CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-HIG-18-020 ; CERN-EP-2019-083
Search for a light charged Higgs boson decaying to a W boson and a CP-odd Higgs boson in final states with $\mathrm{e}\mu\mu$ or $ \mu\mu\mu$ in proton-proton collisions at $\sqrt{s} = $ 13 TeV
Phys. Rev. Lett. 123 (2019) 131802
Abstract: A search for a light charged Higgs boson ($\mathrm{H}^{+}$) decaying to a W boson and a CP-odd Higgs boson (A) in final states with $\mathrm{e}\mu\mu$ or $ \mu\mu\mu$ is performed using data from pp collisions at $\sqrt{s} = $ 13 TeV, recorded by the CMS detector at the LHC and corresponding to an integrated luminosity of 35.9 fb$^{-1}$. In this search, it is assumed that the $\mathrm{H}^{+}$ boson is produced in decays of top quarks, and the A boson decays to two oppositely charged muons. The presence of signals for $\mathrm{H}^{+}$ boson masses between 100 and 160 GeV and A boson masses between 15 and 75 GeV is investigated. No evidence for the production of the $\mathrm{H}^{+}$ boson is found. Assuming branching fractions ${\mathcal{B}({\mathrm{H}^{+}\to\mathrm{W^{+}}\mathrm{A} })}=$ 1 and ${\mathcal{B}({\mathrm{A} }\to\mu^{+}\mu^{-})}=3\times10^{-4}$, upper limits at 95% confidence level on the branching fraction of the top quark, ${\mathcal{B}({\mathrm{t}\to\mathrm{b}\mathrm{H}^{+}})}$, of 0.63 to 2.9% are obtained, depending on the masses of the $\mathrm{H}^{+}$ and A bosons. These are the first limits on ${\mathcal{B}({\mathrm{t}\to\mathrm{b}\mathrm{H}^{+}})}$ in the decay mode of the $\mathrm{H}^{+}$ boson: ${\mathrm{H}^{+}\to\mathrm{W^{+}}\mathrm{A} }\to\mathrm{W^{+}}\mu^{+}\mu^{-}$.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
The Feynman diagram of signal processes ($\ell = {\mathrm {e}}$ or $ {{\mu}}$, $ {\mathrm {W}} {\mathrm {W}}\to \ell {\nu} {\mathrm {q}} {\overline {\mathrm {q}}}^{\prime}$).

png pdf
Figure 2:
The $ {\mathit {m}_{{{\mu}} {{\mu}}}}$ distribution of candidate muon pairs from A bosons (left) and the event yields in each signal window (right) in the $ {{\mathrm {e}} {{\mu}} {{\mu}}}$ and $ {{{\mu}} {{\mu}} {{\mu}}}$ final states. A constant bin size (1 GeV) is used in the left figure except the last bin of $[80,\,81.2]$ (GeV). Values of $ {\mathit {m}_{{{\mu}} {{\mu}}}}$ at centers of the corresponding windows are written in the parentheses on the $x$ axis of the right figure. The expected signal distribution for $ {\mathit {m}_{{{\mathrm {H}} ^{+}}}}=$ 130 and $ {\mathit {m}_{{\mathrm {A}}}} = $ 45 GeV is also shown on top of the expected backgrounds assuming $ {\sigma ({{\mathrm {t}\overline {\mathrm {t}}}})}=$ 832 pb, $ {\mathcal {B}({{\mathrm {t}}\to {\mathrm {b}} {\mathrm {H}} ^{+}})}=$ 0.02, $ {\mathcal {B}({{\mathrm {H}} ^{+}\to {\mathrm {W^+}} {\mathrm {A}}})}=$ 1, and $ {\mathcal {B}({{\mathrm {A}} \to {{{\mu ^+}} {{\mu ^-}}}})}=3\times 10^{-4}$.

