CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-BPH-22-005 ; CERN-EP-2023-297
Test of lepton flavor universality in $ {\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mu^{+}\mu^{-} $ and $ {\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mathrm{e}^+\mathrm{e}^- $ decays in proton-proton collisions at $ \sqrt{s} = $ 13 TeV
Submitted to Reports on Progress in Physics
Abstract: A test of lepton flavor universality in $ {\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mu^{+}\mu^{-} $ and $ {\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mathrm{e}^+\mathrm{e}^- $ decays, as well as a measurement of differential and integrated branching fractions of a nonresonant $ {\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mu^{+}\mu^{-} $ decay are presented. The analysis is made possible by a dedicated data set of proton-proton collisions at $ \sqrt{s} = $ 13 TeV recorded in 2018, by the CMS experiment at the LHC, using a special high-rate data stream designed for collecting about 10 billion unbiased b hadron decays. The ratio of the branching fractions $ \mathcal{B}({\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mu^{+}\mu^{-}) $ to $ \mathcal{B}({\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mathrm{e}^+\mathrm{e}^-) $ is determined from the measured double ratio $ R(\mathrm{K}) $ of these decays to the respective branching fractions of the $ {\mathrm{B}^{\pm}} \!\to\! {\mathrm{J}/\psi} \mathrm{K^{\pm}} $ with $ {\mathrm{J}/\psi} \!\to\!\mu^{+}\mu^{-} $ and $ \mathrm{e}^+\mathrm{e}^- $ decays, which allow for significant cancellation of systematic uncertainties. The ratio $ R(\mathrm{K}) $ is measured in the range 1.1 $ < q^2 < $ 6.0 GeV$^2 $, where $ q $ is the invariant mass of the lepton pair, and is found to be $ R(\mathrm{K})= $ 0.78 $ ^{+0.47}_{-0.23} $, in agreement with the standard model expectation $ R(\mathrm{K}) \approx $ 1. This measurement is limited by the statistical precision of the electron channel. The integrated branching fraction in the same $ q^2 $ range, $ \mathcal{B}({\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mu^{+}\mu^{-}) = $ (12.42 $ \pm $ 0.68) $\times$ 10$^{-8} $, is consistent with the present world-average value and has a comparable precision.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
Representative Feynman diagrams for the decay of a $ {\mathrm{B}^{+}} $ meson into a $ \mathrm{K^+} $ meson and a lepton pair in the SM (left) and in a BSM scenario that introduces a leptoquark (LQ) with flavor-dependent couplings (right).

png pdf
Figure 2:
Analysis BDT output for signal (MC simulation, in black) and background (same-sign dilepton data, in red) for the muon channel (left) and for the PF-PF (center) and PF-LP (right) electron channels. The histograms are normalized to unit area.

png pdf
Figure 2-a:
Analysis BDT output for signal (MC simulation, in black) and background (same-sign dilepton data, in red) for the muon channel. The histograms are normalized to unit area.

png pdf
Figure 2-b:
Analysis BDT output for signal (MC simulation, in black) and background (same-sign dilepton data, in red) for the PF-PF electron channel. The histograms are normalized to unit area.

png pdf
Figure 2-c:
Analysis BDT output for signal (MC simulation, in black) and background (same-sign dilepton data, in red) for the PF-LP electron channel. The histograms are normalized to unit area.

png pdf
Figure 3:
Results of an unbinned likelihood fit to the $ \mathrm{K^+}\mu^{+}\mu^{-} $ invariant mass distributions in the low-$ q^2 $ bin (upper), and in the $ {\mathrm{B}^{+}} \!\to\! {\mathrm{J}/\psi} (\mu^{+}\mu^{-})\mathrm{K^+} $ (lower left) and $ {\mathrm{B}^{+}} \!\to\! \psi(2\text{S})(\mu^{+}\mu^{-})\mathrm{K^+} $ (lower right) CRs. The error bars show the statistical uncertainty in data. The lower panels show the distribution of the pull, which is defined as the Poisson probability to observe the number of event counts in data, given the fit function, expressed in terms of the Gaussian significance.

