CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-PAS-HIG-16-005
Search for lepton flavour violating decays of the Higgs boson in the $\mu$-$\tau$ final state at 13 TeV
Abstract: A direct search for lepton flavour violating decays of the Higgs boson in the $\textrm{H} \rightarrow \mu \tau$ channel is described. In particular, the search examines the $\textrm{H} \rightarrow \mu \tau_{e}$ and the $\textrm{H} \rightarrow \mu \tau_{h}$ channels, where the $\tau$ leptons are reconstructed in the electronic and hadronic decay channels respectively. The data sample used in the search was collected in proton-proton collisions at $\sqrt{s}= $ 13 TeV with the CMS experiment at the LHC and corresponds to an integrated luminosity of 2.3 fb$^{-1}$. No excess is observed, and a 95% CL upper limit of $\mathcal{B}(\mathrm{H} \rightarrow \mu \tau ) <$ 1.20% (1.62 expected) is obtained.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1-a:
Distributions of the collinear mass $M_\text {col}$ for signal and background processes after the loose selection requirements, for the LFV $\mathrm{ H } \to \mu\tau $ candidates, for the different channels and categories, compared to data. For visualization purposes $\mathcal {B}(\mathrm{ H } \to \mu\tau )=$ 100% is used for the signal. The shaded grey bands indicate the total uncertainty. The bottom panel in each plot shows the fractional difference between the observed data and the total estimated background. Top left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 0-jet; top right: $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 0-jet; middle left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 1-jet; middle right: $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 1-jet; bottom left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 2-jet; bottom right $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 2-jet.

png pdf
Figure 1-b:
Distributions of the collinear mass $M_\text {col}$ for signal and background processes after the loose selection requirements, for the LFV $\mathrm{ H } \to \mu\tau $ candidates, for the different channels and categories, compared to data. For visualization purposes $\mathcal {B}(\mathrm{ H } \to \mu\tau )=$ 100% is used for the signal. The shaded grey bands indicate the total uncertainty. The bottom panel in each plot shows the fractional difference between the observed data and the total estimated background. Top left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 0-jet; top right: $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 0-jet; middle left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 1-jet; middle right: $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 1-jet; bottom left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 2-jet; bottom right $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 2-jet.

png pdf
Figure 1-c:
Distributions of the collinear mass $M_\text {col}$ for signal and background processes after the loose selection requirements, for the LFV $\mathrm{ H } \to \mu\tau $ candidates, for the different channels and categories, compared to data. For visualization purposes $\mathcal {B}(\mathrm{ H } \to \mu\tau )=$ 100% is used for the signal. The shaded grey bands indicate the total uncertainty. The bottom panel in each plot shows the fractional difference between the observed data and the total estimated background. Top left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 0-jet; top right: $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 0-jet; middle left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 1-jet; middle right: $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 1-jet; bottom left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 2-jet; bottom right $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 2-jet.

png pdf
Figure 1-d:
Distributions of the collinear mass $M_\text {col}$ for signal and background processes after the loose selection requirements, for the LFV $\mathrm{ H } \to \mu\tau $ candidates, for the different channels and categories, compared to data. For visualization purposes $\mathcal {B}(\mathrm{ H } \to \mu\tau )=$ 100% is used for the signal. The shaded grey bands indicate the total uncertainty. The bottom panel in each plot shows the fractional difference between the observed data and the total estimated background. Top left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 0-jet; top right: $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 0-jet; middle left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 1-jet; middle right: $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 1-jet; bottom left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 2-jet; bottom right $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 2-jet.

png pdf
Figure 1-e:
Distributions of the collinear mass $M_\text {col}$ for signal and background processes after the loose selection requirements, for the LFV $\mathrm{ H } \to \mu\tau $ candidates, for the different channels and categories, compared to data. For visualization purposes $\mathcal {B}(\mathrm{ H } \to \mu\tau )=$ 100% is used for the signal. The shaded grey bands indicate the total uncertainty. The bottom panel in each plot shows the fractional difference between the observed data and the total estimated background. Top left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 0-jet; top right: $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 0-jet; middle left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 1-jet; middle right: $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 1-jet; bottom left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 2-jet; bottom right $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 2-jet.