png pdf
Figure 2-a:
The $ {\mathit {m}_{{{\mu}} {{\mu}}}}$ distribution of candidate muon pairs from A bosons in the $ {{\mathrm {e}} {{\mu}} {{\mu}}}$ and $ {{{\mu}} {{\mu}} {{\mu}}}$ final states. A constant bin size (1 GeV) is used except the last bin of $[80,\,81.2]$ (GeV). The expected signal distribution for $ {\mathit {m}_{{{\mathrm {H}} ^{+}}}}=$ 130 and $ {\mathit {m}_{{\mathrm {A}}}} = $ 45 GeV is also shown on top of the expected backgrounds assuming $ {\sigma ({{\mathrm {t}\overline {\mathrm {t}}}})}=$ 832 pb, $ {\mathcal {B}({{\mathrm {t}}\to {\mathrm {b}} {\mathrm {H}} ^{+}})}=$ 0.02, $ {\mathcal {B}({{\mathrm {H}} ^{+}\to {\mathrm {W^+}} {\mathrm {A}}})}=$ 1, and $ {\mathcal {B}({{\mathrm {A}} \to {{{\mu ^+}} {{\mu ^-}}}})}=3\times 10^{-4}$.

png pdf
Figure 2-b:
The event yields in each signal window in the $ {{\mathrm {e}} {{\mu}} {{\mu}}}$ and $ {{{\mu}} {{\mu}} {{\mu}}}$ final states. Values of $ {\mathit {m}_{{{\mu}} {{\mu}}}}$ at centers of the corresponding windows are written in the parentheses on the $x$ axis of the figure. The expected signal distribution for $ {\mathit {m}_{{{\mathrm {H}} ^{+}}}}=$ 130 and $ {\mathit {m}_{{\mathrm {A}}}} = $ 45 GeV is also shown on top of the expected backgrounds assuming $ {\sigma ({{\mathrm {t}\overline {\mathrm {t}}}})}=$ 832 pb, $ {\mathcal {B}({{\mathrm {t}}\to {\mathrm {b}} {\mathrm {H}} ^{+}})}=$ 0.02, $ {\mathcal {B}({{\mathrm {H}} ^{+}\to {\mathrm {W^+}} {\mathrm {A}}})}=$ 1, and $ {\mathcal {B}({{\mathrm {A}} \to {{{\mu ^+}} {{\mu ^-}}}})}=3\times 10^{-4}$.

png pdf
Figure 3:
Expected and observed upper limits at 95% CL on $ {\mathcal {B}({{\mathrm {t}}\to {\mathrm {b}} {\mathrm {H}} ^{+}})}$ for the $ {\mathit {m}_{{\mathrm {A}}}}$ values defined in Table 1, with an assumption of $ {\mathit {m}_{{{\mathrm {H}} ^{+}}}}= {\mathit {m}_{{\mathrm {A}}}}+85 GeV $ (left) or $ {\mathit {m}_{{{\mathrm {H}} ^{+}}}} = $ 160 GeV (right). The same values of $ {\mathcal {B}({{\mathrm {H}} ^{+}\to {\mathrm {W^+}} {\mathrm {A}}})}$, $ {\mathcal {B}({{\mathrm {A}} \to {{{\mu ^+}} {{\mu ^-}}}})}$, and $ {\sigma ({{\mathrm {t}\overline {\mathrm {t}}}})}$ as in Fig. 2 are assumed. The green (yellow) bands indicate the regions containing 68 (95)% of the limit values expected under the background-only hypothesis.

png pdf
Figure 3-a:
Expected and observed upper limits at 95% CL on $ {\mathcal {B}({{\mathrm {t}}\to {\mathrm {b}} {\mathrm {H}} ^{+}})}$ for the $ {\mathit {m}_{{\mathrm {A}}}}$ values defined in Table 1, with an assumption of $ {\mathit {m}_{{{\mathrm {H}} ^{+}}}}= {\mathit {m}_{{\mathrm {A}}}}+85 GeV $. The same values of $ {\mathcal {B}({{\mathrm {H}} ^{+}\to {\mathrm {W^+}} {\mathrm {A}}})}$, $ {\mathcal {B}({{\mathrm {A}} \to {{{\mu ^+}} {{\mu ^-}}}})}$, and $ {\sigma ({{\mathrm {t}\overline {\mathrm {t}}}})}$ as in Fig. 2 are assumed. The green (yellow) bands indicate the regions containing 68 (95)% of the limit values expected under the background-only hypothesis.