png pdf
Figure 3-a:
Results of an unbinned likelihood fit to the $ \mathrm{K^+}\mu^{+}\mu^{-} $ invariant mass distributions in the low-$ q^2 $ bin. The error bars show the statistical uncertainty in data. The lower panel shows the distribution of the pull, which is defined as the Poisson probability to observe the number of event counts in data, given the fit function, expressed in terms of the Gaussian significance.

png pdf
Figure 3-b:
Results of an unbinned likelihood fit to the $ \mathrm{K^+}\mu^{+}\mu^{-} $ invariant mass distributions in the $ {\mathrm{B}^{+}} \!\to\! {\mathrm{J}/\psi} (\mu^{+}\mu^{-})\mathrm{K^+} $ CR. The error bars show the statistical uncertainty in data. The lower panel shows the distribution of the pull, which is defined as the Poisson probability to observe the number of event counts in data, given the fit function, expressed in terms of the Gaussian significance.

png pdf
Figure 3-c:
Results of an unbinned likelihood fit to the $ \mathrm{K^+}\mu^{+}\mu^{-} $ invariant mass distributions in the $ {\mathrm{B}^{+}} \!\to\! \psi(2\text{S})(\mu^{+}\mu^{-})\mathrm{K^+} $ CR. The error bars show the statistical uncertainty in data. The lower panel shows the distribution of the pull, which is defined as the Poisson probability to observe the number of event counts in data, given the fit function, expressed in terms of the Gaussian significance.

png pdf
Figure 4:
The $ \mathrm{K^+}\mathrm{e}^+\mathrm{e}^- $ invariant mass spectrum with the results of the fit shown with the red line in the low-$ q^2 $ region (upper row), $ {\mathrm{B}^{+}} \!\to\! {\mathrm{J}/\psi} (\mathrm{e}^+\mathrm{e}^-)\mathrm{K^+} $ CR (middle row), and $ {\mathrm{B}^{+}} \!\to\! \psi(2\text{S})(\mathrm{e}^+\mathrm{e}^-)\mathrm{K^+} $ CR (lower row) for the PF-PF (left column) and PF-LP (right column) categories. The shoulder below the nominal $ {\mathrm{B}^{+}} $ meson mass for the $\psi$(2S) CR is due to the narrow $ q^2 $ range in this bin compared to the size of the radiative tail. Notations are as in Fig. 3.

png pdf
Figure 4-a:
The $ \mathrm{K^+}\mathrm{e}^+\mathrm{e}^- $ invariant mass spectrum with the results of the fit shown with the red line in the low-$ q^2 $ region for the PF-PF category. The shoulder below the nominal $ {\mathrm{B}^{+}} $ meson mass for the $\psi$(2S) CR is due to the narrow $ q^2 $ range in this bin compared to the size of the radiative tail. Notations are as in Fig. 3.

png pdf
Figure 4-b:
The $ \mathrm{K^+}\mathrm{e}^+\mathrm{e}^- $ invariant mass spectrum with the results of the fit shown with the red line in the low-$ q^2 $ region for the PF-LP category. The shoulder below the nominal $ {\mathrm{B}^{+}} $ meson mass for the $\psi$(2S) CR is due to the narrow $ q^2 $ range in this bin compared to the size of the radiative tail. Notations are as in Fig. 3.

png pdf
Figure 4-c:
The $ \mathrm{K^+}\mathrm{e}^+\mathrm{e}^- $ invariant mass spectrum with the results of the fit shown with the red line in the $ {\mathrm{B}^{+}} \!\to\! {\mathrm{J}/\psi} (\mathrm{e}^+\mathrm{e}^-)\mathrm{K^+} $ CR for the PF-PF category. The shoulder below the nominal $ {\mathrm{B}^{+}} $ meson mass for the $\psi$(2S) CR is due to the narrow $ q^2 $ range in this bin compared to the size of the radiative tail. Notations are as in Fig. 3.

png pdf
Figure 4-d:
The $ \mathrm{K^+}\mathrm{e}^+\mathrm{e}^- $ invariant mass spectrum with the results of the fit shown with the red line in the $ {\mathrm{B}^{+}} \!\to\! {\mathrm{J}/\psi} (\mathrm{e}^+\mathrm{e}^-)\mathrm{K^+} $ CR for the PF-LP category. The shoulder below the nominal $ {\mathrm{B}^{+}} $ meson mass for the $\psi$(2S) CR is due to the narrow $ q^2 $ range in this bin compared to the size of the radiative tail. Notations are as in Fig. 3.

