next up previous contents index
Next: Physical Units Up: Variables Previous: Canonical Variables Describing Orbits   Contents   Index


Normalised Variables and other Derived Quantities

XN
The normalised horizontal displacement [ $\mathrm{m}^{1/2}$]: $\mathtt{XN} = x_n = \Re(E_1^T S Z)$.

PXN
The normalised horizontal transverse momentum [ $\mathrm{m}^{1/2}$]: $\mathtt{PXN} = p_{xn} = \Im(E_1^T S Z$).

WX
The horizontal Courant-Snyder invariant [m]: $\mathtt{WX} = \sqrt{x_n^2 + p_{xn}^2}$.

PHIX
The horizontal phase: $\mathtt{PHIX} = - \arctan(p_{xn} / x_n) / 2 \pi$.

YN
The normalised vertical displacement [ $\mathrm{m}^{1/2}$]: $\mathtt{YN} = y_n = \Re(E_2^T S Z)$.

PYN
The normalised vertical transverse momentum [ $\mathrm{m}^{1/2}$]: $\mathtt{PYN} = p_{yn} = \Im(E_2^T S Z)$.

WY
The vertical Courant-Snyder invariant [m]: $\mathtt{WY} = \sqrt{y_n^2 + p_{yn}^2}$.

PHIY
The vertical phase: $\mathtt{PHIY} = - \arctan(p_{yn} / y_n) / 2 \pi$.

TN
The normalised longitudinal displacement [ $\mathrm{m}^{1/2}$]: $\mathtt{TN} = t_n = \Re(E_3^T S Z)$.

PTN
The normalised longitudinal transverse momentum [ $\mathrm{m}^{1/2}$]: $\mathtt{PTN} = p_{tn} = Im(E_3^T S Z)$.

WT
The longitudinal invariant [m]: $\mathtt{WT} = \sqrt{t_n^2 + p_{tn}^2}$.

PHIT
The longitudinal phase: $\mathtt{PHIT} = + \arctan(p_{tn} / t_n) / 2 \pi$.

in the above formulas $Z$ is the phase space vector $Z = (x, p_x, y, p_y, t, p_t)^T$. The matrix $S$ is the ``symplectic unit matrix''

\begin{displaymath}
S = \left( \begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
...
... & 0 & 0 & 1 \\
0 & 0 & 0 & 0 &-1 & 0
\end{array} \right ),
\end{displaymath}

and the vectors $E_i$ are the three complex eigenvectors. The superscript $T$ denotes the transpose of a vector or matrix.


next up previous contents index
Next: Physical Units Up: Variables Previous: Canonical Variables Describing Orbits   Contents   Index
MAD User Guide, http://wwwslap.cern.ch/mad/