png pdf
Figure 3-b:
Expected and observed upper limits at 95% CL on $ {\mathcal {B}({{\mathrm {t}}\to {\mathrm {b}} {\mathrm {H}} ^{+}})}$ for the $ {\mathit {m}_{{\mathrm {A}}}}$ values defined in Table 1, with an assumption of $ {\mathit {m}_{{{\mathrm {H}} ^{+}}}} = $ 160 GeV. The same values of $ {\mathcal {B}({{\mathrm {H}} ^{+}\to {\mathrm {W^+}} {\mathrm {A}}})}$, $ {\mathcal {B}({{\mathrm {A}} \to {{{\mu ^+}} {{\mu ^-}}}})}$, and $ {\sigma ({{\mathrm {t}\overline {\mathrm {t}}}})}$ as in Fig. 2 are assumed. The green (yellow) bands indicate the regions containing 68 (95)% of the limit values expected under the background-only hypothesis.

png pdf
Figure A1:
The fraction of signal events passing the final event selection in the $ {{\mathrm {e}} {{\mu}} {{\mu}}}$ (left) and $ {{{\mu}} {{\mu}} {{\mu}}}$ (right) final states. The fraction is relative to the yield before the decays of the two W bosons in the signal processes ($ {{\mathrm {t}\overline {\mathrm {t}}}} \to {{\mathrm {b}} {\overline {\mathrm {b}}}} {\mathrm {W^+}} {\mathrm {W^-}} {{{\mu ^+}} {{\mu ^-}}} $), which include the branching fraction of each decay mode of the two W bosons ($\mathcal {B}$) and the acceptance (A) times efficiency ($\varepsilon $) of the event selection for the decay mode. All decay modes of the two W bosons are considered in the calculation except the cases where both of the bosons decay hadronically.

png pdf
Figure A1-a:
The fraction of signal events passing the final event selection in the $ {{\mathrm {e}} {{\mu}} {{\mu}}}$ final state. The fraction is relative to the yield before the decays of the two W bosons in the signal processes ($ {{\mathrm {t}\overline {\mathrm {t}}}} \to {{\mathrm {b}} {\overline {\mathrm {b}}}} {\mathrm {W^+}} {\mathrm {W^-}} {{{\mu ^+}} {{\mu ^-}}} $), which include the branching fraction of each decay mode of the two W bosons ($\mathcal {B}$) and the acceptance (A) times efficiency ($\varepsilon $) of the event selection for the decay mode. All decay modes of the two W bosons are considered in the calculation except the cases where both of the bosons decay hadronically.

png pdf
Figure A1-b:
The fraction of signal events passing the final event selection in the $ {{{\mu}} {{\mu}} {{\mu}}}$ final state. The fraction is relative to the yield before the decays of the two W bosons in the signal processes ($ {{\mathrm {t}\overline {\mathrm {t}}}} \to {{\mathrm {b}} {\overline {\mathrm {b}}}} {\mathrm {W^+}} {\mathrm {W^-}} {{{\mu ^+}} {{\mu ^-}}} $), which include the branching fraction of each decay mode of the two W bosons ($\mathcal {B}$) and the acceptance (A) times efficiency ($\varepsilon $) of the event selection for the decay mode. All decay modes of the two W bosons are considered in the calculation except the cases where both of the bosons decay hadronically.

png pdf
Figure A2:
The $ {\mathit {m}_{{{\mu}} {{\mu}}}}$ distribution of candidate muon pairs from A bosons (left) and the event yields in each signal window (right) in the $ {{\mathrm {e}} {{\mu}} {{\mu}}}$ (upper) and $ {{{\mu}} {{\mu}} {{\mu}}}$ (lower) final states. A constant bin size (1 GeV) is used in the left figures except the last bin of $[80,\,81.2]$ (GeV). Values of $ {\mathit {m}_{{{\mu}} {{\mu}}}}$ at centers of the corresponding windows are written in the parentheses on the $x$ axis of the right figures. The expected signal distribution for $ {\mathit {m}_{{{\mathrm {H}} ^{+}}}}=$ 130 and $ {\mathit {m}_{{\mathrm {A}}}} = $ 45 GeV is also shown on top of the expected backgrounds assuming $ {\sigma ({{\mathrm {t}\overline {\mathrm {t}}}})}=$ 832 pb, $ {\mathcal {B}({{\mathrm {t}}\to {\mathrm {b}} {\mathrm {H}} ^{+}})}=$ 0.02, $ {\mathcal {B}({{\mathrm {H}} ^{+}\to {\mathrm {W^+}} {\mathrm {A}}})}=$ 1, and $ {\mathcal {B}({{\mathrm {A}} \to {{{\mu ^+}} {{\mu ^-}}}})}=3\times 10^{-4}$.