png pdf
Figure 1-f:
Distributions of the collinear mass $M_\text {col}$ for signal and background processes after the loose selection requirements, for the LFV $\mathrm{ H } \to \mu\tau $ candidates, for the different channels and categories, compared to data. For visualization purposes $\mathcal {B}(\mathrm{ H } \to \mu\tau )=$ 100% is used for the signal. The shaded grey bands indicate the total uncertainty. The bottom panel in each plot shows the fractional difference between the observed data and the total estimated background. Top left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 0-jet; top right: $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 0-jet; middle left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 1-jet; middle right: $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 1-jet; bottom left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 2-jet; bottom right $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 2-jet.

png pdf
Figure 2-a:
Distributions of $M_\text {col}$ for region II compared to the estimate obtained by scaling the region IV sample by the measured misidentification fractions. The bottom panel in each plot shows the relative difference between the observed data and the estimate. a: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$. b: $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $.

png pdf
Figure 2-b:
Distributions of $M_\text {col}$ for region II compared to the estimate obtained by scaling the region IV sample by the measured misidentification fractions. The bottom panel in each plot shows the relative difference between the observed data and the estimate. a: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$. b: $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $.

png pdf
Figure 3-a:
Distribution of the collinear mass $M_\text {col}$ in the different channels and categories compared to the signal and background estimation. The background is normalized to the best-fit values from the signal plus background fit while the signal is normalized to $\mathcal {B}(\mathrm{ H } \to \mu\tau )=1%$. The bottom panel in each plot shows the fractional difference between the observed data and the fitted background. Top left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 0-jet; top right: $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 0-jet; middle left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 1-jet; middle right: $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 1-jet; bottom left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 2-jet; bottom right $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 2-jet.

png pdf
Figure 3-b:
Distribution of the collinear mass $M_\text {col}$ in the different channels and categories compared to the signal and background estimation. The background is normalized to the best-fit values from the signal plus background fit while the signal is normalized to $\mathcal {B}(\mathrm{ H } \to \mu\tau )=1%$. The bottom panel in each plot shows the fractional difference between the observed data and the fitted background. Top left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 0-jet; top right: $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 0-jet; middle left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 1-jet; middle right: $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 1-jet; bottom left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 2-jet; bottom right $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 2-jet.

png pdf
Figure 3-c:
Distribution of the collinear mass $M_\text {col}$ in the different channels and categories compared to the signal and background estimation. The background is normalized to the best-fit values from the signal plus background fit while the signal is normalized to $\mathcal {B}(\mathrm{ H } \to \mu\tau )=1%$. The bottom panel in each plot shows the fractional difference between the observed data and the fitted background. Top left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 0-jet; top right: $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 0-jet; middle left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 1-jet; middle right: $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 1-jet; bottom left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 2-jet; bottom right $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 2-jet.

png pdf
Figure 3-d:
Distribution of the collinear mass $M_\text {col}$ in the different channels and categories compared to the signal and background estimation. The background is normalized to the best-fit values from the signal plus background fit while the signal is normalized to $\mathcal {B}(\mathrm{ H } \to \mu\tau )=1%$. The bottom panel in each plot shows the fractional difference between the observed data and the fitted background. Top left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 0-jet; top right: $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 0-jet; middle left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 1-jet; middle right: $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 1-jet; bottom left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 2-jet; bottom right $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 2-jet.

png pdf
Figure 3-e:
Distribution of the collinear mass $M_\text {col}$ in the different channels and categories compared to the signal and background estimation. The background is normalized to the best-fit values from the signal plus background fit while the signal is normalized to $\mathcal {B}(\mathrm{ H } \to \mu\tau )=1%$. The bottom panel in each plot shows the fractional difference between the observed data and the fitted background. Top left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 0-jet; top right: $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 0-jet; middle left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 1-jet; middle right: $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 1-jet; bottom left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 2-jet; bottom right $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 2-jet.

png pdf
Figure 3-f:
Distribution of the collinear mass $M_\text {col}$ in the different channels and categories compared to the signal and background estimation. The background is normalized to the best-fit values from the signal plus background fit while the signal is normalized to $\mathcal {B}(\mathrm{ H } \to \mu\tau )=1%$. The bottom panel in each plot shows the fractional difference between the observed data and the fitted background. Top left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 0-jet; top right: $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 0-jet; middle left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 1-jet; middle right: $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 1-jet; bottom left: $\mathrm{ H } \to \mu\tau _{\mathrm{ e } }$ 2-jet; bottom right $\mathrm{ H } \to \mu {\tau _\mathrm {h}} $ 2-jet.

