CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-HIG-17-028 ; CERN-EP-2018-304
Measurement and interpretation of differential cross sections for Higgs boson production at $\sqrt{s}=$ 13 TeV
Phys. Lett. B 792 (2019) 369
Abstract: Differential Higgs boson (H) production cross sections are sensitive probes for physics beyond the standard model. New physics may contribute in the gluon-gluon fusion loop, the dominant Higgs boson production mechanism at the LHC, and manifest itself through deviations from the distributions predicted by the standard model. Combined spectra for the $\mathrm{H}\to\gamma\gamma$, $\mathrm{H}\to\mathrm{Z}\mathrm{Z}$, and $\mathrm{H}\to\mathrm{b\bar{b}}$ decay channels and the inclusive Higgs boson production cross section are presented, based on proton-proton collision data recorded with the CMS detector at $\sqrt{s}=$ 13 TeV corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The transverse momentum spectrum is used to place limits on the Higgs boson couplings to the top, bottom, and charm quarks, as well as its direct coupling to the gluon field. No significant deviations from the standard model are observed in any differential distribution. The measured total cross section is 61.1 $\pm$ 6.0 (stat) $\pm$ 3.7 (syst) pb, and the precision of the measurement of the differential cross section of the Higgs boson transverse momentum is improved by about 15% with respect to the $\mathrm{H}\to\gamma\gamma$ channel alone.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
Scan of the total cross section $\sigma _\text {tot}$ (left) and of the ratio of branching fractions $ {\mathcal {B}_{{{\gamma}} {{\gamma}}}} / {\mathcal {B}_{{{\mathrm {Z}}} {{\mathrm {Z}}}}} $ (right), based on a combination of the $ {{{\mathrm {H}}} \to {{\gamma}} {{\gamma}}} $ and $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $ analyses. The markers indicate the one standard deviation confidence interval. CYRM-2017-002 refers to Ref. [55].

png pdf
Figure 1-a:
Scan of the total cross section $\sigma _\text {tot}$, based on a combination of the $ {{{\mathrm {H}}} \to {{\gamma}} {{\gamma}}} $ and $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $ analyses. The markers indicate the one standard deviation confidence interval. CYRM-2017-002 refers to Ref. [55].

png pdf
Figure 1-b:
Ratio of branching fractions $ {\mathcal {B}_{{{\gamma}} {{\gamma}}}} / {\mathcal {B}_{{{\mathrm {Z}}} {{\mathrm {Z}}}}} $, based on a combination of the $ {{{\mathrm {H}}} \to {{\gamma}} {{\gamma}}} $ and $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $ analyses. The markers indicate the one standard deviation confidence interval. CYRM-2017-002 refers to Ref. [55].

png pdf
Figure 2:
Measurement of the total differential cross section (left) and the differential cross section of gluon fusion (right) as a function of $ {{p_{\mathrm {T}}} ^ {{\mathrm {H}}}} $. The combined spectrum is shown as black points with error bars indicating a 1 standard deviation uncertainty. The systematic component of the uncertainty is shown by a blue band. The spectra for the $ {{{\mathrm {H}}} \to {{\gamma}} {{\gamma}}} $, $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $, and $ {{{\mathrm {H}}} \to {{\mathrm {b}} {\overline {\mathrm {b}}}}} $ channels are shown in red, blue, and green, respectively. The dotted horizontal lines in the $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $ channel indicate the coarser binning of this measurement. The rightmost bins of the distributions are overflow bins; the normalizations of the cross sections in these bins are indicated in the figure. CYRM-2017-002 refers to Ref. [55].

png pdf
Figure 2-a:
Measurement of the total differential cross section as a function of $ {{p_{\mathrm {T}}} ^ {{\mathrm {H}}}} $. The combined spectrum is shown as black points with error bars indicating a 1 standard deviation uncertainty. The systematic component of the uncertainty is shown by a blue band. The spectra for the $ {{{\mathrm {H}}} \to {{\gamma}} {{\gamma}}} $, $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $, and $ {{{\mathrm {H}}} \to {{\mathrm {b}} {\overline {\mathrm {b}}}}} $ channels are shown in red, blue, and green, respectively. The dotted horizontal lines in the $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $ channel indicate the coarser binning of this measurement. The rightmost bins of the distributions are overflow bins; the normalizations of the cross sections in these bins are indicated in the figure. CYRM-2017-002 refers to Ref. [55].