png pdf
Figure A2-a:
The $ {\mathit {m}_{{{\mu}} {{\mu}}}}$ distribution of candidate muon pairs from A bosons in the $ {{\mathrm {e}} {{\mu}} {{\mu}}}$ final state. A constant bin size (1 GeV) is used except the last bin of $[80,\,81.2]$ (GeV). The expected signal distribution for $ {\mathit {m}_{{{\mathrm {H}} ^{+}}}}=$ 130 and $ {\mathit {m}_{{\mathrm {A}}}} = $ 45 GeV is also shown on top of the expected backgrounds assuming $ {\sigma ({{\mathrm {t}\overline {\mathrm {t}}}})}=$ 832 pb, $ {\mathcal {B}({{\mathrm {t}}\to {\mathrm {b}} {\mathrm {H}} ^{+}})}=$ 0.02, $ {\mathcal {B}({{\mathrm {H}} ^{+}\to {\mathrm {W^+}} {\mathrm {A}}})}=$ 1, and $ {\mathcal {B}({{\mathrm {A}} \to {{{\mu ^+}} {{\mu ^-}}}})}=3\times 10^{-4}$.

png pdf
Figure A2-b:
The $ {\mathit {m}_{{{\mu}} {{\mu}}}}$ distribution of candidate muon pairs from A bosons in the $ {{{\mu}} {{\mu}} {{\mu}}}$ final state. A constant bin size (1 GeV) is used except the last bin of $[80,\,81.2]$ (GeV). The expected signal distribution for $ {\mathit {m}_{{{\mathrm {H}} ^{+}}}}=$ 130 and $ {\mathit {m}_{{\mathrm {A}}}} = $ 45 GeV is also shown on top of the expected backgrounds assuming $ {\sigma ({{\mathrm {t}\overline {\mathrm {t}}}})}=$ 832 pb, $ {\mathcal {B}({{\mathrm {t}}\to {\mathrm {b}} {\mathrm {H}} ^{+}})}=$ 0.02, $ {\mathcal {B}({{\mathrm {H}} ^{+}\to {\mathrm {W^+}} {\mathrm {A}}})}=$ 1, and $ {\mathcal {B}({{\mathrm {A}} \to {{{\mu ^+}} {{\mu ^-}}}})}=3\times 10^{-4}$.

png pdf
Figure A2-c:
The event yields in each signal window in the $ {{\mathrm {e}} {{\mu}} {{\mu}}}$ final state. Values of $ {\mathit {m}_{{{\mu}} {{\mu}}}}$ at centers of the corresponding windows are written in the parentheses on the $x$ axis of the figures. The expected signal distribution for $ {\mathit {m}_{{{\mathrm {H}} ^{+}}}}=$ 130 and $ {\mathit {m}_{{\mathrm {A}}}} = $ 45 GeV is also shown on top of the expected backgrounds assuming $ {\sigma ({{\mathrm {t}\overline {\mathrm {t}}}})}=$ 832 pb, $ {\mathcal {B}({{\mathrm {t}}\to {\mathrm {b}} {\mathrm {H}} ^{+}})}=$ 0.02, $ {\mathcal {B}({{\mathrm {H}} ^{+}\to {\mathrm {W^+}} {\mathrm {A}}})}=$ 1, and $ {\mathcal {B}({{\mathrm {A}} \to {{{\mu ^+}} {{\mu ^-}}}})}=3\times 10^{-4}$.