png pdf
Figure 4-e:
The $ \mathrm{K^+}\mathrm{e}^+\mathrm{e}^- $ invariant mass spectrum with the results of the fit shown with the red line in the $ {\mathrm{B}^{+}} \!\to\! \psi(2\text{S})(\mathrm{e}^+\mathrm{e}^-)\mathrm{K^+} $ CR for the PF-PF category. The shoulder below the nominal $ {\mathrm{B}^{+}} $ meson mass for the $\psi$(2S) CR is due to the narrow $ q^2 $ range in this bin compared to the size of the radiative tail. Notations are as in Fig. 3.

png pdf
Figure 4-f:
The $ \mathrm{K^+}\mathrm{e}^+\mathrm{e}^- $ invariant mass spectrum with the results of the fit shown with the red line in the $ {\mathrm{B}^{+}} \!\to\! \psi(2\text{S})(\mathrm{e}^+\mathrm{e}^-)\mathrm{K^+} $ CR for the PF-LP category. The shoulder below the nominal $ {\mathrm{B}^{+}} $ meson mass for the $\psi$(2S) CR is due to the narrow $ q^2 $ range in this bin compared to the size of the radiative tail. Notations are as in Fig. 3.

png pdf
Figure 5:
Comparison of the measured differential $ {\mathrm{B}^{+}} \!\to\! \mathrm{K^+}\mu^{+}\mu^{-} $ branching fraction with the theoretical predictions obtained using HEPFIT, SUPERISO, FLAVIO, and EOS packages. The HEPFIT predictions are available only for $ q^2 < $ 8 GeV$^2 $.

png pdf
Figure 6:
Log likelihood function from the fit profiled as a function of $ R(\mathrm{K})^{-1} $. The dark and light grey area indicates the $ \pm $ 1 and $ \pm $ 2 $ \sigma $ bands respectively.

png pdf
Figure A1:
The product of acceptance and efficiency ($ \mathcal{A}\epsilon $) of the $ {\mathrm{B}^{+}} \!\to\! \mathrm{K^+}\mu^{+}\mu^{-} $ channel, as a function of the muon pair $ q^2 $, as measured in simulated signal events, after all the corrections applied. Regions corresponding to resonances are displayed with red markers.

png pdf
Figure A2:
Relative uncertainties in the differential branching fraction measurement of $ {\mathrm{B}^{+}} \!\to\! \mathrm{K^+}\mu^{+}\mu^{-} $ per $ q^2 $ bin. Different colors correspond to data statistical, simulation statistical, and systematic uncertainties.

png pdf
Figure A3:
The $ \mathrm{K^+} \mu^{+} \mu^{-} $ invariant mass distributions in various $ q^2 $ bins, with the result of the simultaneous fit overlaid in blue and the individual fit components as described in the legends for (from upper left to lower right): $ [0,0.98] $, $ [1.1,2.0] $, $ [2.0,3.0]$, $ [3.0,4.0] $, $ [4.0,5.0] $, $ [5.0,6.0] $, $ [6.0,7.0] $, and $ [7.0,8.0] $, $ q^2 $ bins. Notations are as in Fig. 3.

png pdf
Figure A3-a:
The $ \mathrm{K^+} \mu^{+} \mu^{-} $ invariant mass distributions in the $ [0,0.98] $ $ q^2 $ bin, with the result of the simultaneous fit overlaid in blue and the individual fit components as described in the legends.

png pdf
Figure A3-b:
The $ \mathrm{K^+} \mu^{+} \mu^{-} $ invariant mass distributions in the $ [1.1,2.0] $ $ q^2 $ bin, with the result of the simultaneous fit overlaid in blue and the individual fit components as described in the legends.

png pdf
Figure A3-c:
The $ \mathrm{K^+} \mu^{+} \mu^{-} $ invariant mass distributions in the $ [2.0,3.0] $ $ q^2 $ bin, with the result of the simultaneous fit overlaid in blue and the individual fit components as described in the legends.

png pdf
Figure A3-d:
The $ \mathrm{K^+} \mu^{+} \mu^{-} $ invariant mass distributions in the $[3.0,4.0] $ $ q^2 $ bin, with the result of the simultaneous fit overlaid in blue and the individual fit components as described in the legends.

