CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-HIG-14-040 ; CERN-EP-2016-112
Search for lepton flavour violating decays of the Higgs boson to $\mathrm{ e }\tau$ and $\mathrm{ e }\mu$ in proton-proton collisions at $\sqrt{s}= $ 8 TeV
Phys. Lett. B 763 (2016) 472
Abstract: A direct search for lepton flavour violating decays of the Higgs boson (H) in the $\mathrm{ H } \to \mathrm{ e } \tau$ and $\mathrm{ H } \to \mathrm{ e } \mu$ channels is described. The data sample used in the search was collected in proton-proton collisions at $\sqrt{s}= $ 8 TeV with the CMS detector at the LHC and corresponds to an integrated luminosity of 19.7 fb$^{-1}$. No evidence is found for lepton flavour violating decays in either final state. Upper limits on the branching fractions, $\mathcal{B}(\mathrm{ H } \to \mathrm{ e } \tau )<$ 0.69% and $\mathcal{B}(\mathrm{ H } \to \mathrm{ e } \mu)<$ 0.035%, are set at the 95% confidence level. The constraint set on $\mathcal{B}(\mathrm{ H } \to \mathrm{ e } \tau)$ is an order of magnitude more stringent than the existing indirect limits. The limits are used to constrain the corresponding flavour violating Yukawa couplings, absent in the standard model.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
Comparison of the observed collinear mass distributions with the background expectations after the loose selection requirements. The shaded grey bands indicate the total background uncertainty. The open histograms correspond to the expected signal distributions for $\mathcal {B}(\mathrm{ H } \to \mathrm{ e } \tau )=$ 100%. The (a,c,e) plots are $\mathrm{ H } \to \mathrm{ e } \tau _{\mu }$ and the (b,d,f) plots are $\mathrm{ H } \to \mathrm{ e } {\tau _\mathrm {h}} $; the (a,b), (c,d) and (e,f) plots are the 0-jet, 1-jet and 2-jet categories, respectively.

png pdf
Figure 1-a:
Comparison of the observed collinear mass distributions with the background expectations after the loose selection requirements. The shaded grey bands indicate the total background uncertainty. The open histograms correspond to the expected signal distributions for $\mathcal {B}(\mathrm{ H } \to \mathrm{ e } \tau )=$ 100%. The (a,c,e) plots are $\mathrm{ H } \to \mathrm{ e } \tau _{\mu }$ and the (b,d,f) plots are $\mathrm{ H } \to \mathrm{ e } {\tau _\mathrm {h}} $; the (a,b), (c,d) and (e,f) plots are the 0-jet, 1-jet and 2-jet categories, respectively.

png pdf
Figure 1-b:
Comparison of the observed collinear mass distributions with the background expectations after the loose selection requirements. The shaded grey bands indicate the total background uncertainty. The open histograms correspond to the expected signal distributions for $\mathcal {B}(\mathrm{ H } \to \mathrm{ e } \tau )=$ 100%. The (a,c,e) plots are $\mathrm{ H } \to \mathrm{ e } \tau _{\mu }$ and the (b,d,f) plots are $\mathrm{ H } \to \mathrm{ e } {\tau _\mathrm {h}} $; the (a,b), (c,d) and (e,f) plots are the 0-jet, 1-jet and 2-jet categories, respectively.

png pdf
Figure 1-c:
Comparison of the observed collinear mass distributions with the background expectations after the loose selection requirements. The shaded grey bands indicate the total background uncertainty. The open histograms correspond to the expected signal distributions for $\mathcal {B}(\mathrm{ H } \to \mathrm{ e } \tau )=$ 100%. The (a,c,e) plots are $\mathrm{ H } \to \mathrm{ e } \tau _{\mu }$ and the (b,d,f) plots are $\mathrm{ H } \to \mathrm{ e } {\tau _\mathrm {h}} $; the (a,b), (c,d) and (e,f) plots are the 0-jet, 1-jet and 2-jet categories, respectively.

png pdf
Figure 1-d:
Comparison of the observed collinear mass distributions with the background expectations after the loose selection requirements. The shaded grey bands indicate the total background uncertainty. The open histograms correspond to the expected signal distributions for $\mathcal {B}(\mathrm{ H } \to \mathrm{ e } \tau )=$ 100%. The (a,c,e) plots are $\mathrm{ H } \to \mathrm{ e } \tau _{\mu }$ and the (b,d,f) plots are $\mathrm{ H } \to \mathrm{ e } {\tau _\mathrm {h}} $; the (a,b), (c,d) and (e,f) plots are the 0-jet, 1-jet and 2-jet categories, respectively.