png pdf
Figure A2-d:
The event yields in each signal window in the $ {{{\mu}} {{\mu}} {{\mu}}}$ final state. Values of $ {\mathit {m}_{{{\mu}} {{\mu}}}}$ at centers of the corresponding windows are written in the parentheses on the $x$ axis of the figures. The expected signal distribution for $ {\mathit {m}_{{{\mathrm {H}} ^{+}}}}=$ 130 and $ {\mathit {m}_{{\mathrm {A}}}} = $ 45 GeV is also shown on top of the expected backgrounds assuming $ {\sigma ({{\mathrm {t}\overline {\mathrm {t}}}})}=$ 832 pb, $ {\mathcal {B}({{\mathrm {t}}\to {\mathrm {b}} {\mathrm {H}} ^{+}})}=$ 0.02, $ {\mathcal {B}({{\mathrm {H}} ^{+}\to {\mathrm {W^+}} {\mathrm {A}}})}=$ 1, and $ {\mathcal {B}({{\mathrm {A}} \to {{{\mu ^+}} {{\mu ^-}}}})}=3\times 10^{-4}$.

png pdf
Figure A3:
Upper limits at 95% CL on $ {\mathcal {B}({{\mathrm {t}}\to {\mathrm {b}} {\mathrm {H}} ^{+}})}$ for the 95 $ {\mathit {m}_{{\mathrm {A}}}}$ values, with an assumption of $ {\mathit {m}_{{{\mathrm {H}} ^{+}}}}= {\mathit {m}_{{\mathrm {A}}}}$+85 GeV (left) or $ {\mathit {m}_{{{\mathrm {H}} ^{+}}}} = $ 160 GeV (right), for individual final states (upper: $ {{\mathrm {e}} {{\mu}} {{\mu}}}$ and lower: $ {{{\mu}} {{\mu}} {{\mu}}}$ final states). In the calculation, the same values of $ {\mathcal {B}({{\mathrm {H}} ^{+}\to {\mathrm {W^+}} {\mathrm {A}}})}$, $ {\mathcal {B}({{\mathrm {A}} \to {{{\mu ^+}} {{\mu ^-}}}})}$, and $ {\sigma ({{\mathrm {t}\overline {\mathrm {t}}}})}$ as in Fig. A2 are assumed.

png pdf
Figure A3-a:
Upper limits at 95% CL on $ {\mathcal {B}({{\mathrm {t}}\to {\mathrm {b}} {\mathrm {H}} ^{+}})}$ for the 95 $ {\mathit {m}_{{\mathrm {A}}}}$ values, with an assumption of $ {\mathit {m}_{{{\mathrm {H}} ^{+}}}}= {\mathit {m}_{{\mathrm {A}}}}$+85 GeV, for the $ {{\mathrm {e}} {{\mu}} {{\mu}}}$ final state. In the calculation, the same values of $ {\mathcal {B}({{\mathrm {H}} ^{+}\to {\mathrm {W^+}} {\mathrm {A}}})}$, $ {\mathcal {B}({{\mathrm {A}} \to {{{\mu ^+}} {{\mu ^-}}}})}$, and $ {\sigma ({{\mathrm {t}\overline {\mathrm {t}}}})}$ as in Fig. A2 are assumed.

png pdf
Figure A3-b:
Upper limits at 95% CL on $ {\mathcal {B}({{\mathrm {t}}\to {\mathrm {b}} {\mathrm {H}} ^{+}})}$ for the 95 $ {\mathit {m}_{{\mathrm {A}}}}$ values, with an assumption of $ {\mathit {m}_{{{\mathrm {H}} ^{+}}}} = $ 160 GeV, for the $ {{\mathrm {e}} {{\mu}} {{\mu}}}$ final state. In the calculation, the same values of $ {\mathcal {B}({{\mathrm {H}} ^{+}\to {\mathrm {W^+}} {\mathrm {A}}})}$, $ {\mathcal {B}({{\mathrm {A}} \to {{{\mu ^+}} {{\mu ^-}}}})}$, and $ {\sigma ({{\mathrm {t}\overline {\mathrm {t}}}})}$ as in Fig. A2 are assumed.

