CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-HIN-21-003 ; CERN-EP-2022-219
Measurements of azimuthal anisotropy of nonprompt D$^{0} $ mesons in PbPb collisions at $ \sqrt{\smash[b]{s_{_{\mathrm{NN}}}}}= $ 5.02 TeV
Phys. Lett. B 850 (2024) 138389
Abstract: Measurements of the elliptic ($ v_{2} $) and triangular ($ v_{3} $) azimuthal anisotropy coefficients are presented for D$^{0} $ mesons produced in b hadron decays (nonprompt D$^{0} $ mesons) in lead-lead collisions at $ \sqrt{\smash[b]{s_{_{\mathrm{NN}}}}}= $ 5.02 TeV. The results are compared with previously published charm meson anisotropies measured using prompt D$^{0} $ mesons. The data were collected with the CMS detector in 2018 with an integrated luminosity of 0.58 nb$^{-1}$. Azimuthal anisotropy is sensitive to the interactions of quarks with the hot and dense medium created in heavy ion collisions. Comparing results for prompt and nonprompt D$^{0} $ mesons can assist in understanding the mass dependence of these interactions. The nonprompt results show lower magnitudes of $ v_{2} $ and $ v_{3} $ and weaker dependences on the meson transverse momentum and collision centrality than those found for prompt D$^{0} $ mesons. By comparing to theoretical predictions, the results imply that there is a mass hierarchy of quark interactions with the medium.
Figures Summary References CMS Publications
Figures

png pdf
Figure 1:
An example of the fit to the invariant mass spectrum (left panel) and an example of the template fit of the inclusive D$^{0} $ meson yields, extracted as a function of DCA (right panel). The former fit is used for determining the total D$^{0} $ yields and the latter for determining the fraction of nonprompt D$^{0} $ mesons.

png pdf
Figure 1-a:
An example of the fit to the invariant mass spectrum (left panel) and an example of the template fit of the inclusive D$^{0} $ meson yields, extracted as a function of DCA (right panel). The former fit is used for determining the total D$^{0} $ yields and the latter for determining the fraction of nonprompt D$^{0} $ mesons.

png pdf
Figure 1-b:
An example of the fit to the invariant mass spectrum (left panel) and an example of the template fit of the inclusive D$^{0} $ meson yields, extracted as a function of DCA (right panel). The former fit is used for determining the total D$^{0} $ yields and the latter for determining the fraction of nonprompt D$^{0} $ mesons.

png pdf
Figure 2:
The elliptic, $ v_{2} $ (upper panels), and the triangular, $ v_{3} $ (lower panels), flow coefficients of nonprompt and prompt (from Ref. [18]) D$^{0} $ mesons as functions of their $ p_{\mathrm{T}} $ and in three bins of centrality. The bars and the boxes represent statistical and systematic uncertainties, respectively.