png pdf
Figure A3-e:
The $ \mathrm{K^+} \mu^{+} \mu^{-} $ invariant mass distributions in the $ [4.0,5.0] $ $ q^2 $ bin, with the result of the simultaneous fit overlaid in blue and the individual fit components as described in the legends.

png pdf
Figure A3-f:
The $ \mathrm{K^+} \mu^{+} \mu^{-} $ invariant mass distributions in the $ [5.0,6.0] $ $ q^2 $ bin, with the result of the simultaneous fit overlaid in blue and the individual fit components as described in the legends.

png pdf
Figure A3-g:
The $ \mathrm{K^+} \mu^{+} \mu^{-} $ invariant mass distributions in the $ [6.0,7.0] $ $ q^2 $ bin, with the result of the simultaneous fit overlaid in blue and the individual fit components as described in the legends.

png pdf
Figure A3-h:
The $ \mathrm{K^+} \mu^{+} \mu^{-} $ invariant mass distributions in the $ [7.0,8.0] $ $ q^2 $ bin, with the result of the simultaneous fit overlaid in blue and the individual fit components as described in the legends.

png pdf
Figure A4:
The $ \mathrm{K^+} \mu^{+} \mu^{-} $ invariant mass distributions in various $ q^2 $ bins, with the result of the simultaneous fit overlaid in blue and the individual fit components as described in the legends for (from upper left to lower right): $ [11.0,11.8] $, $ [11.8,12.5] $, $ [14.82,16.0] $, $ [16.0,17.0] $, $ [17.0,18.0] $, $ [18.0,19.24] $, and $ [19.24,22.9]$ GeV$^{2}$ $q^2 $ bin. Notations are as in Fig. 3.

png pdf
Figure A4-a:
The $ \mathrm{K^+} \mu^{+} \mu^{-} $ invariant mass distributions in the $ [11.0,11.8] $ GeV$^{2}$ $ q^2 $ bin, with the result of the simultaneous fit overlaid in blue and the individual fit components as described in the legends. Notations are as in Fig. 3.

png pdf
Figure A4-b:
The $ \mathrm{K^+} \mu^{+} \mu^{-} $ invariant mass distributions in the $ [11.8,12.5] $ GeV$^{2}$ $ q^2 $ bin, with the result of the simultaneous fit overlaid in blue and the individual fit components as described in the legends. Notations are as in Fig. 3.

png pdf
Figure A4-c:
The $ \mathrm{K^+} \mu^{+} \mu^{-} $ invariant mass distributions in the $ [14.82,16.0] $ GeV$^{2}$ $ q^2 $ bin, with the result of the simultaneous fit overlaid in blue and the individual fit components as described in the legends. Notations are as in Fig. 3.

png pdf
Figure A4-d:
The $ \mathrm{K^+} \mu^{+} \mu^{-} $ invariant mass distributions in the $ [16.0,17.0] $ GeV$^{2}$ $ q^2 $ bin, with the result of the simultaneous fit overlaid in blue and the individual fit components as described in the legends. Notations are as in Fig. 3.

png pdf
Figure A4-e:
The $ \mathrm{K^+} \mu^{+} \mu^{-} $ invariant mass distributions in the $ [17.0,18.0] $ GeV$^{2}$ $ q^2 $ bin, with the result of the simultaneous fit overlaid in blue and the individual fit components as described in the legends. Notations are as in Fig. 3.

png pdf
Figure A4-f:
The $ \mathrm{K^+} \mu^{+} \mu^{-} $ invariant mass distributions in the $ [18.0,19.24] $ GeV$^{2}$ $ q^2 $ bin, with the result of the simultaneous fit overlaid in blue and the individual fit components as described in the legends. Notations are as in Fig. 3.

png pdf
Figure A4-g:
The $ \mathrm{K^+} \mu^{+} \mu^{-} $ invariant mass distributions in the $ [19.24,22.9]$ GeV$^{2}$ $ q^2 $ bin, with the result of the simultaneous fit overlaid in blue and the individual fit components as described in the legends. Notations are as in Fig. 3.

png pdf
Figure A5:
Correlation matrix for the differential branching fraction extraction between different $ q^2 $ bins in the simultaneous fit.

