CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-BPH-17-005 ; CERN-EP-2020-070
Observation of the $\mathrm{B_{s}^{0} \to \mathrm{X}(3872)\phi}$ decay
Phys. Rev. Lett. 125 (2020) 152001
Abstract: Using a data sample of proton-proton collisions at $\sqrt{s} = $ 13 TeV, corresponding to an integrated luminosity of 140 fb$^{-1}$ collected by the CMS experiment in 2016-2018, the $\mathrm{B_{s}^{0} \to \mathrm{X}(3872)\phi}$ decay is observed. Decays into $\mathrm{J/\psi}\pi^{+}\pi^{-}$ and $\mathrm{K^{+}K^{-}}$ are used to reconstruct, respectively, the $\mathrm{X(3872)}$ and $\phi$. The ratio of the product of branching fractions $\mathcal{B}(\mathrm{B_{s}^{0} \to \mathrm{X}(3872)\phi})\,\mathcal{B}(\mathrm{\mathrm{X}(3872)} \to \mathrm{J/\psi}\pi^{+}\pi^{-} )$ to the product $\mathcal{B}(\mathrm{B_{s}^{0} \to \psi(2S)\phi})\,\mathcal{B}(\mathrm{\psi(2S)} \to \mathrm{J/\psi}\pi^{+}\pi^{-} )$ is measured to be (2.21 $\pm$ 0.29 (stat) $\pm$ 0.17 (syst))%. The ratio $\mathcal{B}(\mathrm{B_{s}^{0} \to \mathrm{X}(3872)\phi})/\mathcal{B}(\mathrm{B^{0} \to \mathrm{X}(3872) K^{0}})$ is found to be consistent with one, while the ratio $\mathcal{B}(\mathrm{B_{s}^{0} \to \mathrm{X}(3872)\phi})/\mathcal{B}(\mathrm{B^{+} \to \mathrm{X}(3872) K^{+}})$ is two times smaller. This suggests a difference in the production dynamics of the $\mathrm{X(3872)}$ in $\mathrm{B^{0}}$ and $\mathrm{B_{s}^{0}}$ meson decays compared to $\mathrm{B^{+}}$. The reported observation may shed new light on the nature of the $\mathrm{X(3872)}$ particle.
Figures & Tables Summary Additional Figures References CMS Publications
Figures

png pdf
Figure 1:
The observed $\mathrm{J/\psi}\pi^{+}\pi^{-}$ (left) and ${\mathrm{K^{+}} \mathrm{K^{-}}}$ (right) invariant mass distributions for the ${\mathrm{B_{s}^{0}} \to \psi(\text{2S})\phi}$ candidates are shown by the points, with the vertical bars representing the statistical uncertainties. The projections of the 2D fit and its various components are shown by the lines.

png pdf
Figure 1-a:
The observed $\mathrm{J/\psi}\pi^{+}\pi^{-}$ invariant mass distribution for the ${\mathrm{B_{s}^{0}} \to \psi(\text{2S})\phi}$ candidates is shown by the points, with the vertical bars representing the statistical uncertainties. The projections of the 2D fit and its various components are shown by the lines.

png pdf
Figure 1-b:
The observed ${\mathrm{K^{+}} \mathrm{K^{-}}}$ invariant mass distribution for the ${\mathrm{B_{s}^{0}} \to \psi(\text{2S})\phi}$ candidates is shown by the points, with the vertical bars representing the statistical uncertainties. The projections of the 2D fit and its various components are shown by the lines.

png pdf
Figure 2:
The observed $\mathrm{J/\psi}\pi^{+}\pi^{-}$ (left) and ${\mathrm{K^{+}} \mathrm{K^{-}}}$ (right) invariant mass distributions for the ${\mathrm{B_{s}^{0}} \to \mathrm{X(3872)} \phi}$ candidates are shown by the points, with the vertical bars representing the statistical uncertainties. The projections of the 2D fit and its various components are shown by the lines.

png pdf
Figure 2-a:
The observed $\mathrm{J/\psi}\pi^{+}\pi^{-}$ invariant mass distribution for the ${\mathrm{B_{s}^{0}} \to \mathrm{X(3872)} \phi}$ candidates is shown by the points, with the vertical bars representing the statistical uncertainties. The projections of the 2D fit and its various components are shown by the lines.