png pdf
Figure 3:
The elliptic, $ v_{2} $ (upper panel), and the triangular, $ v_{3} $ (lower panel), flow coefficients of nonprompt D$^{0} $ mesons as functions of their $ p_{\mathrm{T}} $ and in three bins of centrality. The bars and the boxes represent statistical and systematic uncertainties, respectively. The colored bands show theoretical predictions [49-56].
Summary
In summary, the elliptic ($ v_{2} $) and triangular ($ v_{3} $) flow harmonics of D$^{0} $ mesons that originate in b hadron decays (nonprompt D$^{0} $ mesons) are measured in lead-lead collisions at $ \sqrt{\smash[b]{s_{_{\mathrm{NN}}}}}= $ 5.02 TeV. The $ v_{2} $ results show a weak transverse momentum ($ p_{\mathrm{T}} $) dependence and suggest a slight increase for more peripheral collisions. An indication of a nonzero $ v_{3} $ coefficient is found for nonprompt D$^{0} $ mesons with 4 $ < p_{\mathrm{T}} < $ 6 GeV/$c$. The magnitudes of the flow coefficients are lower for nonprompt D$^{0} $ than for prompt D$^{0} $ mesons. This magnitude difference is more pronounced in the case of $ v_{2} $. Comparisons of the results to theoretical models suggest a mass hierarchy in quark interactions with the quark-gluon plasma, thereby extending our understanding of heavy quark interactions with the medium.
References
1 BRAHMS Collaboration Quark-gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment Nucl. Phys. A 757 (2005) 1 nucl-ex/0410020
2 PHOBOS Collaboration The PHOBOS perspective on discoveries at RHIC Nucl. Phys. A 757 (2005) 28 nucl-ex/0410022
3 STAR Collaboration Experimental and theoretical challenges in the search for the quark-gluon plasma: the STAR Collaboration's critical assessment of the evidence from RHIC collisions Nucl. Phys. A 757 (2005) 102 nucl-ex/0501009
4 PHENIX Collaboration Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: experimental evaluation by the PHENIX Collaboration Nucl. Phys. A 757 (2005) 184 nucl-ex/0410003
5 S. A. Voloshin and Y. Zhang Flow study in relativistic nuclear collisions by Fourier expansion of azimuthal particle distributions Z. Phys. C 70 (1996) 665 hep-ph/9407282
6 W. Busza, K. Rajagopal, and W. van der Schee Heavy ion collisions: the big picture, and the big questions Ann. Rev. Nucl. Part. Sci. 68 (2018) 339 1802.04801
7 J.-Y. Ollitrault Anisotropy as a signature of transverse collective flow PRD 46 (1992) 229
8 U. Heinz and R. Snellings Collective flow and viscosity in relativistic heavy-ion collisions Ann. Rev. Nucl. Part. Sci. 63 (2013) 123 1301.2826
9 C. Gale, S. Jeon, and B. Schenke Hydrodynamic modeling of heavy-ion collisions Int. J. Mod. Phys. A 28 (2013) 1340011 1301.5893
10 B. Alver and G. Roland Collision-geometry fluctuations and triangular flow in heavy-ion collisions Phys. Rev. C 81 (2010) 054905 1003.0194
11 F. Prino and R. Rapp Open heavy flavor in QCD matter and in nuclear collisions JPG 43 (2016) 093002 1603.00529
12 R. Rapp et al. Extraction of heavy-flavor transport coefficients in QCD matter Nucl. Phys. A 979 (2018) 21 1803.03824
13 H. van Hees, V. Greco, and R. Rapp Heavy-quark probes of the quark-gluon plasma and interpretation of recent data taken at the BNL Relativistic Heavy Ion Collider Phys. Rev. C 73 (2006) 034913 nucl-th/0508055
14 M. Gyulassy, I. Vitev, and X.-N. Wang High $ p_{\mathrm{T}} $ azimuthal asymmetry in noncentral A+A at RHIC PRL 86 (2001) 2537 nucl-th/0012092
15 E. V. Shuryak Azimuthal asymmetry at large $ p_{\mathrm{T}} $ seem to be too large for a pure ``jet quenching'' Phys. Rev. C 66 (2002) 027902 nucl-th/0112042
16 ALICE Collaboration D-meson azimuthal anisotropy in midcentral Pb-Pb collisions at $ \sqrt{\smash[b]{s_{_{\mathrm{NN}}}}} = $ 5.02 TeV PRL 120 (2018) 102301 1707.01005
17 CMS Collaboration Measurement of prompt $ \mathrm{D^0} $ meson azimuthal anisotropy in Pb-Pb collisions at $ \sqrt{\smash[b]{s_{_{\mathrm{NN}}}}}= $ 5.02 TeV PRL 120 (2018) 202301 CMS-HIN-16-007
1708.03497
18 CMS Collaboration Measurement of prompt $ \mathrm{D}^0 $ and $ \overline{\mathrm{D}}^0 $ meson azimuthal anisotropy and search for strong electric fields in PbPb collisions at $ \sqrt{\smash[b]{s_{_{\mathrm{NN}}}}}= $ 5.02 TeV PLB 816 (2021) 136253 CMS-HIN-19-008
2009.12628
19 ATLAS Collaboration Measurement of azimuthal anisotropy of muons from charm and bottom hadrons in Pb+Pb collisions at $ \sqrt{\smash[b]{s_{_{\mathrm{NN}}}}} = $ 5.02 TeV with the ATLAS detector PLB 807 (2020) 135595 2003.03565
20 ALICE Collaboration $ \mathrm{J}/\psi $ elliptic and triangular flow in Pb-Pb collisions at $ \sqrt{\smash[b]{s_{_{\mathrm{NN}}}}} = $ 5.02 TeV JHEP 10 (2020) 141 2005.14518
21 CMS Collaboration Probing charm quark dynamics via multiparticle correlations in PbPb collisions at $ \sqrt{\smash[b]{s_{_{\mathrm{NN}}}}} = $ 5.02 TeV PRL 129 (2022) 022001 CMS-HIN-20-001
2112.12236
22 CMS Collaboration Suppression and azimuthal anisotropy of prompt and nonprompt $ \mathrm{J}/\psi $ production in PbPb collisions at $ \sqrt{\smash[b]{s_{_{\mathrm{NN}}}}} = $ 2.76 TeV EPJC 77 (2017) 252 CMS-HIN-14-005