png pdf
Figure A6:
Summary of $ R(\mathrm{K}) $ measurements from BaBar [71], Belle [72], and LHCb [10,11,9] experiments, as well as the present CMS measurement. The pink data points of the first three LHCb measurements were superseded by the latest one, shown as the red point.
Tables

png pdf
Table 1:
Summary of the loosest muon trigger requirements imposed by the L1 and HLT algorithms for each instantaneous luminosity scenario: the L1 and HLT muon transverse momentum thresholds $ p^\mu_{\mathrm{T}} $, and the HLT muon impact parameter significance $ \text{IP}_{\text{sig}} $. Also shown are the trigger purity, peak HLT rate, and $ \int\!\!\!\;{\mathcal L}{\mathrm d}t $. The second trigger was the highest threshold one during early data taking, corresponding to $ \int\!\!\!\;{\mathcal L}{\mathrm d}t = 6.9\mbox{\,\text{fb}^{-1}} $, and then the second-highest for the rest of the data taking, accumulating $ \int\!\!\!\;{\mathcal L}{\mathrm d}t = 26.7\mbox{\,\text{fb}^{-1}} $ out of 34.7 fb$^{-1}$ collected by the highest threshold trigger.

png pdf
Table 2:
Input variables used in the muon and electron channel BDTs.

png pdf
Table 3:
The product of acceptance, and offline and trigger efficiency ($ \mathcal{A}\epsilon\epsilon_{\text{trig}} $) for the signal in the low-$ q^2 $ region and for the two resonance CRs. In the case of electrons, the trigger efficiency is not included in the quoted $ \mathcal{A}\epsilon $ numbers, as it cancels out in the $ R(\mathrm{K}) $ double ratio. Uncertainties are statistical only.

png pdf
Table 4:
Fit functions used for signal and background sources in each $ q^2 $ bin in the muon channel. The $ \text{---} $ symbol indicates this background is not included in this region.

png pdf
Table 5:
Signal yields in the muon channel in the low-$ q^2 $ bin and resonant CRs.

png pdf
Table 6:
Fit functions used to describe signal and various background components for the electron channel. The $ \text{---} $ symbol indicates this background is not included in this region.

png pdf
Table 7:
Signal yields in the electron channel in the low-$ q^2 $ bin and resonant CRs.

png pdf
Table 8:
Major sources of uncertainty in the $ {\mathrm{B}^{+}} \!\to\! \mathrm{K^+}\mu^{+}\mu^{-} $/$ {\mathrm{B}^{+}} \!\to\! {\mathrm{J}/\psi} (\mu^{+}\mu^{-})\mathrm{K^+} $ ratio measurement.

png pdf
Table 9:
Major sources of uncertainty in the $ {\mathrm{B}^{+}} \!\to\! \mathrm{K^+}\mathrm{e}^+\mathrm{e}^- $/$ {\mathrm{B}^{+}} \!\to\! {\mathrm{J}/\psi} (\mathrm{e}^+\mathrm{e}^-)\mathrm{K^+} $ ratio measurement in the PF-PF and PF-LP categories. The last row shows the statistical uncertainty, which is the same as the total uncertainty within the quoted precision.

png pdf
Table 10:
The $ {\mathrm{B}^{+}} \!\to\! \mathrm{K^+}\mu^{+}\mu^{-} $ branching fraction, $ \mathrm{d}{\mathcal{B}({\mathrm{B}^{+}} \!\to\! \mathrm{K^+}\mu^{+}\mu^{-})}{q^2} / \mathrm{d}q^2 $ integrated over the specified $ q^2 $ range, for the individual $ q^2 $ bins.. The uncertainties in the yields are statistical uncertainties from the fit, while the branching fraction uncertainties include both the statistical and systematic components.

