CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-HIN-21-006 ; CERN-EP-2022-280
$ \mathrm{K^0_S} $ and $ \Lambda $ ($ \overline{\Lambda} $) two-particle femtoscopic correlations in PbPb collisions at $ \sqrt{\smash[b]{s_{_{\mathrm{NN}}}}} = $ 5.02 TeV
Submitted to Phys. Lett. B
Abstract: Two-particle correlations are presented for $ \mathrm{K^0_S} $, $ \Lambda $, and $ \overline{\Lambda} $ strange hadrons as a function of relative momentum in lead-lead collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV. The dataset corresponds to an integrated luminosity of 0.607 nb$^{-1}$ and was collected using the CMS detector at the CERN LHC. These correlations are sensitive to quantum statistics and to final-state interactions between the particles. The source size extracted from the $ \mathrm{K^0_S}\mathrm{K^0_S} $ correlations is found to decrease from 4 to 1 fm in going from central to peripheral collisions. Strong interaction scattering parameters (i.e., scattering length and effective range) are determined from the $ \Lambda\mathrm{K^0_S} $ and $ \Lambda\Lambda $ (including their charge conjugates) correlations using the Lednicky-Lyuboshitz model and are compared to theoretical and other experimental results.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
The invariant mass of $ \mathrm{K^0_S} $ (left) and $ \Lambda $ (right), and their corresponding fits in the 0-80% centrality range. The circles are the data, and the fit is shown with a solid (red) line for the total fit, and a dashed (green) line for the background fit. The vertical dashed-dotted (pink) lines indicate the peak region and the vertical dashed (blue) lines indicate the sideband regions.

png pdf
Figure 1-a:
The invariant mass of $ \mathrm{K^0_S} $, and the corresponding fit in the 0-80% centrality range. The circles are the data, and the fit is shown with a solid (red) line for the total fit, and a dashed (green) line for the background fit. The vertical dashed-dotted (pink) lines indicate the peak region and the vertical dashed (blue) lines indicate the sideband regions.

png pdf
Figure 1-b:
The invariant mass of $ \Lambda $, and the corresponding fit in the 0-80% centrality range. The circles are the data, and the fit is shown with a solid (red) line for the total fit, and a dashed (green) line for the background fit. The vertical dashed-dotted (pink) lines indicate the peak region and the vertical dashed (blue) lines indicate the sideband regions.

png pdf
Figure 2:
The correlation distributions and fits for $ \mathrm{K^0_S}\mathrm{K^0_S} $ pairs in different centrality ranges, starting from 0-10% centrality to 50-60% centrality, with 0 $ < k_{\mathrm{T}} < $ 2.5 GeV. In each plot, the red circles are the data, the blue solid line is the fit using Eq. (8), and the green dotted line is the non-femtoscopic background from Eq. (7). The $ \chi^2 $ and dof values are for the full $ q_{\text{inv}} $ range. The insert plots show the data and the fit for the $ q_{\text{inv}} < $ 0.4 GeV region, with the $ \chi^2 $ and number of bins evaluated in that region.

png pdf
Figure 3:
The correlation distributions and fits for $ \Lambda\mathrm{K^0_S} $ (left) and $ \Lambda\Lambda $ (right) pairs with 0-80% centrality and no restriction on $ k_{\mathrm{T}} $. In each plot, the red circles are the data, the blue solid line is the fit using Eq. (8), and the green dotted line is the non-femtoscopic background from Eq. (7). The $ \chi^2 $ and dof values are for the full $ q_{\text{inv}} $ range. The insert plots show the data and the fit for the $ q_{\text{inv}} < $ 0.4 GeV region, with the $ \chi^2 $ and number of bins evaluated in that region.

png pdf
Figure 3-a:
The correlation distributions and fits for $ \Lambda\mathrm{K^0_S} $ $ \Lambda\Lambda $ pairs with 0-80% centrality and no restriction on $ k_{\mathrm{T}} $. The red circles are the data, the blue solid line is the fit using Eq. (8), and the green dotted line is the non-femtoscopic background from Eq. (7). The $ \chi^2 $ and dof values are for the full $ q_{\text{inv}} $ range. The insert plot shows the data and the fit for the $ q_{\text{inv}} < $ 0.4 GeV region, with the $ \chi^2 $ and number of bins evaluated in that region.

png pdf
Figure 3-b:
The correlation distributions and fits for $ \Lambda\mathrm{K^0_S} $ (left) and $ \Lambda\Lambda $ (right) pairs with 0-80% centrality and no restriction on $ k_{\mathrm{T}} $. In each plot, the red circles are the data, the blue solid line is the fit using Eq. (8), and the green dotted line is the non-femtoscopic background from Eq. (7). The $ \chi^2 $ and dof values are for the full $ q_{\text{inv}} $ range. The insert plots show the data and the fit for the $ q_{\text{inv}} < $ 0.4 GeV region, with the $ \chi^2 $ and number of bins evaluated in that region.

