CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-HIG-14-032 ; CERN-EP-2016-054
Search for Higgs boson off-shell production in proton-proton collisions at 7 and 8 TeV and derivation of constraints on its total decay width
J. High Energy Phys. 09 (2016) 051
Abstract: A search is presented for the Higgs boson off-shell production in gluon fusion and vector boson fusion processes with the Higgs boson decaying into a ${\mathrm{ W }^+\mathrm{ W }^-} $ pair and the W bosons decaying leptonically. The data observed in this analysis are used to constrain the Higgs boson total decay width. The analysis is based on the data collected by the CMS experiment at the LHC, corresponding to integrated luminosities of 4.9 fb$^{-1}$ at a centre-of-mass energy of 7 TeV and 19.4 fb$^{-1}$ at 8 TeV, respectively. An observed (expected) upper limit on the off-shell Higgs boson event yield normalised to the standard model prediction of 2.4 (6.2) is obtained at the 95% CL for the gluon fusion process and of 19.3 (34.4) for the vector boson fusion process. Observed and expected limits on the total width of 26 and 66 MeV are found, respectively, at the 95% confidence level (CL). These limits are combined with the previous result in the ZZ channel leading to observed and expected 95% CL upper limits on the width of 13 and 26 MeV, respectively.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
Feynman diagrams for the GF channel: (a) for the signal process $\mathrm{ g } \mathrm{ g } \to \mathrm{ H } ( \mathrm{ H } ^{*} )\to \mathrm{ W } ^+\mathrm{ W } ^-$, and (b) for the GF-initiated continuum background process $\mathrm{ g } \mathrm{ g } \to \mathrm{ W } ^+\mathrm{ W } ^-$. The two processes can interfere, as they have identical initial and final states.

png pdf
Figure 1-a:
Feynman diagram for the GF channel: the signal process $\mathrm{ g } \mathrm{ g } \to \mathrm{ H } ( \mathrm{ H } ^{*} )\to \mathrm{ W } ^+\mathrm{ W } ^-$.

png pdf
Figure 1-b:
Feynman diagram for the GF channel: the GF-initiated continuum background process $\mathrm{ g } \mathrm{ g } \to \mathrm{ W } ^+\mathrm{ W } ^-$.

png pdf
Figure 2:
Feynman diagrams for the VBF channel: (a) for the signal process $\mathrm{ q } \mathrm{ q } \to \mathrm{ q } \mathrm{ q } \mathrm{ H } ( \mathrm{H} ^{*})\to \mathrm{ q } \mathrm{ q } {\mathrm{ W }^+ \mathrm{ W }^- } \to \mathrm{ q } \mathrm{ q } \ell ^+\nu \ell ^-\nu $, and (b and c) for two examples of background $\mathrm{ q } \mathrm{ q } \to \mathrm{ q } \mathrm{ q } {\mathrm{ W }^+ \mathrm{ W }^- } \to \mathrm{ q } \mathrm{ q } \ell ^+\nu \ell ^-\nu $ channels.

png pdf
Figure 2-a:
Feynman diagram for the VBF channel: the signal process $\mathrm{ q } \mathrm{ q } \to \mathrm{ q } \mathrm{ q } \mathrm{ H } ( \mathrm{H} ^{*})\to \mathrm{ q } \mathrm{ q } {\mathrm{ W }^+ \mathrm{ W }^- } \to \mathrm{ q } \mathrm{ q } \ell ^+\nu \ell ^-\nu $.

png pdf
Figure 2-b:
Feynman diagram for the VBF channel: an example of background $\mathrm{ q } \mathrm{ q } \to \mathrm{ q } \mathrm{ q } {\mathrm{ W }^+ \mathrm{ W }^- } \to \mathrm{ q } \mathrm{ q } \ell ^+\nu \ell ^-\nu $ channel.