png pdf
Figure A3-c:
Upper limits at 95% CL on $ {\mathcal {B}({{\mathrm {t}}\to {\mathrm {b}} {\mathrm {H}} ^{+}})}$ for the 95 $ {\mathit {m}_{{\mathrm {A}}}}$ values, with an assumption of $ {\mathit {m}_{{{\mathrm {H}} ^{+}}}}= {\mathit {m}_{{\mathrm {A}}}}$+85 GeV, for the $ {{{\mu}} {{\mu}} {{\mu}}}$ final state. In the calculation, the same values of $ {\mathcal {B}({{\mathrm {H}} ^{+}\to {\mathrm {W^+}} {\mathrm {A}}})}$, $ {\mathcal {B}({{\mathrm {A}} \to {{{\mu ^+}} {{\mu ^-}}}})}$, and $ {\sigma ({{\mathrm {t}\overline {\mathrm {t}}}})}$ as in Fig. A2 are assumed.

png pdf
Figure A3-d:
Upper limits at 95% CL on $ {\mathcal {B}({{\mathrm {t}}\to {\mathrm {b}} {\mathrm {H}} ^{+}})}$ for the 95 $ {\mathit {m}_{{\mathrm {A}}}}$ values, with an assumption of $ {\mathit {m}_{{{\mathrm {H}} ^{+}}}} = $ 160 GeV, for the $ {{{\mu}} {{\mu}} {{\mu}}}$ final state. In the calculation, the same values of $ {\mathcal {B}({{\mathrm {H}} ^{+}\to {\mathrm {W^+}} {\mathrm {A}}})}$, $ {\mathcal {B}({{\mathrm {A}} \to {{{\mu ^+}} {{\mu ^-}}}})}$, and $ {\sigma ({{\mathrm {t}\overline {\mathrm {t}}}})}$ as in Fig. A2 are assumed.
Tables