png pdf
Figure 2-b:
Measurement of the differential cross section of gluon fusion as a function of $ {{p_{\mathrm {T}}} ^ {{\mathrm {H}}}} $. The combined spectrum is shown as black points with error bars indicating a 1 standard deviation uncertainty. The systematic component of the uncertainty is shown by a blue band. The spectra for the $ {{{\mathrm {H}}} \to {{\gamma}} {{\gamma}}} $, $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $, and $ {{{\mathrm {H}}} \to {{\mathrm {b}} {\overline {\mathrm {b}}}}} $ channels are shown in red, blue, and green, respectively. The dotted horizontal lines in the $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $ channel indicate the coarser binning of this measurement. The rightmost bins of the distributions are overflow bins; the normalizations of the cross sections in these bins are indicated in the figure. CYRM-2017-002 refers to Ref. [55].

png pdf
Figure 3:
Measurement of the differential cross section as a function of $ {N_\text {jets}} $. The combined spectrum is shown as black points with error bars indicating a 1 standard deviation uncertainty. The systematic component of the uncertainty is shown by a blue band. The spectra for the $ {{{\mathrm {H}}} \to {{\gamma}} {{\gamma}}} $ and $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $ channels are shown in red and blue, respectively. The dotted horizontal lines in the $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $ channel indicate the coarser binning of this measurement. CYRM-2017-002 refers to Ref. [55].

png pdf
Figure 4:
Measurement of the differential cross section as a function of $ {{| y_ {{\mathrm {H}}} |}} $. The combined spectrum is shown as black points with error bars indicating a 1 standard deviation uncertainty. The systematic component of the uncertainty is shown by a blue band. The spectra for the $ {{{\mathrm {H}}} \to {{\gamma}} {{\gamma}}} $ and $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $ channels are shown in red and blue, respectively. CYRM-2017-002 refers to Ref. [55].

png pdf
Figure 5:
Measurement of the differential cross section as a function of $ {{p_{\mathrm {T}}} ^\text {jet}} $. The combined spectrum is shown as black points with error bars indicating a 1 standard deviation uncertainty. The systematic component of the uncertainty is shown by a blue band. The spectra for the $ {{{\mathrm {H}}} \to {{\gamma}} {{\gamma}}} $ and $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $ channels are shown in red and blue, respectively. The dotted horizontal lines in the $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $ channel indicate the coarser binning of this measurement. The rightmost bin of the distribution is an overflow bin; the normalization of the cross section in that bin is indicated in the figure. CYRM-2017-002 refers to Ref. [55].

png pdf
Figure 6:
Simultaneous fit to data for $ {\kappa _{{{\mathrm {b}}}}} $ and $ {\kappa _{{{\mathrm {c}}}}} $, assuming a coupling dependence of the branching fractions (left) and the branching fractions implemented as nuisance parameters with no prior constraint (right). The one standard deviation contour is drawn for the combination ($ {{{\mathrm {H}}} \to {{\gamma}} {{\gamma}}} $ and $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $), the $ {{{\mathrm {H}}} \to {{\gamma}} {{\gamma}}} $ channel, and the $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $ channel in black, red, and blue, respectively. For the combination the two standard deviation contour is drawn as a black dashed line, and the shading indicates the negative log-likelihood, with the scale shown on the right hand side of the plots.

png pdf
Figure 6-a:
Simultaneous fit to data for $ {\kappa _{{{\mathrm {b}}}}} $ and $ {\kappa _{{{\mathrm {c}}}}} $, assuming a coupling dependence of the branching fractions. The one standard deviation contour is drawn for the combination ($ {{{\mathrm {H}}} \to {{\gamma}} {{\gamma}}} $ and $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $), the $ {{{\mathrm {H}}} \to {{\gamma}} {{\gamma}}} $ channel, and the $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $ channel in black, red, and blue, respectively. For the combination the two standard deviation contour is drawn as a black dashed line, and the shading indicates the negative log-likelihood, with the scale shown on the right hand side of the plots.