png pdf
Figure 2-c:
Feynman diagram for the VBF channel: an example of background $\mathrm{ q } \mathrm{ q } \to \mathrm{ q } \mathrm{ q } {\mathrm{ W }^+ \mathrm{ W }^- } \to \mathrm{ q } \mathrm{ q } \ell ^+\nu \ell ^-\nu $ channel.

png pdf
Figure 3:
The MVA discriminant distribution for 8 TeV data for the 1-jet category in the top quark control region with one b-tagged jet of $ {p_{\mathrm {T}}} > $ 30 GeV. The Z, W+jets, WW, and top quark simulation predictions are corrected with the estimates based on control samples in data, while other contributions are taken from simulation.

png pdf
Figure 4:
The $ {m_{\mathrm {T}}^{\mathrm{ H } }}$ distributions for the GF 0-jet (a) and (b), and 1-jet (c) and (d) categories, and the VBF 2-jet category (e) and (f) for 7 TeV data. The distributions are weighted as described in the text. In the histogram panels, the expected off-shell SM Higgs boson signal rate, including signal-background interference, is calculated for $ {\Gamma _{\mathrm{ H } }}= 30 {\Gamma _{\mathrm{ H } }^{\mathrm {SM}}}$ and is shown with and without stacking on top of the backgrounds. In the data/MC panels, the expected off-shell SM Higgs boson rate is calculated for $ {\Gamma _{\mathrm{ H } }}= {\Gamma _{\mathrm{ H } }^{\mathrm {SM}}}$ for the comparison.

png pdf
Figure 4-a:
The $ {m_{\mathrm {T}}^{\mathrm{ H } }}$ distribution for the GF 0-jet category for 7 TeV data. The distribution is weighted as described in the text (on-shell). In the histogram panel, the expected off-shell SM Higgs boson signal rate, including signal-background interference, is calculated for $ {\Gamma _{\mathrm{ H } }}= 30 {\Gamma _{\mathrm{ H } }^{\mathrm {SM}}}$ and is shown with and without stacking on top of the backgrounds. In the data/MC panel, the expected off-shell SM Higgs boson rate is calculated for $ {\Gamma _{\mathrm{ H } }}= {\Gamma _{\mathrm{ H } }^{\mathrm {SM}}}$ for the comparison.

png pdf
Figure 4-b:
The $ {m_{\mathrm {T}}^{\mathrm{ H } }}$ distribution for the GF 0-jet category for 7 TeV data. The distribution is weighted as described in the text (off-shell). In the histogram panel, the expected off-shell SM Higgs boson signal rate, including signal-background interference, is calculated for $ {\Gamma _{\mathrm{ H } }}= 30 {\Gamma _{\mathrm{ H } }^{\mathrm {SM}}}$ and is shown with and without stacking on top of the backgrounds. In the data/MC panel, the expected off-shell SM Higgs boson rate is calculated for $ {\Gamma _{\mathrm{ H } }}= {\Gamma _{\mathrm{ H } }^{\mathrm {SM}}}$ for the comparison.

png pdf
Figure 4-c:
The $ {m_{\mathrm {T}}^{\mathrm{ H } }}$ distribution for the GF 1-jet category for 7 TeV data. The distribution is weighted as described in the text (on-shell). In the histogram panel, the expected off-shell SM Higgs boson signal rate, including signal-background interference, is calculated for $ {\Gamma _{\mathrm{ H } }}= 30 {\Gamma _{\mathrm{ H } }^{\mathrm {SM}}}$ and is shown with and without stacking on top of the backgrounds. In the data/MC panel, the expected off-shell SM Higgs boson rate is calculated for $ {\Gamma _{\mathrm{ H } }}= {\Gamma _{\mathrm{ H } }^{\mathrm {SM}}}$ for the comparison.