png pdf
Table 1:
Summary of mass windows ($ {| {\mathit {m}_{{{\mu}} {{\mu}}}}- {\mathit {m}_{{\mathrm {A}}}} |} < w$) for each $ {\mathit {m}_{{\mathrm {A}}}}$ hypothesis.
Summary
In summary, a search is performed for a charged Higgs boson $\mathrm{H}^{+}$, produced in the decay of a top quark, and decaying further into a W boson and a CP-odd Higgs boson A, where the A boson decays to two muons. The analysis uses proton-proton collision data at $\sqrt{s}=$ 13 TeV, recorded by the CMS experiment, corresponding to an integrated luminosity of 35.9 fb$^{-1}$. A resonant signature in the dimuon mass spectrum is searched in trilepton events for the ranges of $m_{\mathrm{A}}$ between 15 and 75 GeV and $m_{\mathrm{H}^{+}}$ between ($m_{\mathrm{A}}$+85 GeV) and 160 GeV. No statistically significant excess is found. Assuming branching fractions ${\mathcal{B}({\mathrm{H}^{+}\to\mathrm{W^{+}}\mathrm{A} })}=$ 1 and ${\mathcal{B}({\mathrm{A} }\to\mu^{+}\mu^{-})}=3\times10^{-4}$, upper limits at 95% confidence level on the branching fraction of the top quark, ${\mathcal{B}({\mathrm{t}\to\mathrm{b}\mathrm{H}^{+}})}$, of 0.63 to 2.9% are obtained, depending on the masses of of the $\mathrm{H}^{+}$ and A bosons. The reported analysis constitutes the first search for the ${\mathrm{H}^{+}\to\mathrm{W^{+}}\mathrm{A} } $ process in the $\mathrm{A}\to\mu^{+}\mu^{-}$ decay channel.
References
1 ATLAS Collaboration Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC PLB 716 (2012) 1 1207.7214
2 CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC PLB 716 (2012) 30 CMS-HIG-12-028
1207.7235
3 CMS Collaboration Observation of a new boson with mass near 125 GeV in pp collisions at $ \sqrt{s}= $ 7 and 8 TeV JHEP 06 (2013) 081 CMS-HIG-12-036
1303.4571
4 ATLAS and CMS Collaborations Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at $ \sqrt{s}= $ 7 and 8 TeV JHEP 08 (2016) 045 1606.02266
5 CMS Collaboration Combined measurements of Higgs boson couplings in proton-proton collisions at $ \sqrt{s}= $ 13 TeV Submitted to: EPJC CMS-HIG-17-031
1809.10733
6 H. E. Haber and G. L. Kane The search for supersymmetry: Probing physics beyond the standard model Phys. Rep. 117 (1985) 75
7 N. Turok and J. Zadrozny Dynamical generation of baryons at the electroweak transition PRL 65 (1990) 2331
8 G. B. Gelmini and M. Roncadelli Left-handed neutrino mass scale and spontaneously broken lepton number PLB 99 (1981) 411
9 T. D. Lee A theory of spontaneous T violation PRD 8 (1973) 1226
10 G. C. Branco et al. Theory and phenomenology of two-Higgs-doublet models Phys. Rep. 516 (2012) 1 1106.0034
11 R. Dermisek, E. Lunghi, and A. Raval Trilepton signatures of light charged and CP-odd Higgs bosons in top quark decays JHEP 04 (2013) 063 1212.5021
12 F. Kling, A. Pyarelal, and S. Su Light charged Higgs bosons to AW/HW via top decay JHEP 11 (2015) 051 1504.06624
13 A. Arhrib, R. Benbrik, and S. Moretti Bosonic decays of charged Higgs bosons in a 2HDM type-I EPJC 77 (2017) 621 1607.02402
14 CDF Collaboration Search for charged Higgs bosons from top quark decays in $ p\bar{p} $ collisions at $ \sqrt{s}= $ 1.96 TeV PRL 96 (2006) 042003 hep-ex/0510065
15 CDF Collaboration Search for a very light CP-odd Higgs boson in top quark decays from $ p\bar{p} $ collisions at $ \sqrt{s}= $ 1.96 TeV PRL 107 (2011) 031801 1104.5701
16 DELPHI Collaboration Search for charged Higgs bosons at LEP in general two Higgs doublet models EPJC 34 (2004) 399 hep-ex/0404012
17 OPAL Collaboration Search for charged Higgs bosons in $ e^{+}e^{-} $ collisions at $ \sqrt{s}= $ 189--209 GeV EPJC 72 (2012) 2076 0812.0267
18 ALEPH, DELPHI, L3, and OPAL Collaborations, and the LEP working group for Higgs boson searches Search for charged Higgs bosons: combined results using LEP data EPJC 73 (2013) 2463 1301.6065
19 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
20 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
21 M. Cacciari and G. P. Salam Pileup subtraction using jet areas PLB 659 (2008) 119 0707.1378
22 M. Aoki, S. Kanemura, K. Tsumura, and K. Yagyu Models of Yukawa interaction in the two Higgs doublet model, and their collider phenomenology PRD 80 (2009) 015017 0902.4665
23 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004 CMS-00-001
24 CMS Collaboration Technical proposal for the Phase-II upgrade of the Compact Muon Solenoid CMS-PAS-TDR-15-002 CMS-PAS-TDR-15-002
25 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ {k_{\mathrm{T}}} $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