png pdf
Table 11:
Comparison of the $ \mathcal{B}({\mathrm{B}^{+}} \!\to\! \mathrm{K^+}\mu^{+}\mu^{-}) $ branching fraction measurement in the low-$ q^2 $ range and the theoretical predictions based on the EOS, FLAVIO, SUPERISO, and HEPFIT packages.
Summary
We have reported the first test of lepton flavor universality with the CMS experiment at the LHC in $ {\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mu^{+}\mu^{-} $ and $ {\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mathrm{e}^+\mathrm{e}^- $ decays, as well as a measurement of differential and integrated branching fractions of the nonresonant $ {\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mu^{+}\mu^{-} $ decay. The analysis has been made possible by a dedicated data set of proton-proton collisions at $ \sqrt{s} = $ 13 TeV recorded in 2018, using a special high-rate data stream designed for collecting about 10 billion unbiased b hadron decays. The ratio of the branching fractions $ \mathcal{B}({\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mu^{+}\mu^{-}) $ to $ \mathcal{B}({\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mathrm{e}^+\mathrm{e}^-) $ has been is determined from the measured double ratio $ R(\mathrm{K}) $ of these decays to the respective branching fractions of the $ {\mathrm{B}^{\pm}} \!\to\! {\mathrm{J}/\psi} \mathrm{K^{\pm}} ({\mathrm{J}/\psi} \!\to\!\mu^{+}\mu^{-}) $ and $ ({\mathrm{J}/\psi} \!\to\!\mathrm{e}^+\mathrm{e}^-) $ decays, which allow for significant cancellation of systematic uncertainties. The ratio $ R(\mathrm{K}) $ has been measured in the range 1.1 $ < q^2 < $ 6.0 GeV$^2 $, where $ q $ is the invariant mass of the lepton pair, and was found to be $ R(\mathrm{K})= $ 0.78 $ ^{+0.47}_{-0.23} $, in agreement with the standard model expectation of $ \approx $1. This measurement is limited by the statistical precision of the electron channel. The integrated branching fraction in the same $ q^2 $ range, $ \mathcal{B}({\mathrm{B}^{\pm}} \!\to\! \mathrm{K^{\pm}}\mu^{+}\mu^{-}) = $ (12.42 $ \pm $ 0.68) $\times$ 10$^{-8} $, is consistent with and has a comparable precision to the present world average. This work has demonstrated the flexibility of the CMS trigger and data acquisition system and has paved the way to many other studies of a large unbiased sample of b hadron decays collected by CMS in 2018.
References
1 S. L. Glashow Partial symmetries of weak interactions NP 22 (1961) 579
2 S. Weinberg A model of leptons PRL 19 (1967) 1264
3 A. Salam Weak and electromagnetic interactions N. Svartholm (Ed.), Proc. 8-th Nobel Symp., Almquist and Wiksell, Stockholm 1968
4 Particle Data Group Review of particle physics PTEP 2022 (2022) 083C01
5 ALEPH, DELPHI, L3, OPAL, LEP Electroweak Collaboration Electroweak measurements in electron-positron collisions at W-boson-pair energies at LEP Phys. Rept. 532 (2013) 119 1302.3415
6 ATLAS Collaboration Test of the universality of $ \tau $ and $ \mu $ lepton couplings in $ W $-boson decays with the ATLAS detector Nature Phys. 17 (2021) 813 2007.14040
7 CMS Collaboration Precision measurement of the W boson decay branching fractions in proton-proton collisions at $ \sqrt{s} $ = 13 TeV PRD 105 (2022) 072008 CMS-SMP-18-011
2201.07861
8 D. London and J. Matias $ B $ flavour anomalies: 2021 theoretical status report Ann. Rev. Nucl. Part. Sci. 72 (2022) 37 2110.13270
9 LHCb Collaboration Test of lepton universality in beauty-quark decays Nature Phys. 18 (2022) 277 2103.11769
10 LHCb Collaboration Test of lepton universality using $ B^+\to K^+\ell^+\ell^- $ decays PRL 113 (2014) 151601 1406.6482
11 LHCb Collaboration Search for lepton-universality violation in $ B^+\to K^+\ell^+\ell^- $ decays PRL 122 (2019) 191801 1903.09252
12 LHCb Collaboration Test of lepton universality with $ B^{0} \to K^{*0}\ell^{+}\ell^{-} $ decays JHEP 08 (2017) 055 1705.05802