png pdf
Figure 2-b:
The observed ${\mathrm{K^{+}} \mathrm{K^{-}}}$ invariant mass distribution for the ${\mathrm{B_{s}^{0}} \to \mathrm{X(3872)} \phi}$ candidates is shown by the points, with the vertical bars representing the statistical uncertainties. The projections of the 2D fit and its various components are shown by the lines.

png pdf
Figure 3:
Background-subtracted $\psi(\text{2S})\phi $ (left) and $\mathrm{X(3872)} \phi $ (right) invariant mass distributions obtained by ${{}_{s}\mathcal {P}\mathrm {lot}}$ weighting. The result of each fit and its components are shown by the lines.

png pdf
Figure 3-a:
Background-subtracted $\psi(\text{2S})\phi $ invariant mass distribution obtained by ${{}_{s}\mathcal {P}\mathrm {lot}}$ weighting. The result of each fit and its components are shown by the lines.

png pdf
Figure 3-b:
Background-subtracted $\mathrm{X(3872)} \phi $ invariant mass distribution obtained by ${{}_{s}\mathcal {P}\mathrm {lot}}$ weighting. The result of each fit and its components are shown by the lines.
Tables

png pdf
Table 1:
Relative systematic uncertainties in the ratio $R$.
Summary
In summary, using a data sample corresponding to an integrated luminosity of 140 fb$^{-1}$ of proton-proton collisions collected by the CMS experiment at $\sqrt{s}= $ 13 TeV in 2016--2018, the $\mathrm{B_{s}^{0} \to X(3872)\phi}$ decay is observed for the first time. The comparison with similar decays of $\mathrm{B^{0}}$ and $\mathrm{B^{+}}$ mesons indicates that the $\mathrm{X(3872)}$ formation in B meson decays is different from $\psi(\text{2S})$ formation, suggesting that $\mathrm{X(3872)}$ is not a pure charmonium state and supporting similar conclusions derived from other experimental measurements [2, 5, 8–12]. This observation may shed new light on the nature of the $\mathrm{X(3872)}$ particle.
Additional Figures

png pdf
Additional Figure 1:
The observed $ {\mathrm {J}/\psi} \, {\pi ^{+}} {\pi ^{-}} $ invariant mass distribution for the selected $ {\mathrm {B}^0_\mathrm {s}} \to {\psi \mathrm {(2S)}}\, \phi$ candidates in three ranges of $m({\mathrm {K^{+}}} {\mathrm {K^{-}}})$: (a) left $\phi$ sideband, (b) $\phi$ signal region, (c) right $\phi$ sideband. The projections of the two dimensional fit and its various components are shown by the lines explained in the legend in (b).

png pdf
Additional Figure 1-a:
The observed $ {\mathrm {J}/\psi} \, {\pi ^{+}} {\pi ^{-}} $ invariant mass distribution for the selected $ {\mathrm {B}^0_\mathrm {s}} \to {\psi \mathrm {(2S)}}\, \phi$ candidates in three ranges of $m({\mathrm {K^{+}}} {\mathrm {K^{-}}})$: left $\phi$ sideband.

png pdf
Additional Figure 1-b:
The observed $ {\mathrm {J}/\psi} \, {\pi ^{+}} {\pi ^{-}} $ invariant mass distribution for the selected $ {\mathrm {B}^0_\mathrm {s}} \to {\psi \mathrm {(2S)}}\, \phi$ candidates in three ranges of $m({\mathrm {K^{+}}} {\mathrm {K^{-}}})$: $\phi$ signal region. The projection of the two dimensional fit and its various components are shown by the lines explained in the legend.

png pdf
Additional Figure 1-c:
The observed $ {\mathrm {J}/\psi} \, {\pi ^{+}} {\pi ^{-}} $ invariant mass distribution for the selected $ {\mathrm {B}^0_\mathrm {s}} \to {\psi \mathrm {(2S)}}\, \phi$ candidates in three ranges of $m({\mathrm {K^{+}}} {\mathrm {K^{-}}})$: right $\phi$ sideband.

png pdf
Additional Figure 2:
The observed $ {\mathrm {K^{+}}} {\mathrm {K^{-}}}$ invariant mass distribution for the selected $ {\mathrm {B}^0_\mathrm {s}} \to {\psi \mathrm {(2S)}}\, \phi$ candidates in three ranges of $m({\mathrm {J}/\psi} \, {\pi ^{+}} {\pi ^{-}})$: (a) left ${\psi \mathrm {(2S)}}$ sideband, (b) ${\psi \mathrm {(2S)}}$ signal region, (c) right ${\psi \mathrm {(2S)}}$ sideband. The projections of the two dimensional fit and its various components are shown by the lines explained in the legend in (b).