png pdf
Figure 4:
The $ R_{\text{inv}} $ (left) and $ \lambda $ parameter (right) as a function of centrality. For each data point, the line and shaded area indicate the statistical and systematic uncertainty, respectively.

png pdf
Figure 4-a:
The $ R_{\text{inv}} $ parameter as a function of centrality. For each data point, the line and shaded area indicate the statistical and systematic uncertainty, respectively.

png pdf
Figure 4-b:
The $ \lambda $ parameter as a function of centrality. For each data point, the line and shaded area indicate the statistical and systematic uncertainty, respectively.

png pdf
Figure 5:
The measured values of $ d_0 $ versus $ \Re \, f_0 $ (left) and $ \Im \, f_0 $ versus $ \Re \, f_0 $ (right) from this analysis along with other measurements and predictions as described in the text. For each data point, the lines and the boxes indicate the (one-dimensional) statistical and systematic uncertainties, respectively.

png pdf
Figure 5-a:
The measured values of $ d_0 $ versus $ \Re \, f_0 $ (left) and $ \Im \, f_0 $ versus $ \Re \, f_0 $ (right) from this analysis along with other measurements and predictions as described in the text. For each data point, the lines and the boxes indicate the (one-dimensional) statistical and systematic uncertainties, respectively.

png pdf
Figure 5-b:
The measured values of $ d_0 $ versus $ \Re \, f_0 $ (left) and $ \Im \, f_0 $ versus $ \Re \, f_0 $ (right) from this analysis along with other measurements and predictions as described in the text. For each data point, the lines and the boxes indicate the (one-dimensional) statistical and systematic uncertainties, respectively.
Tables

png pdf
Table 1:
Summary of absolute systematic uncertainties in $ \mathrm{K^0_S}\mathrm{K^0_S} $, $ \Lambda\mathrm{K^0_S} $ and $ \Lambda\Lambda $ correlation measurements. The values for $ R_{\text{inv}} $, $ d_0 $, $ \Re \, f_0 $, and $ \Im \, f_0 $ are in fm.