png pdf
Figure 1-e:
Comparison of the observed collinear mass distributions with the background expectations after the loose selection requirements. The shaded grey bands indicate the total background uncertainty. The open histograms correspond to the expected signal distributions for $\mathcal {B}(\mathrm{ H } \to \mathrm{ e } \tau )=$ 100%. The (a,c,e) plots are $\mathrm{ H } \to \mathrm{ e } \tau _{\mu }$ and the (b,d,f) plots are $\mathrm{ H } \to \mathrm{ e } {\tau _\mathrm {h}} $; the (a,b), (c,d) and (e,f) plots are the 0-jet, 1-jet and 2-jet categories, respectively.

png pdf
Figure 1-f:
Comparison of the observed collinear mass distributions with the background expectations after the loose selection requirements. The shaded grey bands indicate the total background uncertainty. The open histograms correspond to the expected signal distributions for $\mathcal {B}(\mathrm{ H } \to \mathrm{ e } \tau )=$ 100%. The (a,c,e) plots are $\mathrm{ H } \to \mathrm{ e } \tau _{\mu }$ and the (b,d,f) plots are $\mathrm{ H } \to \mathrm{ e } {\tau _\mathrm {h}} $; the (a,b), (c,d) and (e,f) plots are the 0-jet, 1-jet and 2-jet categories, respectively.

png pdf
Figure 2:
Distributions of $m_{\text {col}}$ for RegionII. a: $\mathrm{ H } \to \mathrm{ e } \tau _{\mu }$. b: $\mathrm{ H } \to \mathrm{ e } {\tau _\mathrm {h}} $.

png pdf
Figure 2-a:
Distributions of $m_{\text {col}}$ for RegionII. a: $\mathrm{ H } \to \mathrm{ e } \tau _{\mu }$. b: $\mathrm{ H } \to \mathrm{ e } {\tau _\mathrm {h}} $.

png pdf
Figure 2-b:
Distributions of $m_{\text {col}}$ for RegionII. a: $\mathrm{ H } \to \mathrm{ e } \tau _{\mu }$. b: $\mathrm{ H } \to \mathrm{ e } {\tau _\mathrm {h}} $.

png pdf
Figure 3:
Comparison of the observed collinear mass distributions with the background expectations after the fit. The simulated distributions for the signal are shown for the branching fraction $\mathcal {B}(\mathrm{ H } \to \mathrm{ e } \tau )=$ 0.69%. The (a,c,e) plots are $\mathrm{ H } \to \mathrm{ e } \tau _{\mu }$ and the (b,d,f) plots are $\mathrm{ H } \to \mathrm{ e } {\tau _\mathrm {h}} $; the (a,b), (c,d) and (e,f) plots are the 0-jet, 1-jet and 2-jet categories, respectively.

png pdf
Figure 3-a:
Comparison of the observed collinear mass distributions with the background expectations after the fit. The simulated distributions for the signal are shown for the branching fraction $\mathcal {B}(\mathrm{ H } \to \mathrm{ e } \tau )=$ 0.69%. The (a,c,e) plots are $\mathrm{ H } \to \mathrm{ e } \tau _{\mu }$ and the (b,d,f) plots are $\mathrm{ H } \to \mathrm{ e } {\tau _\mathrm {h}} $; the (a,b), (c,d) and (e,f) plots are the 0-jet, 1-jet and 2-jet categories, respectively.

png pdf
Figure 3-b:
Comparison of the observed collinear mass distributions with the background expectations after the fit. The simulated distributions for the signal are shown for the branching fraction $\mathcal {B}(\mathrm{ H } \to \mathrm{ e } \tau )=$ 0.69%. The (a,c,e) plots are $\mathrm{ H } \to \mathrm{ e } \tau _{\mu }$ and the (b,d,f) plots are $\mathrm{ H } \to \mathrm{ e } {\tau _\mathrm {h}} $; the (a,b), (c,d) and (e,f) plots are the 0-jet, 1-jet and 2-jet categories, respectively.

png pdf
Figure 3-c:
Comparison of the observed collinear mass distributions with the background expectations after the fit. The simulated distributions for the signal are shown for the branching fraction $\mathcal {B}(\mathrm{ H } \to \mathrm{ e } \tau )=$ 0.69%. The (a,c,e) plots are $\mathrm{ H } \to \mathrm{ e } \tau _{\mu }$ and the (b,d,f) plots are $\mathrm{ H } \to \mathrm{ e } {\tau _\mathrm {h}} $; the (a,b), (c,d) and (e,f) plots are the 0-jet, 1-jet and 2-jet categories, respectively.