png pdf
Figure 6-b:
Simultaneous fit to data for $ {\kappa _{{{\mathrm {b}}}}} $ and $ {\kappa _{{{\mathrm {c}}}}} $, with branching fractions implemented as nuisance parameters with no prior constraint. The one standard deviation contour is drawn for the combination ($ {{{\mathrm {H}}} \to {{\gamma}} {{\gamma}}} $ and $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $), the $ {{{\mathrm {H}}} \to {{\gamma}} {{\gamma}}} $ channel, and the $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $ channel in black, red, and blue, respectively. For the combination the two standard deviation contour is drawn as a black dashed line, and the shading indicates the negative log-likelihood, with the scale shown on the right hand side of the plots.

png pdf
Figure 7:
Likelihood scan of $ {\kappa _{{{\mathrm {b}}}}} $ while profiling $ {\kappa _{{{\mathrm {c}}}}} $ (left), and of $ {\kappa _{{{\mathrm {c}}}}} $ while profiling $ {\kappa _{{{\mathrm {b}}}}} $ (right). The filled markers indicate the limits at 95% CL. The branching fractions are considered dependent on the values of the couplings.

png pdf
Figure 7-a:
Likelihood scan of $ {\kappa _{{{\mathrm {b}}}}} $ while profiling $ {\kappa _{{{\mathrm {c}}}}} $. The filled markers indicate the limits at 95% CL. The branching fractions are considered dependent on the values of the couplings.

png pdf
Figure 7-b:
Likelihood scan of $ {\kappa _{{{\mathrm {c}}}}} $ while profiling $ {\kappa _{{{\mathrm {b}}}}} $. The filled markers indicate the limits at 95% CL. The branching fractions are considered dependent on the values of the couplings.

png pdf
Figure 8:
Likelihood scan of $ {\kappa _{{{\mathrm {b}}}}} $ while profiling $ {\kappa _{{{\mathrm {c}}}}} $ (left), and of $ {\kappa _{{{\mathrm {c}}}}} $ while profiling $ {\kappa _{{{\mathrm {b}}}}} $ (right). The filled markers indicate the limits at 95% CL. The branching fractions are implemented as nuisance parameters with no prior constraint.

png pdf
Figure 8-a:
Likelihood scan of $ {\kappa _{{{\mathrm {b}}}}} $ while profiling $ {\kappa _{{{\mathrm {c}}}}} $. The filled markers indicate the limits at 95% CL. The branching fractions are implemented as nuisance parameters with no prior constraint.

png pdf
Figure 8-b:
Likelihood scan of $ {\kappa _{{{\mathrm {c}}}}} $ while profiling $ {\kappa _{{{\mathrm {b}}}}} $. The filled markers indicate the limits at 95% CL. The branching fractions are implemented as nuisance parameters with no prior constraint.

png pdf
Figure 9:
Simultaneous fit to data for $ {\kappa _{{{\mathrm {t}}}}} $ and $ {c_ {\mathrm {g}}} $, assuming a coupling dependence of the branching fractions (left) and the branching fractions implemented as nuisance parameters with no prior constraint (right). The one standard deviation contour is drawn for the combination ($ {{{\mathrm {H}}} \to {{\gamma}} {{\gamma}}} $, $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $, and $ {{{\mathrm {H}}} \to {{\mathrm {b}} {\overline {\mathrm {b}}}}} $), the $ {{{\mathrm {H}}} \to {{\gamma}} {{\gamma}}} $ channel, and the $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $ channel in black, red, and blue, respectively. For the combination the two standard deviation contour is drawn as a black dashed line, and the shading indicates the negative log-likelihood, with the scale shown on the right hand side of the plots.