26 M. Cacciari, G. P. Salam, and G. Soyez Fastjet user manual EPJC 72 (2012) 1896 1111.6097
27 CMS Collaboration Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at $ \sqrt{s} = $ 8 TeV JINST 10 (2015) P06005 CMS-EGM-13-001
1502.02701
28 CMS Collaboration Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV JINST 13 (2018) P05011 CMS-BTV-16-002
1712.07158
29 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
30 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
31 CMS Collaboration Measurement of the $ \mathrm{t\bar{t}} $ production cross section in the dilepton channel in pp collisions at $ \sqrt{s}= $ 8 TeV JHEP 02 (2014) 024 CMS-TOP-12-007
1312.7582
32 CMS Collaboration Measurement of the $ \mathrm{t\bar{t}} $ production cross section in the all-jets final state in pp collisions at $ \sqrt{s}= $ 8 TeV EPJC 76 (2016) 128 CMS-TOP-14-018
1509.06076
33 CMS Collaboration Measurements of the $ \mathrm{t\bar{t}} $ production cross section in lepton+jets final states in pp collisions at 8 TeV and ratio of 8 to 7 TeV cross sections EPJC 77 (2017) 15 CMS-TOP-12-006
1602.09024
34 Particle Data Group Review of particle physics PRD 98 (2018) 030001
35 P. Nason A new method for combining NLO QCD with shower Monte Carlo algorithms JHEP 11 (2004) 040 hep-ph/0409146
36 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
37 S. Alioli, P. Nason, C. Oleari, and E. Re NLO Higgs boson production via gluon fusion matched with shower in POWHEG JHEP 04 (2009) 002 0812.0578
38 P. Nason and C. Oleari NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG JHEP 02 (2010) 037 0911.5299
39 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX JHEP 06 (2010) 043 1002.2581
40 P. Nason and G. Zanderighi $ \mathrm{{W}^{+}{W}^{-}} $, WZ and ZZ production in the POWHEG-BOX-V2 EPJC 74 (2014) 2702 1311.1365
41 H. B. Hartanto, B. Jager, L. Reina, and D. Wackeroth Higgs boson production in association with top quarks in the POWHEG BOX PRD 91 (2015) 094003 1501.04498
42 J. Alwall et al. Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions EPJC 53 (2008) 473 0706.2569
43 R. Frederix and S. Frixione Merging meets matching in MC@NLO JHEP 12 (2012) 061 1209.6215
44 F. Cascioli et al. ZZ production at hadron colliders in NNLO QCD PLB 735 (2014) 311 1405.2219
45 M. Grazzini, S. Kallweit, D. Rathlev, and M. Wiesemann $ \mathrm{W^{\pm}Z} $ production at hadron colliders in NNLO QCD PLB 761 (2016) 179 1604.08576
46 LHC Higgs Cross Section Working Group Handbook of LHC Higgs cross sections: 4. deciphering the nature of the Higgs sector CERN-2017-002-M 1610.07922
47 CMS Collaboration Search for evidence of the type-III seesaw mechanism in multilepton final states in proton-proton collisions at $ \sqrt{s}= $ 13 TeV PRL 119 (2017) 221802 CMS-EXO-17-006
1708.07962
48 NNPDF Collaboration Parton distributions for the LHC Run II JHEP 04 (2015) 040 1410.8849
49 T. Sjöstrand et al. An introduction to PYTHIA 8.2 CPC 191 (2015) 159 1410.3012
50 CMS Collaboration Event generator tunes obtained from underlying event and multiparton scattering measurements EPJC 76 (2016) 155 CMS-GEN-14-001
1512.00815
51 GEANT4 Collaboration GEANT4--a simulation toolkit NIMA 506 (2003) 250
52 CMS Collaboration Search for new physics in same-sign dilepton events in proton-proton collisions at $ \sqrt{s}= $ 13 TeV EPJC 76 (2016) 439 CMS-SUS-15-008
1605.03171
53 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics EPJC 71 (2011) 1554 1007.1727
54 T. Junk Confidence level computation for combining searches with small statistics NIMA 434 (1999) 435 hep-ex/9902006
55 A. L. Read Presentation of search results: the CL$ _{\text{s}} $ technique JPG 28 (2002) 2693
56 ATLAS and CMS Collaborations and LHC Higgs Combination Group Procedure for the LHC Higgs boson search combination in summer 2011 CMS-NOTE-2011-005
57 M. Czakon and A. Mitov Top++: a program for the calculation of the top-pair cross-section at hadron colliders CPC 185 (2014) 2930 1112.5675
58 CMS Collaboration Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV JINST 12 (2017) P02014 CMS-JME-13-004
1607.03663
59 CMS Collaboration Performance of missing energy reconstruction in 13 TeV pp collision data using the CMS detector CMS-PAS-JME-16-004 CMS-PAS-JME-16-004
60 CMS Collaboration CMS luminosity measurements for the 2016 data-taking period CMS-PAS-LUM-17-001 CMS-PAS-LUM-17-001
61 J. Butterworth et al. PDF4LHC recommendations for LHC Run II JPG 43 (2016) 023001 1510.03865
Compact Muon Solenoid
LHC, CERN