png pdf
Table 2:
Extracted values of the $ R_{\text{inv}} $, $ \Re \, f_0 $, $ \Im \, f_0 $, $ d_0 $, $ \lambda $, and $ \left < m_{\mathrm{T}}\right > $ parameters from the $ \mathrm{K^0_S}\mathrm{K^0_S} $, $ \Lambda\mathrm{K^0_S} $, and $ \Lambda\Lambda $ combinations in the 0-80% centrality range. The first and second uncertainties are statistical and systematic, respectively.
Summary
The $ \mathrm{K^0_S}\mathrm{K^0_S} $, $ \Lambda\mathrm{K^0_S} $, and $ \Lambda\Lambda $ femtoscopic correlations are studied using lead-lead (PbPb) collision data at a center-of-mass energy per nucleon pair of $ \sqrt{\smash[b]{s_{_{\mathrm{NN}}}}} = $ 5.02 TeV, collected by the CMS Collaboration. This is the first report on $ \Lambda\Lambda $ correlations in PbPb collisions at the CERN LHC. The source size $ R_{\text{inv}} $ and the incoherence parameter $ \lambda $ were extracted for $ \mathrm{K^0_S}\mathrm{K^0_S} $ correlations in six centrality bins covering the 0-60% range. The value of $ R_{\text{inv}} $ decreases from 4 to 1 fm going from central to peripheral collisions and agrees with results from the ALICE Collaboration at a similar transverse mass. Along with the $ R_{\text{inv}} $ and $ \lambda $ parameters, the strong interaction scattering parameters, i.e.,, the complex scattering length and effective range, were extracted from $ \Lambda\mathrm{K^0_S} $ and $ \Lambda\Lambda $ correlations in the 0-80% centrality range. These scattering parameters indicate that the $ \Lambda\mathrm{K^0_S} $ interaction is repulsive and that the $ \Lambda\Lambda $ interaction is attractive. The scattering parameters obtained from $ \Lambda\mathrm{K^0_S} $ correlations differ from those reported by the ALICE Collaboration. The positive real scattering length obtained from the $ \Lambda\Lambda $ correlation disfavors the existence of a bound H-dibaryon state. The $ \Lambda\Lambda $ scattering parameters help to constrain baryon-baryon and, more specifically, hyperon-hyperon interaction models. These measurements provide an additional input to understand the nature of the strong interaction between pairs of strange hadrons.
References
1 M. A. Lisa, S. Pratt, R. Soltz, and U. Wiedemann Femtoscopy in relativistic heavy ion collisions: Two decades of progress Ann. Rev. Nucl. Part. Sci. 55 (2005) 357 nucl-ex/0505014
2 V. G. J. Stoks, R. A. M. Klomp, M. C. M. Rentmeester, and J. J. de Swart Partial-wave analysis of all nucleon-nucleon scattering data below 350 MeV Phys. Rev. C 48 (1993) 792
3 J. J. de Swart and C. Dullemond Effective range theory and the low energy hyperon-nucleon interactions Anna. Phys. 19 (1962) 458
4 R. Engelmann, H. Filthuth, V. Hepp, and E. Kluge Inelastic $ \Sigma^{-} \mathrm{p} $-interactions at low momenta PL 21 (1966) 587
5 F. Eisele et al. Elastic $ \Sigma^{\pm} \mathrm{p} $ scattering at low energies PLB 37 (1971) 204
6 B. Sechi-Zorn, B. Kehoe, J. Twitty, and R. A. Burnstein Low-energy $ \Lambda $-proton elastic scattering PR 175 (1968) 1735
7 CMS Collaboration Bose--Einstein correlations in pp, pPb, and PbPb collisions at $ \sqrt{\smash[b]{s_{_{\mathrm{NN}}}}} = $ 0.9-7 TeV Phys. Rev. C 97 (2018) 064912 CMS-FSQ-14-002
1712.07198
8 J. Schaffner-Bielich, M. Hanauske, H. Stöcker, and W. Greiner Phase transition to hyperon matter in neutron stars PRL 89 (2002) 171101 astro-ph/0005490
9 K. Morita, T. Furumoto, and A. Ohnishi $ \Lambda\Lambda $ interaction from relativistic heavy-ion collisions Phys. Rev. C 91 (2015) 024916 1408.6682
10 ALICE Collaboration Study of the $ \Lambda$-$\Lambda $ interaction with femtoscopy correlations in pp and pPb collisions at the LHC PLB 797 (2019) 134822 1905.07209
11 R. L. Jaffe Perhaps a stable dihyperon PRL 38 (1977) 195
12 H. Takahashi et al. Observation of a $ ^{\;\;\;\;6}_{\Lambda\Lambda}{\mathrm{He}} $ double hypernucleus PRL 87 (2001) 212502
13 K. Nakazawa and H. Takahashi Experimental study of double-$ \Lambda $ hypernuclei with nuclear emulsion Prog. Theor. Phys. Supplement 185 (2010) 335
14 Belle Collaboration Search for an $ H $-dibaryon with a mass near 2 $ {m}_{\Lambda} $ in $ \Upsilon{\textrm{(1S)}} $ and $ \Upsilon{\textrm{(2S)}} $ decays PRL 110 (2013) 222002 1302.4028
15 ALICE Collaboration $ \Lambda\mathrm{K} $ femtoscopy in Pb-Pb collisions at $ \sqrt{\smash[b]{s_{_{\mathrm{NN}}}}} = $ 2.76 TeV Phys. Rev. C 103 (2021) 055201 2005.11124
16 C. Loizides, J. Kamin, and D. d'Enterria Improved Monte Carlo Glauber predictions at present and future nuclear colliders Phys. Rev. C 97 (2018) 054910 1710.07098
17 R. Lednicky and V. L. Lyuboshitz Final state interaction effect on pairing correlations between particles with small relative momenta Sov. J. Nucl. Phys. 35 (1982) 770
18 CMS Collaboration HEPData record for this analysis link