png pdf
Figure 9-a:
Simultaneous fit to data for $ {\kappa _{{{\mathrm {t}}}}} $ and $ {c_ {\mathrm {g}}} $, assuming a coupling dependence of the branching fractions. The one standard deviation contour is drawn for the combination ($ {{{\mathrm {H}}} \to {{\gamma}} {{\gamma}}} $, $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $, and $ {{{\mathrm {H}}} \to {{\mathrm {b}} {\overline {\mathrm {b}}}}} $), the $ {{{\mathrm {H}}} \to {{\gamma}} {{\gamma}}} $ channel, and the $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $ channel in black, red, and blue, respectively. For the combination the two standard deviation contour is drawn as a black dashed line, and the shading indicates the negative log-likelihood, with the scale shown on the right hand side of the plots.

png pdf
Figure 9-b:
Simultaneous fit to data for $ {\kappa _{{{\mathrm {t}}}}} $ and $ {c_ {\mathrm {g}}} $, with branching fractions implemented as nuisance parameters with no prior constraint. The one standard deviation contour is drawn for the combination ($ {{{\mathrm {H}}} \to {{\gamma}} {{\gamma}}} $, $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $, and $ {{{\mathrm {H}}} \to {{\mathrm {b}} {\overline {\mathrm {b}}}}} $), the $ {{{\mathrm {H}}} \to {{\gamma}} {{\gamma}}} $ channel, and the $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $ channel in black, red, and blue, respectively. For the combination the two standard deviation contour is drawn as a black dashed line, and the shading indicates the negative log-likelihood, with the scale shown on the right hand side of the plots.

png pdf
Figure 10:
Simultaneous fit to data for $ {\kappa _{{{\mathrm {t}}}}} $ and $ {\kappa _{{{\mathrm {b}}}}} $, assuming a coupling dependence of the branching fractions (left) and the branching fractions implemented as nuisance parameters with no prior constraint (right). The one standard deviation contour is drawn for the combination ($ {{{\mathrm {H}}} \to {{\gamma}} {{\gamma}}} $, $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $, and $ {{{\mathrm {H}}} \to {{\mathrm {b}} {\overline {\mathrm {b}}}}} $), the $ {{{\mathrm {H}}} \to {{\gamma}} {{\gamma}}} $ channel, and the $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $ channel in black, red, and blue, respectively. For the combination the two standard deviation contour is drawn as a black dashed line, and the shading indicates the negative log-likelihood, with the scale shown on the right hand side of the plots.

png pdf
Figure 10-a:
Simultaneous fit to data for $ {\kappa _{{{\mathrm {t}}}}} $ and $ {\kappa _{{{\mathrm {b}}}}} $, assuming a coupling dependence of the branching fractions. The one standard deviation contour is drawn for the combination ($ {{{\mathrm {H}}} \to {{\gamma}} {{\gamma}}} $, $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $, and $ {{{\mathrm {H}}} \to {{\mathrm {b}} {\overline {\mathrm {b}}}}} $), the $ {{{\mathrm {H}}} \to {{\gamma}} {{\gamma}}} $ channel, and the $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $ channel in black, red, and blue, respectively. For the combination the two standard deviation contour is drawn as a black dashed line, and the shading indicates the negative log-likelihood, with the scale shown on the right hand side of the plots.

png pdf
Figure 10-b:
Simultaneous fit to data for $ {\kappa _{{{\mathrm {t}}}}} $ and $ {\kappa _{{{\mathrm {b}}}}} $, with branching fractions implemented as nuisance parameters with no prior constraint. The one standard deviation contour is drawn for the combination ($ {{{\mathrm {H}}} \to {{\gamma}} {{\gamma}}} $, $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $, and $ {{{\mathrm {H}}} \to {{\mathrm {b}} {\overline {\mathrm {b}}}}} $), the $ {{{\mathrm {H}}} \to {{\gamma}} {{\gamma}}} $ channel, and the $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $ channel in black, red, and blue, respectively. For the combination the two standard deviation contour is drawn as a black dashed line, and the shading indicates the negative log-likelihood, with the scale shown on the right hand side of the plots.