png pdf
Figure 4:
Observed and expected 95% CL upper limits on the $\mathcal {B}(\mathrm{ H } \to \mu\tau )$ for each individual category and combined. The solid red and dashed black vertical lines correspond, respectively, to the observed and expected 95% CL upper limits obtained at $ \sqrt{s} = $ 8 TeV [23].

png pdf
Figure 5:
Constraints on the flavour violating Yukawa couplings, $ {| Y_{\mu\tau } | }$ and $ {| Y_{\tau \mu } | }$. The black dashed lines are contours of $\mathcal {B}(\mathrm{ H } \to \mu\tau )$ for reference. The expected limit (red solid line) with one standard deviation (green) and two standard deviation (yellow) bands, and observed limit (black solid line) are derived from the limit on $\mathcal {B}(\mathrm{ H } \to \mu\tau )$ from the present analysis. The shaded regions are derived constraints from null searches for $\tau \to 3\mu $ (dark green) and $\tau \to \mu \gamma $ (lighter green). The light blue region indicates the additional parameter space excluded by our result. The purple diagonal line is the theoretical naturalness limit $Y_{ij}Y_{ji} \leq m_im_j/v^2$.
Tables

png pdf
Table 1:
Selection criteria in all the categories used in the analysis

png pdf
Table 2:
Definition of the regions used to estimate the misidentified lepton background. The different regions have different requirements for the isolation and the relative charge of the two leptons $\ell ^{\pm }_{1}$ and $\ell ^{\pm }_{2}$, which can be $\mathrm{ e } $, $\mu $ or $\tau _{h}$.

png pdf
Table 3:
Systematic uncertainties in the expected event yield. All uncertainties are treated as correlated between the categories, except those which have two values indicated. In this case the first value is correlated as above, while the second value (following the $\oplus $ symbol) represents an uncorrelated uncertainty for each individual category. The total uncertainty in a given category is the sum in quadrature of the two values.

png pdf
Table 4:
Event yields in the signal region in the range 100 $ < M_\text {col} < $ 150 GeV . The expected contributions are normalized to an integrated luminosity of 2.3 fb$^{-1}$. The LFV Higgs boson signal indicated corresponds to $B(\mathrm{ H } \to \mu \tau )=$ 1%, with the expected SM Higgs boson cross section.

png pdf
Table 5:
The observed and expected upper limits and the best-fit branching fractions for different $n$-jet categories for the $\mathrm{ H } \to \mu\tau $ process.
Summary
A direct search for lepton flavour violating decays of the Higgs boson in the $\mathrm{H} \to \mu \tau$ channel is described. The data sample used in the search was collected in proton-proton collisions at $\sqrt{s} =$ 13 TeV with the CMS experiment at the LHC and corresponds to an integrated integrated luminosity of 2.3 fb$^{-1}$. No excess is observed. The best-fit branching fraction is $\mathcal{B}(\mathrm{H} \to \mu \tau ) = -0.76^{+0.81}_{-0.84}$% and an upper limit of $\mathcal{B}(\mathrm{H} \rightarrow \mu \tau ) <$ 1.20% (1.62 expected) is set at 95% CL.