png pdf
Figure 3-d:
Comparison of the observed collinear mass distributions with the background expectations after the fit. The simulated distributions for the signal are shown for the branching fraction $\mathcal {B}(\mathrm{ H } \to \mathrm{ e } \tau )=$ 0.69%. The (a,c,e) plots are $\mathrm{ H } \to \mathrm{ e } \tau _{\mu }$ and the (b,d,f) plots are $\mathrm{ H } \to \mathrm{ e } {\tau _\mathrm {h}} $; the (a,b), (c,d) and (e,f) plots are the 0-jet, 1-jet and 2-jet categories, respectively.

png pdf
Figure 3-e:
Comparison of the observed collinear mass distributions with the background expectations after the fit. The simulated distributions for the signal are shown for the branching fraction $\mathcal {B}(\mathrm{ H } \to \mathrm{ e } \tau )=$ 0.69%. The (a,c,e) plots are $\mathrm{ H } \to \mathrm{ e } \tau _{\mu }$ and the (b,d,f) plots are $\mathrm{ H } \to \mathrm{ e } {\tau _\mathrm {h}} $; the (a,b), (c,d) and (e,f) plots are the 0-jet, 1-jet and 2-jet categories, respectively.

png pdf
Figure 3-f:
Comparison of the observed collinear mass distributions with the background expectations after the fit. The simulated distributions for the signal are shown for the branching fraction $\mathcal {B}(\mathrm{ H } \to \mathrm{ e } \tau )=$ 0.69%. The (a,c,e) plots are $\mathrm{ H } \to \mathrm{ e } \tau _{\mu }$ and the (b,d,f) plots are $\mathrm{ H } \to \mathrm{ e } {\tau _\mathrm {h}} $; the (a,b), (c,d) and (e,f) plots are the 0-jet, 1-jet and 2-jet categories, respectively.

png pdf
Figure 4:
95% CL upper limits by category for the LFV decays for $ {M_{\mathrm{ H } }}= $ 125 GeV. a: $\mathrm{ H } \to \mathrm{ e } \tau $. b: $ {\mathrm{ H } \to \mathrm{ e } \mu } $ for categories combined by number of jets, the VBF categories combined, and all categories combined.

png pdf
Figure 4-a:
95% CL upper limits by category for the LFV decays for $ {M_{\mathrm{ H } }}= $ 125 GeV. a: $\mathrm{ H } \to \mathrm{ e } \tau $. b: $ {\mathrm{ H } \to \mathrm{ e } \mu } $ for categories combined by number of jets, the VBF categories combined, and all categories combined.

png pdf
Figure 4-b:
95% CL upper limits by category for the LFV decays for $ {M_{\mathrm{ H } }}= $ 125 GeV. a: $\mathrm{ H } \to \mathrm{ e } \tau $. b: $ {\mathrm{ H } \to \mathrm{ e } \mu } $ for categories combined by number of jets, the VBF categories combined, and all categories combined.

png pdf
Figure 5:
Observed $\mathrm{ e } \mu $ mass spectra (points), background fit (solid line) and signal model (blue dashed line) for $\mathcal {B}( {\mathrm{ H } \to \mathrm{ e } \mu } ) = $ 0.1%. a : inclusive jet categories combined (0-8). b : VBF jet tagged categories combined (9-10). c : all categories combined.

png pdf
Figure 5-a:
Observed $\mathrm{ e } \mu $ mass spectra (points), background fit (solid line) and signal model (blue dashed line) for $\mathcal {B}( {\mathrm{ H } \to \mathrm{ e } \mu } ) = $ 0.1%. a : inclusive jet categories combined (0-8). b : VBF jet tagged categories combined (9-10). c : all categories combined.

png pdf
Figure 5-b:
Observed $\mathrm{ e } \mu $ mass spectra (points), background fit (solid line) and signal model (blue dashed line) for $\mathcal {B}( {\mathrm{ H } \to \mathrm{ e } \mu } ) = $ 0.1%. a : inclusive jet categories combined (0-8). b : VBF jet tagged categories combined (9-10). c : all categories combined.