png pdf
Additional Figure 2-a:
The observed $ {\mathrm {K^{+}}} {\mathrm {K^{-}}}$ invariant mass distribution for the selected $ {\mathrm {B}^0_\mathrm {s}} \to {\psi \mathrm {(2S)}}\, \phi$ candidates in three ranges of $m({\mathrm {J}/\psi} \, {\pi ^{+}} {\pi ^{-}})$: left ${\psi \mathrm {(2S)}}$ sideband.

png pdf
Additional Figure 2-b:
The observed $ {\mathrm {K^{+}}} {\mathrm {K^{-}}}$ invariant mass distribution for the selected $ {\mathrm {B}^0_\mathrm {s}} \to {\psi \mathrm {(2S)}}\, \phi$ candidates in three ranges of $m({\mathrm {J}/\psi} \, {\pi ^{+}} {\pi ^{-}})$: ${\psi \mathrm {(2S)}}$ signal region. The projection of the two dimensional fit and its various components are shown by the lines explained in the legend.

png pdf
Additional Figure 2-c:
The observed $ {\mathrm {K^{+}}} {\mathrm {K^{-}}}$ invariant mass distribution for the selected $ {\mathrm {B}^0_\mathrm {s}} \to {\psi \mathrm {(2S)}}\, \phi$ candidates in three ranges of $m({\mathrm {J}/\psi} \, {\pi ^{+}} {\pi ^{-}})$: right ${\psi \mathrm {(2S)}}$ sideband.

png pdf
Additional Figure 3:
The observed $ {\mathrm {J}/\psi} \, {\pi ^{+}} {\pi ^{-}} $ invariant mass distribution for the selected $ {\mathrm {B}^0_\mathrm {s}} \to \mathrm {X}(3872)\, \phi$ candidates in three ranges of $m({\mathrm {K^{+}}} {\mathrm {K^{-}}})$: (a) left $\phi$ sideband, (b) $\phi$ signal region, (c) right $\phi$ sideband. The projections of the two dimensional fit and its various components are shown by the lines explained in the legend in (b).

png pdf
Additional Figure 3-a:
The observed $ {\mathrm {J}/\psi} \, {\pi ^{+}} {\pi ^{-}} $ invariant mass distribution for the selected $ {\mathrm {B}^0_\mathrm {s}} \to \mathrm {X}(3872)\, \phi$ candidates in three ranges of $m({\mathrm {K^{+}}} {\mathrm {K^{-}}})$: left $\phi$ sideband.

png pdf
Additional Figure 3-b:
The observed $ {\mathrm {J}/\psi} \, {\pi ^{+}} {\pi ^{-}} $ invariant mass distribution for the selected $ {\mathrm {B}^0_\mathrm {s}} \to \mathrm {X}(3872)\, \phi$ candidates in three ranges of $m({\mathrm {K^{+}}} {\mathrm {K^{-}}})$: $\phi$ signal region. right $\phi$ sideband. The projection of the two dimensional fit and its various components are shown by the lines explained in the legend.

png pdf
Additional Figure 3-c:
The observed $ {\mathrm {J}/\psi} \, {\pi ^{+}} {\pi ^{-}} $ invariant mass distribution for the selected $ {\mathrm {B}^0_\mathrm {s}} \to \mathrm {X}(3872)\, \phi$ candidates in three ranges of $m({\mathrm {K^{+}}} {\mathrm {K^{-}}})$: right $\phi$ sideband.

png pdf
Additional Figure 4:
The observed $ {\mathrm {K^{+}}} {\mathrm {K^{-}}}$ invariant mass distribution for the selected $ {\mathrm {B}^0_\mathrm {s}} \to \mathrm {X}(3872)\, \phi$ candidates in three ranges of $m({\mathrm {J}/\psi} \, {\pi ^{+}} {\pi ^{-}})$: (a) left $\mathrm {X}$ sideband, (b) $\mathrm {X}$ signal region, (c) right $\mathrm {X}$ sideband. The projections of the two dimensional fit and its various components are shown by the lines explained in the legend in (b).

png pdf
Additional Figure 4-a:
The observed $ {\mathrm {K^{+}}} {\mathrm {K^{-}}}$ invariant mass distribution for the selected $ {\mathrm {B}^0_\mathrm {s}} \to \mathrm {X}(3872)\, \phi$ candidates in three ranges of $m({\mathrm {J}/\psi} \, {\pi ^{+}} {\pi ^{-}})$: left $\mathrm {X}$ sideband.