png pdf
Figure 11:
Bin-to-bin correlation matrix of the $ {{p_{\mathrm {T}}} ^ {{\mathrm {H}}}} $ spectrum (left) and of the $ {{p_{\mathrm {T}}} ^ {{\mathrm {H}}}} $ spectrum of gluon fusion ($ {{\mathrm {g}} {\mathrm {g}} {{\mathrm {H}}}} $), where the non-$ {{\mathrm {g}} {\mathrm {g}} {{\mathrm {H}}}}$ contributions are fixed to the SM expectation (right).

png pdf
Figure 11-a:
Bin-to-bin correlation matrix of the $ {{p_{\mathrm {T}}} ^ {{\mathrm {H}}}} $ spectrum.

png pdf
Figure 11-b:
The $ {{p_{\mathrm {T}}} ^ {{\mathrm {H}}}} $ spectrum of gluon fusion ($ {{\mathrm {g}} {\mathrm {g}} {{\mathrm {H}}}} $), where the non-$ {{\mathrm {g}} {\mathrm {g}} {{\mathrm {H}}}}$ contributions are fixed to the SM expectation.

png pdf
Figure 12:
Bin-to-bin correlation matrix of the $ {N_\text {jets}} $ spectrum.

png pdf
Figure 13:
Bin-to-bin correlation matrix of the $ {{| y_ {{\mathrm {H}}} |}} $ spectrum.

png pdf
Figure 14:
Bin-to-bin correlation matrix of the $ {{p_{\mathrm {T}}} ^\text {jet}} $ spectrum.
Tables

png pdf
Table 1:
The reconstruction-level binning for $ {{p_{\mathrm {T}}} ^ {{\mathrm {H}}}} $ for the $ {{{\mathrm {H}}} \to {{\gamma}} {{\gamma}}} $, $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $, and $ {{{\mathrm {H}}} \to {{\mathrm {b}} {\overline {\mathrm {b}}}}} $ channels. This binning coincides with the binning of the unfolded cross sections in which the individual results are reported.

png pdf
Table 2:
The binning for $ {N_\text {jets}} $ for the $ {{{\mathrm {H}}} \to {{\gamma}} {{\gamma}}} $ and the $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $ channels. This binning coincides with the binning of the unfolded cross sections in which the individual results are reported.

png pdf
Table 3:
The binning for $ {{| y_ {{\mathrm {H}}} |}} $ for the $ {{{\mathrm {H}}} \to {{\gamma}} {{\gamma}}} $ and the $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $ channels. This binning coincides with the binning of the unfolded cross sections in which the individual results are reported.

png pdf
Table 4:
The binning for $ {{p_{\mathrm {T}}} ^\text {jet}} $ for the $ {{{\mathrm {H}}} \to {{\gamma}} {{\gamma}}} $ and the $ {{{\mathrm {H}}} \to {{\mathrm {Z}}} {{\mathrm {Z}}}} $ channels. This binning coincides with the binning of the unfolded cross sections in which the individual results are reported.

png pdf
Table 5:
Uncertainties in the predicted $ {{p_{\mathrm {T}}} ^ {{\mathrm {H}}}} $ spectra related to variations of theory parameters for the $ {\kappa _{{{\mathrm {b}}}}} $ and $ {\kappa _{{{\mathrm {c}}}}} $ case.

png pdf
Table 6:
Uncertainties in the predicted $ {{p_{\mathrm {T}}} ^ {{\mathrm {H}}}} $ spectra related to variations of theory parameters for the $ {\kappa _{{{\mathrm {t}}}}} $, $ {c_ {\mathrm {g}}} $, and $ {\kappa _{{{\mathrm {b}}}}} $ case.

png pdf
Table 7:
Differential cross sections (pb/GeV) for the observable $ {{p_{\mathrm {T}}} ^ {{\mathrm {H}}}} $.

png pdf
Table 8:
Differential cross sections of gluon fusion ($ {{\mathrm {g}} {\mathrm {g}} {{\mathrm {H}}}} $) (pb/GeV) for the observable $ {{p_{\mathrm {T}}} ^ {{\mathrm {H}}}} $, with non-$ {{\mathrm {g}} {\mathrm {g}} {{\mathrm {H}}}}$ production modes fixed to their SM prediction.