png pdf
Figure 5-c:
Observed $\mathrm{ e } \mu $ mass spectra (points), background fit (solid line) and signal model (blue dashed line) for $\mathcal {B}( {\mathrm{ H } \to \mathrm{ e } \mu } ) = $ 0.1%. a : inclusive jet categories combined (0-8). b : VBF jet tagged categories combined (9-10). c : all categories combined.

png pdf
Figure 6:
Constraints on the flavour violating Yukawa couplings $ {| Y_{\mathrm{ e } \tau } | }, {| Y_{\tau \mathrm{ e } } | }$ (a) and $ {| Y_{\mathrm{ e } \mu } | }, {| Y_{\mu \mathrm{ e } } | }$ (b). The expected (red solid line) and observed (black solid line) limits are derived from the limits on $\mathcal {B}(\mathrm{ H } \to \mathrm{ e } \tau )$ and $\mathcal {B}(\mathrm{ H } \to \mathrm{ e } \mu )$ from the present analysis. The flavour diagonal Yukawa couplings are approximated by their SM values. The green (yellow) band indicates the range that is expected to contain $68%$ ($95%$) of all observed limit excursions. The shaded regions in the left plot are derived constraints from null searches for $\tau \to 3\mathrm{ e } $ (grey), $\tau \to \mathrm{ e } \gamma $ (dark green) and the present analysis (light blue). The shaded regions in the right plot are derived constraints from null searches for $\mu \to \mathrm{ e } \gamma $ (dark green), $\mu \to 3\mathrm{ e } $ (light blue) and $\mu \to \mathrm{ e } $ conversions (grey). The purple diagonal line is the theoretical naturalness limit $Y_{ij}Y_{ji} \leq m_im_j/v^2$ [28].

png pdf
Figure 6-a:
Constraints on the flavour violating Yukawa couplings $ {| Y_{\mathrm{ e } \tau } | }, {| Y_{\tau \mathrm{ e } } | }$ (a) and $ {| Y_{\mathrm{ e } \mu } | }, {| Y_{\mu \mathrm{ e } } | }$ (b). The expected (red solid line) and observed (black solid line) limits are derived from the limits on $\mathcal {B}(\mathrm{ H } \to \mathrm{ e } \tau )$ and $\mathcal {B}(\mathrm{ H } \to \mathrm{ e } \mu )$ from the present analysis. The flavour diagonal Yukawa couplings are approximated by their SM values. The green (yellow) band indicates the range that is expected to contain $68%$ ($95%$) of all observed limit excursions. The shaded regions in the left plot are derived constraints from null searches for $\tau \to 3\mathrm{ e } $ (grey), $\tau \to \mathrm{ e } \gamma $ (dark green) and the present analysis (light blue). The shaded regions in the right plot are derived constraints from null searches for $\mu \to \mathrm{ e } \gamma $ (dark green), $\mu \to 3\mathrm{ e } $ (light blue) and $\mu \to \mathrm{ e } $ conversions (grey). The purple diagonal line is the theoretical naturalness limit $Y_{ij}Y_{ji} \leq m_im_j/v^2$ [28].

png pdf
Figure 6-b:
Constraints on the flavour violating Yukawa couplings $ {| Y_{\mathrm{ e } \tau } | }, {| Y_{\tau \mathrm{ e } } | }$ (a) and $ {| Y_{\mathrm{ e } \mu } | }, {| Y_{\mu \mathrm{ e } } | }$ (b). The expected (red solid line) and observed (black solid line) limits are derived from the limits on $\mathcal {B}(\mathrm{ H } \to \mathrm{ e } \tau )$ and $\mathcal {B}(\mathrm{ H } \to \mathrm{ e } \mu )$ from the present analysis. The flavour diagonal Yukawa couplings are approximated by their SM values. The green (yellow) band indicates the range that is expected to contain $68%$ ($95%$) of all observed limit excursions. The shaded regions in the left plot are derived constraints from null searches for $\tau \to 3\mathrm{ e } $ (grey), $\tau \to \mathrm{ e } \gamma $ (dark green) and the present analysis (light blue). The shaded regions in the right plot are derived constraints from null searches for $\mu \to \mathrm{ e } \gamma $ (dark green), $\mu \to 3\mathrm{ e } $ (light blue) and $\mu \to \mathrm{ e } $ conversions (grey). The purple diagonal line is the theoretical naturalness limit $Y_{ij}Y_{ji} \leq m_im_j/v^2$ [28].
Tables

png pdf
Table 1:
Event selection criteria for the kinematic variables after applying loose selection requirements.