png pdf
Figure 4-d:
The $ {m_{\mathrm {T}}^{\mathrm{ H } }}$ distribution for the GF 1-jet for 7 TeV data. The distribution is weighted as described in the text (off-shell). In the histogram panel, the expected off-shell SM Higgs boson signal rate, including signal-background interference, is calculated for $ {\Gamma _{\mathrm{ H } }}= 30 {\Gamma _{\mathrm{ H } }^{\mathrm {SM}}}$ and is shown with and without stacking on top of the backgrounds. In the data/MC panel, the expected off-shell SM Higgs boson rate is calculated for $ {\Gamma _{\mathrm{ H } }}= {\Gamma _{\mathrm{ H } }^{\mathrm {SM}}}$ for the comparison.

png pdf
Figure 4-e:
The $ {m_{\mathrm {T}}^{\mathrm{ H } }}$ distribution for the VBF 2-jet category for 7 TeV data. The distribution is weighted as described in the text (on-shell). In the histogram panel, the expected off-shell SM Higgs boson signal rate, including signal-background interference, is calculated for $ {\Gamma _{\mathrm{ H } }}= 30 {\Gamma _{\mathrm{ H } }^{\mathrm {SM}}}$ and is shown with and without stacking on top of the backgrounds. In the data/MC panel, the expected off-shell SM Higgs boson rate is calculated for $ {\Gamma _{\mathrm{ H } }}= {\Gamma _{\mathrm{ H } }^{\mathrm {SM}}}$ for the comparison.

png pdf
Figure 4-f:
The $ {m_{\mathrm {T}}^{\mathrm{ H } }}$ distribution for the VBF 2-jet category for 7 TeV data. The distribution is weighted as described in the text (off-shell). In the histogram panel, the expected off-shell SM Higgs boson signal rate, including signal-background interference, is calculated for $ {\Gamma _{\mathrm{ H } }}= 30 {\Gamma _{\mathrm{ H } }^{\mathrm {SM}}}$ and is shown with and without stacking on top of the backgrounds. In the data/MC panel, the expected off-shell SM Higgs boson rate is calculated for $ {\Gamma _{\mathrm{ H } }}= {\Gamma _{\mathrm{ H } }^{\mathrm {SM}}}$ for the comparison.

png pdf
Figure 5:
The $ {m_{\mathrm {T}}^{\mathrm{ H } }}$ and MVA discriminant distributions for the GF 0-jet (a) and (b), and 1-jet (c) and (d) categories, and $ {m_{\mathrm {T}}^{\mathrm{ H } }}$ for the VBF 2-jet category (e) and (f) for 8 TeV data. More details are given in the caption of Fig. 4.

png pdf
Figure 5-a:
The $ {m_{\mathrm {T}}^{\mathrm{ H } }}$ distribution for the GF 0-jet for 8 TeV data. More details are given in the caption of Fig. 4.

png pdf
Figure 5-b:
The MVA discriminant distribution for the GF 0-jet for 8 TeV data. More details are given in the caption of Fig. 4.

png pdf
Figure 5-c:
The $ {m_{\mathrm {T}}^{\mathrm{ H } }}$ distribution for the GF 1-jet for 8 TeV data. More details are given in the caption of Fig. 4.

png pdf
Figure 5-d:
The MVA discriminant distribution for the GF 1-jet for 8 TeV data. More details are given in the caption of Fig. 4.

png pdf
Figure 5-e:
The ${m_{\mathrm {T}}^{\mathrm{ H } }}$ for the VBF 2-jet category for 8 TeV data (on-shell). More details are given in the caption of Fig. 4.

png pdf
Figure 5-f:
The ${m_{\mathrm {T}}^{\mathrm{ H } }}$ for the VBF 2-jet category for 8 TeV data (off-shell). More details are given in the caption of Fig. 4.

png pdf
Figure 6:
Scan of the off-shell VBF signal strength $ {\mu _\mathrm {VBF}^{\text {off-shell}}}$ for 0-, 1-, 2-jet categories separately and all categories combined for the $\mathrm{ H } \to \mathrm{ W } \mathrm{ W } $ process: the observed (expected) scan is represented by the solid (dashed) line.

