-LUM-17-003
2104.01927
61 CMS Collaboration CMS luminosity measurements for the 2017 data-taking period at $ \sqrt{s} = $ 13 TeV CMS Physics Analysis Summary, 2017
CMS-PAS-LUM-17-004
CMS-PAS-LUM-17-004
62 CMS Collaboration CMS luminosity measurements for the 2018 data-taking period at $ \sqrt{s} = $ 13 TeV CMS Physics Analysis Summary, 2018
CMS-PAS-LUM-18-002
CMS-PAS-LUM-18-002
63 T. Junk Confidence level computation for combining searches with small statistics NIM A 434 (1999) 435 hep-ex/9902006
64 A. L. Read Presentation of search results: the CL$ _\mathrm{s} $ technique JPG 28 (2002) 2693
65 The ATLAS Collaboration, The CMS Collaboration, The LHC Higgs Combination Group Procedure for the LHC Higgs boson search combination in Summer 2011 \unskip\space CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, 2011
66 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics EPJC 71 (2011) 1554 1007.1727
67 Y. Gershtein, S. Knapen, and D. Redigolo Probing naturally light singlets with a displaced vertex trigger PLB 823 (2021) 136758 2012.07864
Compact Muon Solenoid
LHC, CERN