png pdf
Table 2:
Definition of the samples used to estimate the misidentified lepton ($\ell $) background. They are defined by the charge of the two leptons and by the isolation requirements on each.

png pdf
Table 3:
The systematic uncertainties in the expected event yields in percentage for the $\mathrm{ e } {\tau _\mathrm {h}} $ and $\mathrm{ e } \tau _{\mu }$ channels. All uncertainties are treated as correlated between the categories, except when two values are quoted, in which case the number denoted by an asterisk is treated as uncorrelated between categories.

png pdf
Table 4:
Theoretical uncertainties in percentage for the Higgs boson production cross section for each production process and category. All uncertainties are treated as fully correlated between categories except those denoted by a negative superscript which are fully anticorrelated due to the migration of events.

png pdf
Table 5:
Systematic uncertainties in the shape of the signal and background distributions, expressed in percentage.

png pdf
Table 6:
The $\mathrm{ H } \to \mathrm{ e } \mu $ event selection criteria and background model for each event category. The categories are primarily defined according to whether the leptons are detected in the barrel ($\ell _B$) or endcap ($\ell _{EC}$), and the number of jets (N-jets). Requirements are also made on $ {p_{\mathrm {T}}} ^{\ell }$, ${E_{\mathrm {T}}^{\text {miss}}}$ and a veto on jets arising from a b-quark decay. The background model function and order of that function are also given.

png pdf
Table 7:
Systematic uncertainties in percentage on the expected yield for $\mathrm{ H } \to \mathrm{ e } \mu $. Ranges are given where the uncertainty varies with production process and category. All uncertainties are treated as correlated between categories.

png pdf
Table 8:
Event yields in the signal region, 100 GeV $ < M_{\text {col}} < $ 150 GeV, after fitting for signal and background for the $\mathrm{ H } \to \mathrm{ e } \tau $ channel, normalized to an integrated luminosity of 19.7 fb$^{-1}$. The LFV Higgs boson signal is the expected yield for $\mathcal {B}(\mathrm{ H } \to \mathrm{ e } \tau )=$ 0.69% assuming the SM Higgs boson production cross section.

png pdf
Table 9:
The expected and observed upper limits at 95% CL, and best fit values for the branching fractions $\mathcal {B}(\mathrm{ H } \to \mathrm{ e } \tau )$ for different jet categories and analysis channels. The asymmetric one standard-deviation uncertainties around the expected limits are shown in parentheses.