png pdf
Additional Figure 4-b:
The observed $ {\mathrm {K^{+}}} {\mathrm {K^{-}}}$ invariant mass distribution for the selected $ {\mathrm {B}^0_\mathrm {s}} \to \mathrm {X}(3872)\, \phi$ candidates in three ranges of $m({\mathrm {J}/\psi} \, {\pi ^{+}} {\pi ^{-}})$: $\mathrm {X}$ signal region. The projection of the two dimensional fit and its various components are shown by the lines explained in the legend.

png pdf
Additional Figure 4-c:
The observed $ {\mathrm {K^{+}}} {\mathrm {K^{-}}}$ invariant mass distribution for the selected $ {\mathrm {B}^0_\mathrm {s}} \to \mathrm {X}(3872)\, \phi$ candidates in three ranges of $m({\mathrm {J}/\psi} \, {\pi ^{+}} {\pi ^{-}})$: right $\mathrm {X}$ sideband.

png pdf
Additional Figure 5:
Comparison of the branching fractions $\mathcal {B}({{\mathrm {B}}}\to {\mathrm {J}/\psi}\, \mathrm {h})$ for ${{\mathrm {B}^{+}}}$, ${{\mathrm {B}^0}}$, and ${\mathrm {B}^0_\mathrm {s}}$ decays. The values are taken from Ref. [4].

png pdf
Additional Figure 6:
Comparison of the branching fractions $\mathcal {B}({{\mathrm {B}}}\to {\psi \mathrm {(2S)}}\, \mathrm {h})$ for ${{\mathrm {B}^{+}}}$, ${{\mathrm {B}^0}}$, and ${\mathrm {B}^0_\mathrm {s}}$ decays. The values are taken from Ref. [4].