png pdf
Figure 6-a:
Scan of the negative log-likelihood as a function of the off-shell GF SM Higgs boson signal strength $ {\mu _\mathrm {GF}^{\text {off-shell}}}$ for 0-, 1-, 2-jet categories separately and all categories combined for the $\mathrm{ H } \to \mathrm{ W } \mathrm{ W } $ process: the observed (expected) scan is represented by the solid (dashed) line.

png pdf
Figure 6-b:
Scan of the off-shell VBF signal strength $ {\mu _\mathrm {VBF}^{\text {off-shell}}}$ for 0-, 1-, 2-jet categories separately and all categories combined for the $\mathrm{ H } \to \mathrm{ W } \mathrm{ W } $ process: the observed (expected) scan is represented by the solid (dashed) line.

png pdf
Figure 7:
Scan of the negative log-likelihood as a function of $ {\Gamma _{\mathrm{ H } }}$ for 0-, 1-, 2-jet categories separately and all categories combined for the $\mathrm{ H } \to \mathrm{ W } \mathrm{ W } $ process: the observed (expected) scan is represented by the solid (dashed) line.

png pdf
Figure 8:
Scan of the negative log-likelihood as a function of off-shell SM Higgs boson signal strength for GF $ {\mu _\mathrm {GF}^{\text {off-shell}}}$ (a) and for VBF $ {\mu _\mathrm {VBF}^{\text {off-shell}}}$ (b) from the combined fit of $\mathrm{ H } \to \mathrm{ W } \mathrm{ W } $ and $\mathrm{ H } \to \mathrm{ Z } \mathrm{ Z } $ channels for 7 and 8 TeV. In the likelihood scan of $ {\mu _\mathrm {GF}^{\text {off-shell}}}$ and $ {\mu _\mathrm {VBF}^{\text {off-shell}}}$, this analysis assumes the SU(2) custodial symmetry: $ {\mu ^{\mathrm{ Z } \mathrm{ Z } }_\mathrm {GF}}/ {\mu ^{\mathrm{ W } \mathrm{ W } }_\mathrm {GF}}= {\mu ^{\mathrm{ Z } \mathrm{ Z } }_\mathrm {VBF}}/ {\mu ^{\mathrm{ W } \mathrm{ W } }_\mathrm {VBF}}= $ 1.

png pdf
Figure 8-a:
Scan of the negative log-likelihood as a function of off-shell SM Higgs boson signal strength for GF $ {\mu _\mathrm {GF}^{\text {off-shell}}}$ from the combined fit of $\mathrm{ H } \to \mathrm{ W } \mathrm{ W } $ and $\mathrm{ H } \to \mathrm{ Z } \mathrm{ Z } $ channels for 7 and 8 TeV. In the likelihood scan, this analysis assumes the SU(2) custodial symmetry: $ {\mu ^{\mathrm{ Z } \mathrm{ Z } }_\mathrm {GF}}/ {\mu ^{\mathrm{ W } \mathrm{ W } }_\mathrm {GF}}= $ 1.

png pdf
Figure 8-b:
Scan of the negative log-likelihood as a function of off-shell SM Higgs boson signal strength for VBF $ {\mu _\mathrm {VBF}^{\text {off-shell}}}$ from the combined fit of $\mathrm{ H } \to \mathrm{ W } \mathrm{ W } $ and $\mathrm{ H } \to \mathrm{ Z } \mathrm{ Z } $ channels for 7 and 8 TeV. In the likelihood scan, this analysis assumes the SU(2) custodial symmetry: $ {\mu ^{\mathrm{ Z } \mathrm{ Z } }_\mathrm {VBF}}/ {\mu ^{\mathrm{ W } \mathrm{ W } }_\mathrm {VBF}}= $ 1.