png pdf
Table 10:
Event yields in the mass window 124 GeV $ < M_{\mathrm{ e } \mu } < $ 126 GeV for the ${\mathrm{ H } \to \mathrm{ e } \mu } $channel. The expected contributions, estimated from simulation, are normalized to an integrated luminosity of 19.7 fb$^{-1}$. The LFV Higgs boson signal is the expectation for $\mathcal {B}( {\mathrm{ H } \to \mathrm{ e } \mu } )=$ 0.1% assuming the SM production cross section. Values for background processes are given for information only and are not used for the analysis. The expected number of background events in the VBF categories obtained from simulation are associated with large uncertainties and are therefore not quoted here; we expect 1.5 $\pm$ 1.2 events from signal and observe 2 events.
Summary
A search for lepton flavour violating decays of the Higgs boson to $\mathrm{ e }\tau$ or $\mathrm{ e }\mu$, based on the full $ \sqrt{s} = $ 8 TeV collision data set collected by the CMS experiment in 2012, is presented. No evidence is found for such decays. Observed upper limits of $\mathcal{B}(\mathrm{ H } \to \mathrm{ e } \tau )<$ 0.69% and $\mathcal{B}(\mathrm{ H }\to\mathrm{ e }\mu )<$ 0.035% at 95% CL are set for $\textrm{M}_{\mathrm{ H }} = $ 125 GeV. These limits are used to constrain the $Y_{\mathrm{ e }\tau}$ and $Y_{\mathrm{ e }\mu}$ Yukawa couplings as follows: $\sqrt{|{Y_{\mathrm{ e }\tau}}|^{2}+|{Y_{\tau\mathrm{ e }}}|^{2}}<2.4\times 10^{-3}$ and $\sqrt{|{Y_{\mathrm{ e }\mu}|}^2 + |{Y_{\mu\mathrm{ e }}}|^2} < 5.4 \times 10^{-4}$ at 95% CL.
References
1 ATLAS Collaboration Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC PLB 716 (2012) 1 1207.7214
2 CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC PLB 716 (2012) 30 CMS-HIG-12-028
1207.7235
3 CMS Collaboration Observation of a new boson with mass near 125 GeV in pp collisions at $ \sqrt{s} = $ 7 and 8 TeV JHEP 06 (2013) 081 CMS-HIG-12-036
1303.4571
4 J. D. Bjorken and S. Weinberg Mechanism for nonconservation of muon number PRL 38 (1977) 622
5 J. L. Diaz-Cruz and J. J. Toscano Lepton flavor violating decays of Higgs bosons beyond the standard model PRD 62 (2000) 116005 hep-ph/9910233
6 T. Han and D. Marfatia $ h \to \mu \tau $ at hadron colliders PRL 86 (2001) 1442 hep-ph/0008141
7 E. Arganda, A. M. Curiel, M. J. Herrero, and D. Temes Lepton flavor violating Higgs boson decays from massive seesaw neutrinos PRD 71 (2005) 035011 hep-ph/0407302
8 A. Arhrib, Y. Cheng, and O. C. W. Kong Comprehensive analysis on lepton flavor violating Higgs boson to $ \mu\bar{\tau} + \tau \bar{\mu} $ decay in supersymmetry without R parity PRD 87 (2013) 015025 1210.8241
9 M. Arana-Catania, E. Arganda, and M. J. Herrero Non-decoupling SUSY in LFV Higgs decays: a window to new physics at the LHC JHEP 09 (2013) 160 1304.3371
10 E. Arganda, M. J. Herrero, R. Morales, and A. Szynkman Analysis of the $ h, H, A \to\tau\mu $ decays induced from SUSY loops within the Mass Insertion Approximation JHEP 03 (2016) 055 1510.04685
11 E. Arganda, M. J. Herrero, X. Marcano, and C. Weiland Enhancement of the lepton flavor violating Higgs boson decay rates from SUSY loops in the inverse seesaw model PRD 93 (2016), no. 5, 055010 1508.04623
12 K. Agashe and R. Contino Composite Higgs-mediated flavor-changing neutral current PRD 80 (2009) 075016 0906.1542
13 A. Azatov, M. Toharia, and L. Zhu Higgs mediated flavor changing neutral currents in warped extra dimensions PRD 80 (2009) 035016 0906.1990
14 H. Ishimori et al. Non-Abelian discrete symmetries in particle physics Prog. Theor. Phys. Suppl. 183 (2010) 1 1003.3552
15 G. Perez and L. Randall Natural neutrino masses and mixings from warped geometry JHEP 01 (2009) 077 0805.4652
16 S. Casagrande et al. Flavor physics in the Randall-Sundrum model I. Theoretical setup and electroweak precision tests JHEP 10 (2008) 094 0807.4937
17 A. J. Buras, B. Duling, and S. Gori The impact of Kaluza-Klein fermions on Standard Model fermion couplings in a RS model with custodial protection JHEP 09 (2009) 076 0905.2318
18 M. Blanke et al. $ \Delta F= $ 2 observables and fine-tuning in a warped extra dimension with custodial protection JHEP 03 (2009) 001 0809.1073
19 G. F. Giudice and O. Lebedev Higgs-dependent Yukawa couplings PLB 665 (2008) 79 0804.1753