png pdf
Table 9:
Differential cross sections (pb) for the observable $ {N_\text {jets}} $.

png pdf
Table 10:
Differential cross sections (pb) for the observable $ {{| y_ {{\mathrm {H}}} |}} $.

png pdf
Table 11:
Differential cross sections (pb/GeV) for the observable $ {{p_{\mathrm {T}}} ^\text {jet}} $.
Summary
A combination of differential cross sections for the Higgs boson transverse momentum $p_{\mathrm{T}}^{\mathrm{H}}$, the number of jets, the rapidity of the Higgs boson, and the ${p_{\mathrm{T}}}$ of the leading jet has been presented, using proton-proton collision data collected at $\sqrt{s}=$ 13 TeV with the CMS detector, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. The spectra obtained are based on data from the ${{\mathrm{H}} \to{\gamma} {\gamma} } $, $\mathrm{H}\to\mathrm{Z}\mathrm{Z}$, and ${{\mathrm{H}} \to\mathrm{b\bar{b}}} $ decay channels. The precision of the combined measurement of the differential cross section of $p_{\mathrm{T}}^{\mathrm{H}}$ is improved by about 15% with respect to the ${{\mathrm{H}} \to{\gamma} {\gamma} } $ channel alone. The improvement is larger in the low-$p_{\mathrm{T}}^{\mathrm{H}}$ region than in the high-$p_{\mathrm{T}}^{\mathrm{H}}$ tails. No significant deviations from the standard model are observed in any differential distribution. Additionally, the total cross section for Higgs boson production based on a combination of the ${{\mathrm{H}} \to{\gamma} {\gamma} } $ and $\mathrm{H}\to\mathrm{Z}\mathrm{Z}$ channels is measured to be 61.1 $\pm$ 6.0 (stat) $\pm$ 3.7 (syst) pb.