png pdf
Figure 9:
Scan of the negative log-likelihood as a function of $ {\Gamma _{\mathrm{ H } }}$ from the combined fit of $\mathrm{ H } \to \mathrm{ W } \mathrm{ W } $ and $\mathrm{ H } \to \mathrm{ Z } \mathrm{ Z } $ channels for 7 and 8 TeV. In the likelihood scan of $ {\Gamma _{\mathrm{ H } }}$, this analysis assumes the same GF and VBF ratio of signal strengths for $\mathrm{ W } \mathrm{ W } $ and $\mathrm{ Z } \mathrm{ Z } $ decay modes : $ {\mu ^{\mathrm{ Z } \mathrm{ Z } }_\mathrm {GF}}/ {\mu ^{\mathrm{ W } \mathrm{ W } }_\mathrm {GF}}= {\mu ^{\mathrm{ Z } \mathrm{ Z } }_\mathrm {VBF}}/ {\mu ^{\mathrm{ W } \mathrm{ W } }_\mathrm {VBF}}$.
Tables

png pdf
Table 1:
Analysis region definitions for on- and off-shell selections.

png pdf
Table 2:
Summary of systematic uncertainties.
Summary
A search is presented for the Higgs boson off-shell production in gluon fusion and vector boson fusion processes with the Higgs boson decaying into a ${\mathrm{ W }^+\mathrm{ W }^-} $ pair and the W bosons decaying leptonically. The data observed in this analysis are used to constrain the Higgs boson total decay width. The analysis is based on pp collision data collected by the CMS experiment at $\sqrt{s} = $ 7 and 8 TeV, corresponding to integrated luminosities of 4.9 and 19.4 fb$^{-1}$ respectively. The observed and expected upper limits for the off-shell signal strengths at 95% CL are 3.5 and 16.0 for the gluon fusion process, and 48.1 and 99.2 for the vector boson fusion process. The observed and expected constraints on the Higgs boson total width are, respectively, $ \Gamma_{\mathrm{ H }} < $ 26 and $<$ 66 MeV, obtained at the 95% CL. These results are combined with those obtained earlier in the $\mathrm{ H }\to\mathrm{ ZZ }$ channel, which further improves the observed and expected upper limits of the off-shell signal strengths to 2.4 and 6.2 for the gluon fusion process, and 19.3 and 34.4 for the vector boson fusion process. The observed and expected constraints on the Higgs boson total width from the combination are, respectively, $ s\Gamma_{\mathrm{ H }} < $ 13 and $<$ 26 MeV at the 95% CL.
References
1 ATLAS Collaboration Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC PLB 716 (2012) 1 1207.7214
2 CMS Collaboration Observation of a new boson at a mass of 125$ GeV $ with the CMS experiment at the LHC PLB 716 (2012) 30 CMS-HIG-12-028
1207.7235
3 CMS Collaboration Observation of a new boson with mass near 125$ GeV $ in $ \mathrm{ p }\mathrm{ p } $ collisions at $ \sqrt{s} = 7 $ and 8 TeV JHEP 06 (2013) 081 CMS-HIG-12-036
1303.4571
4 CMS Collaboration Study of the Mass and Spin-Parity of the Higgs Boson Candidate via its Decays to Z Boson Pairs PRL 110 (2013) 081803 CMS-HIG-12-041
1212.6639
5 ATLAS Collaboration Evidence for the spin-0 nature of the Higgs boson using ATLAS data PLB 726 (2013) 120 1307.1432
6 ATLAS Collaboration Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC PLB 726 (2013) 88 1307.1427
7 CMS Collaboration Precise determination of the mass of the Higgs boson and tests of the compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8$ TeV $ EPJC 75 (2015) 212 CMS-HIG-14-009
1412.8662
8 CMS Collaboration Measurement of the properties of a Higgs boson in the four-lepton final state PRD 89 (2014) 092007 CMS-HIG-13-002