20 J. A. Aguilar-Saavedra A minimal set of top-Higgs anomalous couplings NPB 821 (2009) 215 0904.2387
21 M. E. Albrecht et al. Electroweak and flavour structure of a warped extra dimension with custodial protection JHEP 09 (2009) 064 0903.2415
22 A. Goudelis, O. Lebedev, and J. H. Park Higgs-induced lepton flavor violation PLB 707 (2012) 369 1111.1715
23 D. McKeen, M. Pospelov, and A. Ritz Modified Higgs branching ratios versus CP and lepton flavor violation PRD 86 (2012) 113004 1208.4597
24 A. Pilaftsis Lepton flavour nonconservation in $ \mathrm{ H }^0 $ decays PLB 285 (1992) 68
25 J. G. Korner, A. Pilaftsis, and K. Schilcher Leptonic $ \mathrm{CP} $ asymmetries in flavor-changing $ \mathrm{ H }^{0} $ decays PRD 47 (1993) 1080
26 E. Arganda, M. J. Herrero, X. Marcano, and C. Weiland Imprints of massive inverse seesaw model neutrinos in lepton flavor violating Higgs boson decays PRD 91 (2015), no. 1, 015001 1405.4300
27 CMS Collaboration Search for lepton-flavour-violating decays of the Higgs boson PLB 749 (2015) 337 CMS-HIG-14-005
1502.07400
28 ATLAS Collaboration Search for lepton-flavour-violating $ \mathrm{ H }\to\mu\tau $ decays of the Higgs boson with the ATLAS detector JHEP 11 (2015) 211 1508.03372
29 ATLAS Collaboration Search for lepton-flavour-violating decays of the Higgs and $ Z $ bosons with the ATLAS detector Submitted to JHEP 1604.07730
30 B. McWilliams and L.-F. Li Virtual effects of Higgs particles NPB 179 (1981) 62
31 O. U. Shanker Flavour violation, scalar particles and leptoquarks NPB 206 (1982) 253
32 G. Blankenburg, J. Ellis, and G. Isidori Flavour-changing decays of a 125 GeV Higgs-like particle PLB 712 (2012) 386 1202.5704
33 R. Harnik, J. Kopp, and J. Zupan Flavor violating higgs decays JHEP 03 (2013) 26 1209.1397
34 Particle Data Group, J. Beringer et al. Review of Particle Physics PRD 86 (2012) 010001
35 A. Celis, V. Cirigliano, and E. Passemar Lepton flavor violation in the Higgs sector and the role of hadronic tau-lepton decays PRD 89 (2014) 013008 1309.3564
36 S. M. Barr and A. Zee Electric dipole moment of the electron and of the neutron PRL 65 (1990) 21
37 CMS Collaboration Evidence for the direct decay of the 125 GeV Higgs boson to fermions NP 10 (2014) 557 CMS-HIG-13-033
1401.6527
38 CMS Collaboration Evidence for the 125 GeV higgs boson decaying to a pair of $ \tau $ leptons JHEP 05 (2014) 104 CMS-HIG-13-004
1401.5041
39 ATLAS Collaboration Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector JHEP 04 (2015) 117 1501.04943
40 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004 CMS-00-001
41 GEANT4 Collaboration GEANT4 --- a simulation toolkit NIMA 506 (2003) 250
42 H. M. Georgi, S. L. Glashow, M. E. Machacek, and D. V. Nanopoulos Higgs bosons from two gluon annihilation in proton proton collisions PRL 40 (1978) 692
43 R. N. Cahn, S. D. Ellis, R. Kleiss, and W. J. Stirling Transverse-momentum signatures for heavy Higgs bosons PRD 35 (1987) 1626
44 S. L. Glashow, D. V. Nanopoulos, and A. Yildiz Associated production of Higgs bosons and Z particles PRD 18 (1978) 1724
45 T. Sjostrand, S. Mrenna, and P. Skands A brief introduction to PYTHIA 8.1 CPC 178 (2007) 852 0710.3820
46 T. Sjostrand, S. Mrenna, and P. Skands PYTHIA 6.4 physics and manual JHEP 05 (2006) 026 hep-ph/0603175
47 P. M. Nadolsky et al. Implications of CTEQ global analysis for collider observables PRD 78 (2008) 013004 0802.0007
48 P. Nason A new method for combining NLO QCD with shower Monte Carlo algorithms JHEP 11 (2004) 040 hep-ph/0409146
49 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
50 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX JHEP 06 (2010) 043 1002.2581
51 S. Alioli et al. Jet pair production in POWHEG JHEP 04 (2011) 081 1012.3380
52 S. Alioli, P. Nason, C. Oleari, and E. Re NLO Higgs boson production via gluon fusion matched with shower in POWHEG JHEP 04 (2009) 002 0812.0578
53 J. Alwall et al. MadGraph 5: going beyond JHEP 06 (2011) 128 1106.0522
54 R. Field Early LHC Underlying Event Data - Findings and Surprises in Hadron collider physics. Proceedings, 22nd Conference, HCP 2010, Toronto, Canada, August 23-27, 2010 2010 1010.3558