At $\sqrt{s} =$ 8 TeV a small excess was observed, corresponding to 2.4$\sigma$, with an analysis based on an integrated luminosity of 19.7 fb$^{-1}$ that yielded an expected 95% CL limit on the branching fraction of 0.75%. More data are needed to make definitive conclusions on the origin of that excess.
References
1 ATLAS Collaboration Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC PLB 716 (2012) 1 1207.7214
2 CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC PLB 716 (2012) 30 CMS-HIG-12-028
1207.7235
3 CMS Collaboration Observation of a new boson with mass near 125 GeV in pp collisions at $ \sqrt{s} $ = 7 and 8 TeV JHEP 06 (2013) 081 CMS-HIG-12-036
1303.4571
4 R. Harnik, J. Kopp, and J. Zupan Flavor violating Higgs decays JHEP 03 (2013) 26
5 J. D. Bjorken and S. Weinberg Mechanism for Nonconservation of Muon Number PRL 38 (1977) 622
6 J. L. Diaz-Cruz and J. Toscano Lepton flavor violating decays of Higgs bosons beyond the standard model PRD 62 (2000) 116005 hep-ph/9910233
7 T. Han and D. Marfatia $ h \to \mu \tau $ at Hadron Colliders PRL 86 (2001) 1442 hep-ph/0008141
8 A. Arhrib, Y. Cheng, and O. C. Kong Comprehensive analysis on lepton flavor violating Higgs boson to $ \mu\bar{\tau} + \tau \bar{\mu} $ decay in supersymmetry without R parity PRD 87 (2013) 015025 1210.8241
9 K. Agashe and R. Contino Composite Higgs-mediated flavor-changing neutral current PRD 80 (2009) 075016 0906.1542
10 A. Azatov, M. Toharia, and L. Zhu Higgs mediated flavor changing neutral currents in warped extra dimensions PRD 80 (2009) 035016 0906.1990
11 H. Ishimori et al. Non-Abelian Discrete Symmetries in Particle Physics Prog. Theor. Phys. Suppl. 183 (2010) 1 1003.3552
12 G. Perez and L. Randall Natural neutrino masses and mixings from warped geometry JHEP 01 (2009) 077 0805.4652
13 S. Casagrande et al. Flavor physics in the Randall-Sundrum model I. Theoretical setup and electroweak precision tests JHEP 10 (2008) 094 0807.4937
14 A. J. Buras, B. Duling, and S. Gori The impact of Kaluza-Klein fermions on Standard Model fermion couplings in a RS model with custodial protection JHEP 09 (2009) 076 0905.2318
15 M. Blanke et al. $ \Delta F=2 $ observables and fine-tuning in a warped extra dimension with custodial protection JHEP 03 (2009) 001 0809.1073
16 G. F. Giudice and O. Lebedev Higgs-dependent Yukawa couplings PLB 665 (2008) 79 0804.1753
17 J. Aguilar-Saavedra A minimal set of top-Higgs anomalous couplings Nucl. Phys. B 821 (2009) 215 0904.2387
18 M. E. Albrecht et al. Electroweak and flavour structure of a warped extra dimension with custodial protection JHEP 09 (2009) 064 0903.2415
19 A. Goudelis, O. Lebedev, and J. H. Park Higgs-induced lepton flavor violation PLB 707 (2012) 369 1111.1715
20 D. McKeen, M. Pospelov, and A. Ritz Modified Higgs branching ratios versus CP and lepton flavor violation PRD 86 (2012) 113004 1208.4597
21 A. Pilaftsis Lepton flavour nonconservation in $ \mathrm{ H }^0 $ decays PLB 285 (1992) 68
22 J. G. K\"orner, A. Pilaftsis, and K. Schilcher Leptonic $ \mathrm{CP} $ asymmetries in flavor-changing $ \mathrm{ H }^{0} $ decays PRD 47 (1993) 1080
23 CMS Collaboration Search for lepton-flavour-violating decays of the Higgs boson PLB 749 (2015) 337 CMS-HIG-14-005
1502.07400
24 CMS Collaboration Search for lepton-flavour-violating decays of the Higgs boson to e$ \tau $ and e$ \mu $ at $ \sqrt{s}=8 $ TeV CMS-PAS-HIG-14-040 CMS-PAS-HIG-14-040
25 ATLAS Collaboration Search for lepton-flavour-violating $ \mathrm{ H }\to\mu\tau $ decays of the Higgs boson with the ATLAS detector Submitted to JHEP.\ 1508.03372
26 ATLAS Collaboration Search for lepton-flavour-violating decays of the Higgs and $ Z $ bosons with the ATLAS detector 1604.07730
27 B. McWilliams and L.-F. Li Virtual effects of Higgs particles Nucl. Phys. B 179 (1981) 62
28 O. U. Shanker Flavour violation, scalar particles and leptoquarks Nucl. Phys. B 206 (1982) 253
29 G. Blankenburg, J. Ellis, and G. Isidori Flavour-changing decays of a 125 GeV Higgs-like particle PLB 712 (2012) 386 1202.5704