The spectra obtained are interpreted in the $\kappa$-framework [30], in which simultaneous variations of ${\kappa_{{\mathrm{b}} }} $ and ${\kappa_{{\mathrm{c}} }} $, ${\kappa_{{\mathrm{t}} }} $ and ${\kappa_{{\mathrm{b}} }} $, and ${\kappa_{{\mathrm{t}} }} $ and the anomalous direct coupling to the gluon field ${c_\mathrm{g}} $ are fitted to the $p_{\mathrm{T}}^{\mathrm{H}}$ spectra. The limits obtained for the individual couplings are $-1.1 < {\kappa_{{\mathrm{b}} }} < 1.1$ and $-4.9 < {\kappa_{{\mathrm{c}} }} < 4.8$ at 95% confidence level, assuming the branching fractions scale with the Higgs boson couplings following the standard model prediction. For the charm coupling ${\kappa_{{\mathrm{c}} }} $ in particular, these bounds are comparable with those obtained from direct searches with charm quarks in the final state.
References
1 P. W. Higgs Broken symmetries and the masses of gauge bosons PRL 13 (1964) 508
2 F. Englert and R. Brout Broken symmetry and the mass of gauge vector mesons PRL 13 (1964) 321
3 G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble Global conservation laws and massless particles PRL 13 (1964) 585
4 ATLAS Collaboration Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC PLB 716 (2012) 1 1207.7214
5 CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC PLB 716 (2012) 30 CMS-HIG-12-028
1207.7235
6 CMS Collaboration Observation of a new boson with mass near 125 GeV in pp collisions at $ \sqrt{s} = $ 7 and 8 TeV JHEP 06 (2013) 081 CMS-HIG-12-036
1303.4571
7 ATLAS and CMS Collaborations Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at $ \sqrt{s} = $ 7 and 8 TeV JHEP 08 (2016) 045 1606.02266
8 ATLAS and CMS Collaborations Combined measurement of the Higgs boson mass in pp collisions at $ \sqrt{s} = $ 7 and 8 TeV with the ATLAS and CMS experiments PRL 114 (2015) 191803 1503.07589
9 CMS Collaboration Combined measurements of Higgs boson couplings in proton-proton collisions at $ \sqrt{s}= $ 13 TeV Submitted to EPJC CMS-HIG-17-031
1809.10733
10 S. Dimopoulos and H. Georgi Softly broken supersymmetry and SU(5) NPB 193 (1981) 150
11 E. Witten Dynamical breaking of supersymmetry NPB 188 (1981) 513
12 F. Bishara, U. Haisch, P. F. Monni, and E. Re Constraining light-quark Yukawa couplings from Higgs distributions PRL 118 (2017) 121801 1606.09253
13 ATLAS Collaboration Search for Higgs and Z boson decays to J/$ \psi\gamma $ and $ \Upsilon(nS)\gamma $ with the ATLAS detector PRL 114 (2015) 121801 1501.03276
14 M. Konig and M. Neubert Exclusive radiative Higgs decays as probes of light-quark Yukawa couplings JHEP 08 (2015) 012 1505.03870
15 ATLAS Collaboration Search for the decay of the Higgs boson to charm quarks with the ATLAS experiment PRL 120 (2018) 211802 1802.04329
16 ATLAS Collaboration Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at $ \sqrt{s} = $ 8 TeV with ATLAS JHEP 09 (2014) 112 1407.4222
17 CMS Collaboration Measurement of differential cross sections for Higgs boson production in the diphoton decay channel in pp collisions at $ \sqrt{s} = $ 8 TeV EPJC 76 (2016) 13 CMS-HIG-14-016
1508.07819
18 ATLAS Collaboration Fiducial and differential cross sections of Higgs boson production measured in the four-lepton decay channel in pp collisions at $ \sqrt{s} = $ 8 TeV with the ATLAS detector PLB 738 (2014) 234 1408.3226
19 CMS Collaboration Measurement of differential and integrated fiducial cross sections for Higgs boson production in the four-lepton decay channel in pp collisions at $ \sqrt{s} = $ 7 and 8 TeV JHEP 04 (2016) 005 CMS-HIG-14-028
1512.08377
20 ATLAS Collaboration Measurement of fiducial differential cross sections of gluon-fusion production of Higgs bosons decaying to $ \mathrm{WW}^{*} \rightarrow e\nu\mu\nu $ with the ATLAS detector at $ \sqrt{s} = $ 8 TeV JHEP 08 (2016) 104 1604.02997
21 CMS Collaboration Measurement of the transverse momentum spectrum of the Higgs boson produced in pp collisions at $ \sqrt{s} = $ 8 TeV using $ \mathrm{H} \to \mathrm{WW} $ decays JHEP 03 (2017) 032 CMS-HIG-15-010
1606.01522
22 ATLAS Collaboration Measurements of Higgs boson properties in the diphoton decay channel with 36 $ \text{fb}^{-1} $ of pp collision data at $ \sqrt{s} = $ 13 TeV with the ATLAS detector Submitted to PRD 1802.04146
23 CMS Collaboration Measurement of inclusive and differential Higgs boson production cross sections in the diphoton decay channel in proton-proton collisions at $ \sqrt{s}= $ 13 TeV Submitted to JHEP CMS-HIG-17-025