55 CMS Collaboration Description and performance of track and primary-vertex reconstruction with the CMS tracker JINST 9 (2014) P10009 CMS-TRK-11-001
1405.6569
56 CMS Collaboration Particle--flow event reconstruction in CMS and performance for jets, taus, and $ E_{\mathrm{T}}^{\text{miss}} $ CMS-PAS-PFT-09-001
57 CMS Collaboration Particle flow reconstruction of 0.9 tev and 2.36 tev collision events in cms CMS-PAS-PFT-10-002
58 CMS Collaboration Commissioning of the particle--flow event reconstruction with leptons from j/$ \psi $ and W decays at 7 tev CMS-PAS-PFT-10-003
59 CMS Collaboration Performance of the CMS missing transverse momentum reconstruction in pp data at $ \sqrt{s} = $ 8 TeV JINST 10 (2015) P02006 CMS-JME-13-003
1411.0511
60 CMS Collaboration Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at $ \sqrt{s} = $ 8 TeV JINST 10 (2015) P06005 CMS-EGM-13-001
1502.02701
61 CMS Collaboration Measurement of the properties of a higgs boson in the four-lepton final state PRD 89 (2014) 092007 CMS-HIG-13-002
1312.5353
62 CMS Collaboration Performance of CMS muon reconstruction in pp collision events at $ \sqrt{s} = $ 7 TeV JINST 7 (2012) P10002 CMS-MUO-10-004
1206.4071
63 CMS Collaboration Reconstruction and identification of tau lepton decays to hadrons and $ \nu_\tau $ at CMS JINST 11 (2016) P01019 CMS-TAU-14-001
1510.07488
64 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual EPJC 72 (2012) 1896 1111.6097
65 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_t $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
66 CMS Collaboration Determination of jet energy calibration and transverse momentum resolution in CMS JINST 6 (2011) 11002 CMS-JME-10-011
1107.4277
67 CMS Collaboration Pile-up jet identification CMS-PAS-JME-13-005 CMS-PAS-JME-13-005
68 R. K. Ellis, I. Hinchliffe, M. Soldate, and J. J. van der Bij Higgs Decay to $ \tau^+\tau^- $: A possible signature of intermediate mass Higgs bosons at high energy hadron colliders NPB 297 (1988) 221
69 CMS Collaboration Performance of b tagging at $ \sqrt{s} = $ 8 TeV in multijet, ttbar and boosted topology events CMS-PAS-BTV-13-001 CMS-PAS-BTV-13-001
70 T. Junk Confidence level computation for combining searches with small statistics NIMA 434 (1999) 435 hep-ex/9902006
71 A. L. Read Presentation of search results: the $ CL_s $ technique JPG 28 (2002) 2693
72 CMS Collaboration Measurement of the inclusive W and Z production cross sections in pp collisions at $ \sqrt{s}= $ 7 TeV with the CMS experiment JHEP 10 (2011) 132 CMS-EWK-10-005
1107.4789
73 CMS Collaboration Measurement of inclusive $ W $ and $ Z $ boson production cross sections in $ pp $ collisions at $ \sqrt{s} = $ 8 TeV PRL 112 (2014) 191802 CMS-SMP-12-011
1402.0923
74 CMS Collaboration Measurement of the inelastic proton-proton cross section at $ \sqrt{s} = $ 7 TeV PLB 722 (2013) 5
75 CMS Collaboration Measurement of the $ \mathrm{ W }^+\mathrm{ W }^- $ and ZZ production cross sections in pp collisions at $ \sqrt{s}= $ 8 TeV PLB 721 (2013) 190 CMS-SMP-12-024
1301.4698
76 CMS Collaboration Observation of the associated production of a single top quark and a $ W $ boson in $ pp $ collisions at $ \sqrt s = $ 8 TeV PRL 112 (2014), no. 23, 231802 CMS-TOP-12-040
1401.2942
77 CMS Collaboration Measurement of the $ \mathrm{t \bar t} $ production cross section in pp collisions at $ \sqrt s = $ 8 TeV in dilepton final states containing one $ \tau $ lepton PLB 739 (2014) 23 CMS-TOP-12-026
1407.6643
78 A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt Parton distributions for the LHC EPJC 63 (2009) 189 0901.0002
79 NNPDF Collaboration A first unbiased global NLO determination of parton distributions and their uncertainties NPB 838 (2010) 136 1002.4407
80 M. Botje et al. The PDF4LHC Working Group Interim Recommendations 1101.0538
81 CMS Collaboration CMS Luminosity Based on Pixel Cluster Counting - Summer 2013 Update CMS-PAS-LUM-13-001 CMS-PAS-LUM-13-001
82 ATLAS and CMS Collaboration Procedure for the LHC Higgs boson search combination in summer 2011 CMS-NOTE-2011-005
83 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics EPJC 71 (2011) 1554 1007.1727
84 A. Denner et al. Standard model Higgs-boson branching ratios with uncertainties EPJC 71 (2011) 1753 1107.5909
Compact Muon Solenoid
LHC, CERN