1312.5353
9 CMS Collaboration Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV PRD 92 (2015) 012004 CMS-HIG-14-018
1411.3441
10 CMS Collaboration Observation of the diphoton decay of the Higgs boson and measurement of its properties EPJC 74 (2014) 3076
11 LHC Higgs Cross Section Working Group Handbook of LHC Higgs Cross Sections: 3. Higgs Properties CERN Report CERN-2013-004, 2013. 1307.1347
12 ATLAS Collaboration Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at $ \sqrt{s}=$ 7 and 8 TeV in the ATLAS experiment EPJC 76 (2016) 6 1507.04548
13 N. Kauer and G. Passarino Inadequacy of zero-width approximation for a light Higgs boson signal JHEP 08 (2012) 116 1206.4803
14 G. Passarino Higgs interference effects in $ \mathrm{ gg \to ZZ } $ and their uncertainty JHEP 08 (2012) 146 1206.3824
15 G. Passarino Higgs CAT EPJC 74 (2014) 2866 1312.2397
16 N. Kauer Inadequacy of zero-width approximation for a light Higgs boson signal MPLA 28 (2013) 1330015 1305.2092
17 F. Caola and K. Melnikov Constraining the Higgs boson width with ZZ production at the LHC PRD 88 (2013) 054024 1307.4935
18 J. M. Campbell, R. K. Ellis, and C. Williams Bounding the Higgs width at the LHC using full analytic results for $\mathrm{ gg \to e^+e^-\mu^+\mu^-$ JHEP 04 (2014) 060 1311.3589
19 J. S. Gainer et al. Beyond Geolocating: Constraining Higher Dimensional Operators in $ H \to 4\ell $ with Off-Shell Production and More PRD 91 (2015), no. 3, 035011 1403.4951
20 C. Englert and M. Spannowsky Limitations and Opportunities of Off-Shell Coupling Measurements PRD 90 (2014) 053003 1405.0285
21 CMS Collaboration Constraints on the Higgs boson width from off-shell production and decay to Z-boson pairs PLB 736 (2014) 64 CMS-HIG-14-002
1405.3455
22 CMS Collaboration Limits on the Higgs boson lifetime and width from its decay to four charged leptons PRD 92 (2015) 072010 CMS-HIG-14-036
1507.06656
23 ATLAS Collaboration Constraints on the off-shell Higgs boson signal strength in the high-mass ZZ and WW final states with the ATLAS detector EPJC 75 (2015) 335 1503.01060
24 J. M. Campbell and R. K. Ellis Bounding the Higgs width at the LHC: Complementary results from $ \mathrm{ H }\to\mathrm{ W }\mathrm{ W } $ PRD 89 (2014) 053011 1312.1628
25 CMS Collaboration Absolute Calibration of the Luminosity Measurement at CMS: Winter 2012 Update CDS
26 CMS Collaboration CMS Luminosity Based on Pixel Cluster Counting - Summer 2013 Update CMS-PAS-LUM-13-001 CMS-PAS-LUM-13-001
27 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004 CMS-00-001
28 CMS Collaboration Performance of CMS muon reconstruction in $ \mathrm{ p }\mathrm{ p } $ collision events at $ \sqrt{s} = $ 7 TeV JINST 7 (2012) P10002 CMS-MUO-10-004
1206.4071
29 CMS Collaboration Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at $ \sqrt{s} = $ 8 TeV JINST 10 (2015) P06005 CMS-EGM-13-001
1502.02701
30 ATLAS and CMS Collaborations Combined Measurement of the Higgs Boson Mass in $ pp $ Collisions at $ \sqrt{s}=7 $ and 8 TeV with the ATLAS and CMS Experiments PRL 114 (2015) 191803
31 T. Melia, P. Nason, R. Rontsch, and G. Zanderighi WW, WZ and ZZ production in the POWHEG BOX JHEP 11 (2011) 078 1107.5051