png pdf
Additional Figure 7:
Comparison of the branching fraction products $\mathcal {B}({{\mathrm {B}}}\to \mathrm {X}(3872)\, \mathrm {h})\times \mathcal {B}(\mathrm {X}(3872)\to {\mathrm {J}/\psi} \, {\pi ^{+}} {\pi ^{-}})$ for ${{\mathrm {B}^{+}}}$, ${{\mathrm {B}^0}}$ [4], and ${\mathrm {B}^0_\mathrm {s}}$ decays, where the last result by CMS is highlighted in red.
References
1 M. B. Voloshin Charmonium Prog. Part. NP 61 (2008) 455 0711.4556
2 N. Brambilla et al. Heavy quarkonium: Progress, puzzles, and opportunities EPJC 71 (2011) 1534 1010.5827
3 Belle Collaboration Observation of a narrow charmoniumlike state in exclusive $ \mathrm{B^{\pm}}\to\mathrm{K^{\pm}}\pi^{+}\pi^{-}\mathrm{J/\psi} $ decays PRL 91 (2003) 262001 hep-ex/0309032
4 Particle Data Group, M. Tanabashi et al. Review of particle physics PRD 98 (2018) 030001
5 Belle Collaboration Bounds on the width, mass difference and other properties of $ \mathrm{X(3872)} \to \pi^+ \pi^- \mathrm{J/\psi} $ decays PRD 84 (2011) 052004 1107.0163
6 N. Brambilla et al. The XYZ states: experimental and theoretical status and perspectives 1907.07583
7 CDF Collaboration The $ \mathrm{X(3872)} $ at CDF II Int. J. Mod. Phys. A 20 (2005) 3765 hep-ex/0409052
8 CMS Collaboration Measurement of the $ \mathrm{X(3872)} $ production cross section via decays to $ \mathrm{J/\psi \pi^{+}\pi^{-}} $ in pp collisions at $ \sqrt{s} = $ 7 TeV JHEP 04 (2013) 154 CMS-BPH-11-011
1302.3968
9 ATLAS Collaboration Measurements of $ \psi(\text{2S}) $ and $ \mathrm{X(3872)}\to \mathrm{J/\psi \pi^{+}\pi^{-}} $ production in pp collisions at $ \sqrt{s} = $ 8 TeV with the ATLAS detector JHEP 01 (2017) 117 1610.09303
10 CDF Collaboration Analysis of the quantum numbers $ J^{PC} $ of the $ \mathrm{X(3872)} $ PRL 98 (2007) 132002 hep-ex/0612053
11 LHCb Collaboration Determination of the $ \mathrm{X(3872)} $ meson quantum numbers PRL 110 (2013) 222001 1302.6269
12 LHCb Collaboration Quantum numbers of the $ \mathrm{X(3872)} $ state and orbital angular momentum in its $ \rho^0 \mathrm{J/\psi} $ decay PRD 92 (2015) 011102 1504.06339
13 CDF Collaboration Measurement of the dipion mass spectrum in $ \mathrm{X(3872)}\to \mathrm{J/\psi \pi^{+}\pi^{-}} $ decays PRL 96 (2006) 102002 hep-ex/0512074
14 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004 CMS-00-001
15 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
16 T. Sjostrand et al. An introduction to PYTHIA 8.2 CPC 191 (2015) 159 1410.3012
17 D. J. Lange The EvtGen particle decay simulation package NIMA 462 (2001) 152
18 E. Barberio, B. van Eijk, and Z. Was PHOTOS --- a universal Monte Carlo for QED radiative corrections in decays CPC 66 (1991) 115
19 E. Barberio and Z. Was PHOTOS -- a universal Monte Carlo for QED radiative corrections: version 2.0 CPC 79 (1994) 291
20 GEANT4 Collaboration GEANT4--A simulation toolkit NIMA 506 (2003) 250
21 CMS Collaboration Performance of CMS muon reconstruction in pp collision events at $ \sqrt{s} = $ 7 TeV JINST 7 (2012) P10002 CMS-MUO-10-004
1206.4071
22 CMS Collaboration Description and performance of track and primary-vertex reconstruction with the CMS tracker JINST 9 (2014) P10009 CMS-TRK-11-001
1405.6569
23 CMS Collaboration Search for the X(5568) state decaying into $ \mathrm{B}^{0}_{\mathrm{s}}\pi^{\pm} $ in proton-proton collisions at $ \sqrt{s} = $ 8 TeV PRL 120 (2018) 202005 CMS-BPH-16-002
1712.06144
24 CMS Collaboration Studies of $ {\mathrm {B}}^{*}_{\mathrm {s}2}(5840)^0 $ and $ {\mathrm {B}}_{{\mathrm {s}}1}(5830)^0 $ mesons including the observation of the $ {\mathrm {B}}^{*}_{\mathrm {s}2}(5840)^0 \rightarrow {\mathrm {B}} ^0 \mathrm {K} ^0_{\mathrm {S}} $ decay in proton-proton collisions at $ \sqrt{s}= $ 8 TeV EPJC 78 (2018) 939 CMS-BPH-16-003
1809.03578
25 CMS Collaboration Study of the $ {\mathrm{B}}^{+}\to \mathrm{J}/\psi \overline{\Lambda}\mathrm{p} $ decay in proton-proton collisions at $ \sqrt{s} = $ 8 TeV JHEP 12 (2019) 100 CMS-BPH-18-005
1907.05461
26 CMS Collaboration Observation of the $ \Lambda_\mathrm{b}^0 \to\mathrm{J/\psi} \Lambda \phi $ decay in proton-proton collisions at $ \sqrt{s}= $ 13 TeV PLB 802 (2020) 135203 CMS-BPH-19-002
1911.03789
27 CMS Collaboration Observation of two excited B$ ^+_\mathrm{c} $ states and measurement of the B$ ^+_\mathrm{c} $(2S) mass in pp collisions at $ \sqrt{s} = $ 13 TeV PRL 122 (2019) 132001 CMS-BPH-18-007
1902.00571
28 CMS Collaboration Study of excited $ \Lambda_\mathrm{b}^0 $ states decaying to $ \Lambda_\mathrm{b}^0\pi^+\pi^- $ in proton-proton collisions at $ \sqrt{s} = $ 13 TeV PLB 803 (2020) 135345 CMS-BPH-19-003
2001.06533
29 G. Punzi Sensitivity of searches for new signals and its optimization in Statistical problems in particle physics, astrophysics and cosmology. PHYSTAT 2003, Stanford physics/0308063
30 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics EPJC 71 (2011) 1554 1007.1727
31 S. S. Wilks The large-sample distribution of the likelihood ratio for testing composite hypotheses Annals Math. Statist. 9 (1938) 60
32 M. Pivk and F. R. Le Diberder $ {{}_{s}\mathcal {P}\mathrm {lot}} $: a statistical tool to unfold data distributions NIMA 555 (2005) 356 physics/0402083
33 S. Jackman Bayesian analysis for the social sciences John Wiley \& Sons, New Jersey, USA
Compact Muon Solenoid
LHC, CERN