30 K. Olive et al. Review of Particle Physics CPC 38 (2014) 090001
31 CMS Collaboration Evidence for the direct decay of the 125 GeV Higgs boson to fermions Nature Phys. 10 (2014) 557 CMS-HIG-13-033
1401.6527
32 CMS Collaboration Evidence for the 125$ GeV $ Higgs boson decaying to a pair of $ \tau $ leptons JHEP 05 (2014) 104 CMS-HIG-13-004
1401.5041
33 ATLAS Collaboration Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector JHEP 04 (2015) 117 1501.04943
34 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004 CMS-00-001
35 GEANT4 Collaboration GEANT4 --- a simulation toolkit NIMA 506 (2003) 250
36 P. Nason A new method for combining NLO QCD with shower Monte Carlo algorithms JHEP 11 (2004) 040 hep-ph/0409146
37 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
38 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX JHEP 06 (2010) 043 1002.2581
39 S. Alioli et al. Jet pair production in POWHEG JHEP 04 (2011) 081 1012.3380
40 S. Alioli, P. Nason, C. Oleari, and E. Re NLO Higgs boson production via gluon fusion matched with shower in POWHEG JHEP 04 (2009) 002 0812.0578
41 T. Sj\"ostrand, S. Mrenna, and P. Skands A Brief Introduction to PYTHIA 8.1 CPC 178 (2007) 852 0710.3820
42 J. Alwall et al. MadGraph 5: going beyond JHEP 06 (2011) 128 1106.0522
43 CMS Collaboration Event generator tunes obtained from underlying event and multiparton scattering measurements CMS-GEN-14-001
1512.00815
44 CMS Collaboration Description and performance of track and primary-vertex reconstruction with the CMS tracker JINST 9 (2014) P10009 CMS-TRK-11-001
1405.6569
45 CMS Collaboration Particle--Flow Event Reconstruction in CMS and Performance for Jets, Taus, and $ E_{\mathrm{T}}^{\text{miss}} $ CDS
46 CMS Collaboration Particle flow reconstruction of 0.9 TeV and 2.36 TeV collision events in CMS CDS
47 CMS Collaboration Commissioning of the particle--flow event reconstruction with leptons from J/$ \psi $ and $ \mathrm{ W } $ decays at 7 TeV CDS
48 CMS Collaboration Performance of the CMS missing transverse momentum reconstruction in pp data at $ \sqrt{s} $ = 8 TeV JINST 10 (2015) P02006 CMS-JME-13-003
1411.0511
49 CMS Collaboration Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at $ \sqrt{s} $ = 8 TeV JINST 10 (2015) P06005 CMS-EGM-13-001
1502.02701
50 CMS Collaboration Performance of CMS muon reconstruction in pp collision events at $ \sqrt{s} = 7 $$ TeV $ Submitted to J. Inst CMS-MUO-10-004
1206.4071
51 CMS Collaboration Reconstruction and identification of τ lepton decays to hadrons and ν$ _τ $ at CMS JINST 11 (2016) P01019 CMS-TAU-14-001
1510.07488
52 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual EPJC 72 (2012) 1896 1111.6097
53 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_t $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
54 CMS Collaboration Determination of jet energy calibration and transverse momentum resolution in CMS JINST 6 (2011) 11002 CMS-JME-10-011
1107.4277
55 CMS Collaboration Performance of CMS muon reconstruction in pp collision events at $ \sqrt{7} $~$ TeV $ JINST 7 (2012) P10002 CMS-MUO-10-004
1206.4071
56 R. K. Ellis, I. Hinchliffe, M. Soldate, and J. van der Bij Higgs Decay to $ \tau^+\tau^- $: A possible signature of intermediate mass Higgs bosons at high energy hadron colliders Nucl. Phys. B 297 (1988) 221
57 CMS Collaboration Identification of b-quark jets with the CMS experiment JINST 8 (2013) P04013 CMS-BTV-12-001
1211.4462
58 ATLAS and CMS Collaborations, LHC Higgs Combination Group Procedure for the LHC Higgs boson search combination in Summer 2011 Technical Report ATL-PHYS-PUB 2011-11, CMS NOTE 2011/005
59 T. Junk Confidence level computation for combining searches with small statistics NIMA 434 (1999) 435 hep-ex/9902006
60 A. L. Read Presentation of search results: the $ CL_s $ technique JPG 28 (2002) 2693
61 A. Denner et al. Standard model Higgs-boson branching ratios with uncertainties EPJC 71 (2011) 1753 1107.5909
Compact Muon Solenoid
LHC, CERN