32 P. Nason A new method for combining NLO QCD with shower Monte Carlo algorithms JHEP 11 (2004) 040 hep-ph/0409146
33 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with Parton Shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
34 S. Alioli, P. Nason, C. Oleari, and E. Re NLO vector-boson production matched with shower in POWHEG JHEP 07 (2008) 060 0805.4802
35 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX JHEP 06 (2010) 043 1002.2581
36 J. Alwall et al. MadGraph 5: going beyond JHEP 06 (2011) 128 1106.0522
37 CMS Collaboration Measurement of Higgs boson production and properties in the $ \mathrm{ W }\mathrm{ W } $ decay channel with leptonic final states JHEP 01 (2014) 096 CMS-HIG-13-023
1312.1129
38 T. Binoth, N. Kauer, and P. Mertsch Gluon-induced QCD corrections to $ \mathrm{ p }\mathrm{ p }\to\mathrm{ZZ}\to\ell\bar{\ell}\ell'\bar{\ell'} $ in Proceedings of XVI Int. Workshop on Deep-Inelastic Scattering and Related Topics, London, 2008 0807.0024
39 A. Ballestrero et al. PHANTOM: A Monte Carlo event generator for six parton final states at high energy colliders CPC 180 (2009) 401 0801.3359
40 H.-L. Lai et al. Uncertainty induced by QCD coupling in the CTEQ global analysis of parton distributions PRD 82 (2010) 054021 1004.4624
41 J. M. Campbell and R. K. Ellis MCFM for the Tevatron and the LHC NPPS 205--206 (2010) 10 1007.3492
42 T. Sjostrand, S. Mrenna, and P. Skands PYTHIA 6.4 physics and manual JHEP 05 (2006) 026 hep-ph/0603175
43 M. Bonvini et al. Signal-background interference effects for $ \mathrm{gg} \to\mathrm{ H }\to \mathrm{ WW } $ beyond leading order PRD 88 (2013) 034032 1304.3053
44 C. S. Li, H. T. Li, D. Y. Shao, and J. Wang Soft gluon resummation in the signal-background interference process of $ \mathrm{g} \mathrm{g}(\to \mathrm{h}^*)\to\mathrm{ZZ} $ JHEP 08 (2015) 065 1504.02388
45 K. Melnikov and M. Dowling Production of two Z-bosons in gluon fusion in the heavy top quark approximation PLB 744 (2015) 43 1503.01274
46 M. Ciccolini, A. Denner, and S. Dittmaier Electroweak and QCD corrections to Higgs production via vector-boson fusion at the CERN LHC PRD 77 (2008) 013002 0710.4749
47 P. Bolzoni, F. Maltoni, S.-O. Moch, and M. Zaro Higgs Boson Production via Vector-Boson Fusion at Next-to-Next-to-Leading Order in QCD PRL 105 (2010) 011801 1003.4451
48 P. Bolzoni, F. Maltoni, S.-O. Moch, and M. Zaro Vector boson fusion at next-to-next-to-leading order in QCD: Standard model Higgs boson and beyond PRD 85 (2012) 035002 1109.3717
49 GEANT4 Collaboration Geant4--a simulation toolkit NIMA 506 (2003) 250
50 CMS Collaboration Particle--Flow Event Reconstruction in CMS and Performance for Jets, Taus, and $ E_{\mathrm{T}}^{\text{miss}} $ CDS
51 CMS Collaboration Commissioning of the Particle-flow Event Reconstruction with the first LHC collisions recorded in the CMS detector CDS
52 M. Cacciari and G. P. Salam Pileup subtraction using jet areas PLB 659 (2008) 119 0707.1378
53 S. Xie Search for the Standard Model Higgs Boson Decaying to Two W Bosons at CMS PhD thesis, MIT, 2012. CERN-THESIS-2012-068
54 A. Massironi Search for a Higgs Boson in the $\mathrm{ H \to WW \to \ell \nu \ell \nu } $ channel at CMS PhD thesis, Universita degli Studi di Milano-Bicocca, 2013. Dottorato di ricerca in fisica e astronomia