1610.00613
23 ALICE Collaboration Elliptic flow of electrons from beauty-hadron decays in Pb-Pb collisions at $ \sqrt{\smash[b]{s_{_{\mathrm{NN}}}}} = $ 5.02 TeV PRL 126 (2021) 162001 2005.11130
24 CMSnoop HEPData record for this analysis link
25 CMS Collaboration The CMS experiment at the CERN LHC JINST 03 (2008) S08004
26 CMS Collaboration Performance of the CMS level-1 trigger in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 15 (2020) P10017 CMS-TRG-17-001
2006.10165
27 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
28 CMS Collaboration Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC JINST 16 (2021) P05014 CMS-EGM-17-001
2012.06888
29 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
30 CMS Collaboration Description and performance of track and primary-vertex reconstruction with the CMS tracker JINST 9 (2014) P10009 CMS-TRK-11-001
1405.6569
31 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
32 CMS Collaboration Observation and studies of jet quenching in PbPb collisions at $ \sqrt{\smash[b]{s_{_{\mathrm{NN}}}}}= $ 2.76 TeV Phys. Rev. C 84 (2011) 024906 CMS-HIN-10-004
1102.1957
33 CMS Collaboration Precision luminosity measurement in proton-proton collisions at $ \sqrt{s}= $ 13 TeV in 2015 and 2016 at CMS EPJC 81 (2021) 800 CMS-LUM-17-003
2104.01927
34 CMS Collaboration CMS luminosity measurement using nucleus-nucleus collisions at $ \sqrt{\smash[b]{s_{_{\mathrm{NN}}}}}= $ 5.02 TeV in 2018 CMS Physics Analysis Summary, 2022
CMS-PAS-LUM-18-001
CMS-PAS-LUM-18-001
35 CMS Collaboration Charged-particle nuclear modification factors in PbPb and pPb collisions at $ \sqrt{\smash[b]{s_{_{\mathrm{NN}}}}}= $ 5.02 TeV JHEP 04 (2017) 039 CMS-HIN-15-015
1611.01664
36 T. Sjöstrand et al. An introduction to PYTHIA 8.2 Comput. Phys. Commun. 191 (2015) 159 1410.3012
37 CMS Collaboration Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements EPJC 80 (2020) 4 CMS-GEN-17-001
1903.12179
38 D. J. Lange The EVTGEN particle decay simulation package NIM A 462 (2001) 152
39 I. P. Lokhtin and A. M. Snigirev A model of jet quenching in ultrarelativistic heavy ion collisions and high-$ p_{\mathrm{T}} $ hadron spectra at RHIC EPJC 45 (2006) 211 hep-ph/0506189
40 GEANT4 Collaboration GEANT 4---a simulation toolkit NIM A 506 (2003) 250
41 Particle Data Group Collaboration Review of particle physics Prog. Theor. Exp. Phys. 2022 (2022) 083C01
42 H. Voss, A. Höcker, J. Stelzer, and F. Tegenfeldt TMVA, the toolkit for multivariate data analysis with ROOT in XIth International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT), . . . [PoS(ACAT)040], 2007
link
physics/0703039
43 STAR Collaboration Elliptic flow from two- and four-particle correlations in Au + Au collisions at $ \sqrt{\smash[b]{s_{_{\mathrm{NN}}}}} = $ 130 GeV Phys. Rev. C 66 (2002) 034904 nucl-ex/0206001
44 A. M. Poskanzer and S. A. Voloshin Methods for analyzing anisotropic flow in relativistic nuclear collisions Phys. Rev. C 58 (1998) 1671 nucl-ex/9805001
45 NA49 Collaboration Directed and elliptic flow of charged pions and protons in Pb+Pb collisions at 40A and 158A GeV Phys. Rev. C 68 (2003) 034903 nucl-ex/0303001
46 M. J. Oreglia A study of the reactions $ \psi^\prime \to \gamma \gamma \psi $ PhD thesis, Stanford University, . SLAC Report SLAC-R-236, 1980
link
47 CMS Collaboration Studies of charm and beauty hadron long-range correlations in pp and pPb collisions at LHC energies PLB 813 (2021) 136036 CMS-HIN-19-009
2009.07065
48 CMS Collaboration Studies of beauty suppression via nonprompt $ \mathrm{D}^0 $ mesons in Pb-Pb collisions at $ \sqrt{\smash[b]{s_{_{\mathrm{NN}}}}} = $ 5.02 TeV PRL 123 (2019) 022001 CMS-HIN-16-016
1810.11102
49 T. Song et al. Tomography of the quark-gluon plasma by charm quarks Phys. Rev. C 92 (2015) 014910 1503.03039
50 S. Cao, T. Luo, G.-Y. Qin, and X.-N. Wang Linearized Boltzmann transport model for jet propagation in the quark-gluon plasma: heavy quark evolution Phys. Rev. C 94 (2016) 014909 1605.06447
51 W.-J. Xing, S. Cao, G.-Y. Qin, and H. Xing Flavor hierarchy of jet quenching in relativistic heavy-ion collisions PLB 805 (2020) 135424 1906.00413
52 M. He, R. J. Fries, and R. Rapp Heavy flavor at the large hadron collider in a strong coupling approach PLB 735 (2014) 445 1401.3817
53 S. Li, C. Wang, W. Renzhuo, and J. Liao Probing the transport properties of quark-gluon plasma via heavy-flavor Boltzmann and Langevin dynamics Phys. Rev. C 99 (2019) 054909 1901.04600
54 S. Li and J. Liao Data-driven extraction of heavy quark diffusion in quark-gluon plasma EPJC 80 (2020) 7 1912.08965
55 S. Shi, J. Liao, and M. Gyulassy Probing the color structure of the perfect QCD fluids via soft-hard-event-by-event azimuthal correlations Chin. Phys. C 42 (2018) 104104 1804.01915
56 S. Shi, J. Liao, and M. Gyulassy Global constraints from RHIC and LHC on transport properties of QCD fluids in CUJET/CIBJET framework Chin. Phys. C 43 (2019) 044101 1808.05461
Compact Muon Solenoid
LHC, CERN