1807.03825
24 ATLAS Collaboration Measurement of inclusive and differential cross sections in the $ \mathrm{H} \rightarrow \mathrm{ZZ}^* \rightarrow 4\ell $ decay channel in pp collisions at $ \sqrt{s} = $ 13 TeV with the ATLAS detector JHEP 10 (2017) 132 1708.02810
25 CMS Collaboration Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at $ \sqrt{s} = $ 13 TeV JHEP 11 (2017) 047 CMS-HIG-16-041
1706.09936
26 ATLAS Collaboration Combined measurement of differential and total cross sections in the $ \mathrm{H} \rightarrow \gamma \gamma $ and the $ \mathrm{H} \rightarrow \mathrm{ZZ}^* \rightarrow 4\ell $ decay channels at $ \sqrt{s} = $ 13 TeV with the ATLAS detector Submitted to PLB 1805.10197
27 CMS Collaboration Inclusive search for a highly boosted Higgs boson decaying to a bottom quark-antiquark pair PRL 120 (2018) 071802 CMS-HIG-17-010
1709.05543
28 M. Grazzini, A. Ilnicka, M. Spira, and M. Wiesemann Effective field theory for Higgs properties parametrisation: The transverse momentum spectrum case in Proceedings, 52nd Rencontres de Moriond on QCD and High Energy Interactions: La Thuile, Italy, March 25-April 1, 2017, p. 23 2017 1705.05143
29 M. Grazzini, A. Ilnicka, M. Spira, and M. Wiesemann Modeling BSM effects on the Higgs transverse-momentum spectrum in an EFT approach JHEP 03 (2017) 115 1612.00283
30 LHC Higgs Cross Section Working Group Handbook of LHC Higgs cross sections: 3. Higgs properties CERN (2013) 1307.1347
31 A. Banfi, P. F. Monni, and G. Zanderighi Quark masses in Higgs production with a jet veto JHEP 01 (2014) 097 1308.4634
32 G. Bozzi, S. Catani, D. de Florian, and M. Grazzini The $ q_\text{T} $ spectrum of the Higgs boson at the LHC in QCD perturbation theory PLB 564 (2003) 65 hep-ph/0302104
33 T. Becher and M. Neubert Drell-Yan production at small $ q_\text{T} $, transverse parton distributions and the collinear anomaly EPJC 71 (2011) 1665 1007.4005
34 P. F. Monni, E. Re, and P. Torrielli Higgs transverse-momentum resummation in direct space PRL 116 (2016) 242001 1604.02191
35 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004 CMS-00-001
36 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
37 T. Sjostrand et al. An introduction to PYTHIA 8.2 CPC 191 (2015) 159 1410.3012
38 P. Skands, S. Carrazza, and J. Rojo Tuning PYTHIA 8.1: the Monash 2013 tune EPJC 74 (2014) 3024 1404.5630
39 R. Frederix and S. Frixione Merging meets matching in MC@NLO JHEP 12 (2012) 061 1209.6215
40 K. Hamilton, P. Nason, and G. Zanderighi MINLO: Multi-scale improved NLO JHEP 10 (2012) 155 1206.3572
41 A. Kardos, P. Nason, and C. Oleari Three-jet production in POWHEG JHEP 04 (2014) 043 1402.4001
42 NNPDF Collaboration Parton distributions for the LHC Run II JHEP 04 (2015) 040 1410.8849
43 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
44 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ {k_{\mathrm{T}}} $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
45 M. Dasgupta, A. Fregoso, S. Marzani, and G. P. Salam Towards an understanding of jet substructure JHEP 09 (2013) 029 1307.0007
46 A. J. Larkoski, S. Marzani, G. Soyez, and J. Thaler Soft drop JHEP 05 (2014) 146 1402.2657
47 J. Dolen et al. Thinking outside the ROCs: Designing decorrelated taggers (DDT) for jet substructure JHEP 05 (2016) 156 1603.00027
48 I. Moult, L. Necib, and J. Thaler New angles on energy correlation functions JHEP 12 (2016) 153 1609.07483
49 A. J. Larkoski, G. P. Salam, and J. Thaler Energy correlation functions for jet substructure JHEP 06 (2013) 108 1305.0007
50 J. Thaler and K. Van Tilburg Identifying boosted objects with N-subjettiness JHEP 03 (2011) 015 1011.2268
51 CMS Collaboration Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV JINST 13 (2018) P05011 CMS-BTV-16-002
1712.07158
52 P. C. Hansen The L-curve and its use in the numerical treatment of inverse problems in Computational Inverse Problems in Electrocardiology, p. 119 Southampton: WIT Press
53 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics EPJC 71 (2011) 1554 1007.1727
54 The ATLAS Collaboration, The CMS Collaboration, The LHC Higgs Combination Group Procedure for the LHC Higgs boson search combination in Summer 2011 CMS-NOTE-2011-005
55 LHC Higgs Cross Section Working Group Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector CERN (2016) 1610.07922
Compact Muon Solenoid
LHC, CERN