55 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_t $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
56 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual EPJC 72 (2012) 1896 1111.6097
57 M. Cacciari and G. P. Salam Dispelling the $ N^{3} $ myth for the $ k_t $ jet-finder PLB 641 (2006) 57 hep-ph/0512210
58 CMS Collaboration Pileup Jet Identification CMS-PAS-JME-13-005 CMS-PAS-JME-13-005
59 CMS Collaboration Identification of $ \mathrm{ b } $-quark jets with the CMS experiment JINST 8 (2013) P04013 CMS-BTV-12-001
1211.4462
60 CMS Collaboration Commissioning of $ \mathrm{ b } $-jet identification with $ \mathrm{ p }\mathrm{ p } $ collisions at $ \sqrt{s} = $ 7 TeV CDS
61 D. L. Rainwater, R. Szalapski, and D. Zeppenfeld Probing color singlet exchange in Z + 2-jet events at the CERN LHC PRD 54 (1996) 6680 hep-ph/9605444v1
62 J. H. Friedman Stochastic gradient boosting Comput. Stat. Data Anal. 38 (2002) 367
63 H. Voss, A. Hocker, J. Stelzer, and F. Tegenfeldt TMVA, the Toolkit for Multivariate Data Analysis with ROOT in XIth International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT), p. 40. 2007. physics/0703039
64 I. Anderson et al. Constraining anomalous $ HVV $ interactions at proton and lepton colliders PRD 89 (2014) 035007 1309.4819
65 CMS Collaboration Determination of jet energy calibration and transverse momentum resolution in CMS JINST 6 (2011) P11002 CMS-JME-10-011
1107.4277
66 J. M. Campbell, R. K. Ellis, and C. Williams Vector boson pair production at the LHC JHEP 07 (2011) 018 1105.0020
67 LHC Higgs Cross Section Working Group Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables CERN Report CERN-2011-002, 2011. 1101.0593
68 LHC Higgs Cross Section Working Group Handbook of LHC Higgs Cross Sections: 2. Differential Distributions CERN Report CERN-2012-002, 2012. 1201.3084
69 F. I. Stewart and J. F. Tackmann Theory uncertainties for Higgs mass and other searches using jet bins PRD 85 (2012) 034011 1107.2117
70 T. Gleisberg et al. Event generation with SHERPA 1.1 JHEP 02 (2009) 007 0811.4622
71 F. Cascioli, P. Maierhofer, and S. Pozzorini Scattering Amplitudes with Open Loops PRL 108 (2012) 111601 1111.5206
72 F. Cascioli et al. Precise Higgs-background predictions: merging NLO QCD and squared quark-loop corrections to four-lepton + 0,1 jet production JHEP 01 (2014) 046 1309.0500
73 S. Alekhin et al. The PDF4LHC Working Group Interim Report 1101.0536
74 NNPDF Collaboration Impact of heavy quark masses on parton distributions and LHC phenomenology NPB 849 (2011) 296 1101.1300
75 A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt Parton distributions for the LHC EPJC 63 (2009) 189 0901.0002
76 CMS Collaboration Measurement of the underlying event activity at the LHC with $ \sqrt{s} = $ 7 TeV and comparison with $ \sqrt{s} = $ 0.9 TeV JHEP 09 (2011) 109 CMS-QCD-10-010
1107.0330
77 CMS Collaboration Measurement of the underlying event in the Drell--Yan process in proton-proton collisions at $ \sqrt{s} = $ 7 TeV EPJC 72 (2012) 2080 CMS-QCD-11-012
1204.1411
78 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics EPJC 71 (2011) 1554 1007.1727v3
Compact Muon Solenoid
LHC, CERN