19 Tracker Group of the CMS Collaboration The CMS phase-1 pixel detector upgrade JINST 16 (2021) P02027 2012.14304
20 CMS Collaboration Track impact parameter resolution for the full pseudorapidity coverage in the 2017 dataset with the CMS phase-1 pixel detector CMS Detector Performance Note CMS-DP-2020-049, 2020
CDS
21 CMS Collaboration Performance of the CMS level-1 trigger in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 15 (2020) P10017 CMS-TRG-17-001
2006.10165
22 CMS Collaboration The CMS trigger system JINST 12 (2017) 01020 CMS-TRG-12-001
1609.02366
23 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004
24 CMS Collaboration Precision luminosity measurement in proton-proton collisions at $ \sqrt{s} = $ 13 TeV in 2015 and 2016 at CMS EPJC 81 (2021) 800 CMS-LUM-17-003
2104.01927
25 CMS Collaboration CMS luminosity measurement using nucleus-nucleus collisions at $ \sqrt{\smash[b]{s_{_{\mathrm{NN}}}}} = $ 5.02 TeV in 2018 CMS Physics Analysis Summary, 2022
CMS-PAS-LUM-18-001
CMS-PAS-LUM-18-001
26 CMS Collaboration Charged-particle nuclear modification factors in PbPb and pPb collisions at $ \sqrt{\smash[b]{s_{_{\mathrm{NN}}}}} = $ 5.02 TeV JHEP 04 (2017) 039 CMS-HIN-15-015
1611.01664
27 CMS Collaboration Description and performance of track and primary-vertex reconstruction with the CMS tracker JINST 9 (2014) P10009 CMS-TRK-11-001
1405.6569
28 CMS Collaboration Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at $ \sqrt{s} = $ 0.9 and 2.36 TeV JHEP 02 (2010) 041 CMS-QCD-09-010
1002.0621
29 CMS Collaboration Observation and studies of jet quenching in PbPb collisions at nucleon-nucleon $ \sqrt{\smash[b]{s_{_{\mathrm{NN}}}}} = $ 2.76 TeV Phys. Rev. C 84 (2011) 024906 CMS-HIN-10-004
1102.1957
30 C. Gale, S. Jeon, and B. Schenke Hydrodynamic modeling of heavy ion collisions Int. J. Mod. Phys. A 28 (2013) 1340011 1301.5893
31 GEANT4 Collaboration GEANT 4---a simulation toolkit NIM A 506 (2003) 250
32 CMS Collaboration Strange hadron collectivity in pPb and PbPb collisions CMS-HIN-19-004
2205.00080
33 CMS Collaboration Strange particle production in pp collisions at $ \sqrt{s} = $ 0.9 and 7 TeV JHEP 05 (2011) 064 CMS-QCD-10-007
1102.4282
34 CMS Collaboration Long-range two-particle correlations of strange hadrons with charged particles in pPb and PbPb collisions at LHC energies PLB 742 (2015) 200 CMS-HIN-14-002
1409.3392
35 Particle Data Group Collaboration Review of particle physics Prog. Theor. Exp. Phys. 2022 (2022) 083C01
36 H. Voss, A. Höcker, J. Stelzer, and F. Tegenfeldt TMVA, the toolkit for multivariate data analysis with ROOT in XIth International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT), 2007
link
physics/0703039
37 G. I. Kopylov Like particle correlations as a tool to study the multiple production mechanism PLB 50 (1974) 472
38 A. Kisiel Non-identical particle correlation analysis in the presence of non-femtoscopic correlations Acta Phys. Polon. B 48 (2017) 717
39 ALICE Collaboration pp, p-$ \Lambda $, and $ \Lambda$-$\Lambda $ correlations studied via femtoscopy in pp reactions at $ \sqrt{s} = $ 7 TeV Phys. Rev. C 99 (2019) 024001 1805.12455
40 STAR Collaboration Neutral kaon interferometry in Au+Au collisions at $ \sqrt{\smash[b]{s_{_{\mathrm{NN}}}}} = $ 200 GeV Phys. Rev. C 74 (2006) 054902 nucl-ex/0608012
41 A. D. Martin and E. N. Ozmutlu Analyses of $ \mathrm{K}\mathrm{K} $ production and scalar mesons NPB 158 (1979) 520
42 A. Antonelli Radiative $ \phi $ decays ConfC 020620 (2002) THAT06 hep-ex/0209069
43 N. N. Achasov and V. V. Gubin Analysis of the nature of the $ \phi\to\gamma\pi\eta $ and $ \phi\to\gamma\pi^{0}\pi^{0} $ decays PRD 63 (2001) 094007 hep-ph/0101024
44 N. N. Achasov and A. V. Kiselev New analysis of the KLOE data on the $ \phi\to\eta\pi^{0}\gamma $ decay PRD 68 (2003) 014006 hep-ph/0212153
45 F. James and M. Roos Minuit: A system for function minimization and analysis of the parameter errors and correlations Comput. Phys. Commun. 10 (1975) 343
46 PHENIX Collaboration Lévy-stable two-pion Bose--Einstein correlations in $ \sqrt{\smash[b]{s_{_{\mathrm{NN}}}}} = $ 200 GeV Au+Au collisions Phys. Rev. C 97 (2018) 064911 1709.05649
47 ALICE Collaboration One-dimensional pion, kaon, and proton femtoscopy in Pb-Pb collisions at $ \sqrt{\smash[b]{s_{_{\mathrm{NN}}}}} = $ 2.76 TeV Phys. Rev. C 92 (2015) 054908 1506.07884
48 STAR Collaboration $ \Lambda\Lambda $ correlation function in Au+Au collisions at $ \sqrt{\smash[b]{s_{_{\mathrm{NN}}}}} = $ 200 GeV PRL 114 (2015) 022301 1408.4360
49 E. Hiyama et al. Four-body cluster structure of $ \mathrm{A} = $ 7-10 double-$ \Lambda $ hypernuclei Phys. Rev. C 66 (2002) 024007 nucl-th/0204059
50 I. N. Filikhin and A. Gal Faddeev-Yakubovsky calculations for light $ \Lambda\Lambda $ hypernuclei Nucl. Phys. A 707 (2002) 491 nucl-th/0203036
Compact Muon Solenoid
LHC, CERN