13 LHCb Collaboration Tests of lepton universality using $ B^0\to K^0_S \ell^+ \ell^- $ and $ B^+\to K^{*+} \ell^+ \ell^- $ decays PRL 128 (2022) 191802 2110.09501
14 LHCb Collaboration Measurement of the isospin asymmetry in $ B \to K^{(*)}\mu^+\mu^- $ decays JHEP 07 (2012) 133 1205.3422
15 LHCb Collaboration Differential branching fractions and isospin asymmetries of $ B \to K^{(*)} \mu^+ \mu^- $ decays JHEP 06 (2014) 133 1403.8044
16 LHCb Collaboration Measurements of the S-wave fraction in $ B^0\to K^+\pi^-\mu^+\mu^- $ decays and the $ B^{0}\to K^*(892)^0\mu^+\mu^- $ differential branching fraction JHEP 11 (2016) 047 1606.04731
17 LHCb Collaboration Branching fraction measurements of the rare $ B^0_s\to\phi\mu^+\mu^- $ and $ B^0_s\to f_2^\prime(1525)\mu^+\mu^- $ decays PRL 127 (2021) 151801 2105.14007
18 M. Ciuchini et al. Charming penguins and lepton universality violation in $ b \to s \ell ^+ \ell ^- $ decays EPJC 83 (2023) 64 2110.10126
19 LHCb Collaboration Test of lepton universality in $ b \to s \ell^+ \ell^- $ decays PRL 131 (2023) 051803 2212.09152
20 LHCb Collaboration Measurement of lepton universality parameters in $ B^+\to K^+\ell^+\ell^- $ and $ B^0\to K^{*0}\ell^+\ell^- $ decays PRD 108 (2023) 032002 2212.09153
21 S. Patnaik, L. Nayak, and R. Singh Assessing lepton flavor universality violations in semileptonic decays 2308.05677
22 CMS Collaboration HEPData record for this analysis link
23 G. Hiller and F. Kruger More model-independent analysis of $ b \to s $ processes PRD 69 (2004) 074020 hep-ph/0310219
24 M. Bordone, G. Isidori, and A. Pattori On the Standard Model predictions for $ R_K $ and $ R_{K^*} $ EPJC 76 (2016) 440 1605.07633
25 G. Isidori, S. Nabeebaccus, and R. Zwicky QED corrections in $ \overline{B}\to \overline{K}{\mathrm{\ell}}^{+}{\mathrm{\ell}}^{-} $ at the double-differential level JHEP 12 (2020) 104 2009.00929
26 G. Isidori, D. Lancierini, S. Nabeebaccus, and R. Zwicky QED in $ \overline{B} \to \overline{K} \ell^+\ell^- $ LFU ratios: theory versus experiment, a Monte Carlo study JHEP 10 (2022) 146 2205.08635
27 A. Roodman Blind analysis in particle physics physics/0312102
28 CMS Collaboration Strategies and performance of the CMS silicon tracker alignment during LHC Run 2 NIM A 1037 (2022) 166795 CMS-TRK-20-001
2111.08757
29 CMS Tracker Group Collaboration The CMS Phase-1 pixel detector upgrade JINST 16 (2021) P02027 2012.14304
30 CMS Collaboration Track impact parameter resolution for the full pseudo rapidity coverage in the 2017 dataset with the CMS Phase-1 pixel detector CMS Detector Performance Summary CMS-DP-2020-049, 2020
CDS
31 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
32 CMS Collaboration Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC JINST 16 (2021) P05014 CMS-EGM-17-001
2012.06888
33 CMS Collaboration Recording and reconstructing 10 billion unbiased $ {\mathrm{B}} $ hadron decays in CMS CMS Detector Performance Summary CMS-DP-2019-043, 2019
CDS
34 CMS Collaboration ECAL 2016 refined calibration and Run 2 summary plots CMS Detector Performance Summary CMS-DP-2020-021, 2020
CDS
35 CMS Collaboration Performance of the CMS Level-1 trigger in proton-proton collisions at $ \sqrt{s} = $ 13\,TeV JINST 15 (2020) P10017 CMS-TRG-17-001
2006.10165
36 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
37 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004
38 CMS Collaboration Description and performance of track and primary-vertex reconstruction with the CMS tracker JINST 9 (2014) P10009 CMS-TRK-11-001
1405.6569
39 CMS Collaboration CMS luminosity measurements for the 2018 data-taking period at $ \sqrt{s} = $ 13 TeV CMS Physics Analysis Summary, 2018
CMS-PAS-LUM-18-001
CMS-PAS-LUM-18-001
40 T. Sjöstrand et al. An introduction to PYTHIA 8.2 Comput. Phys. Commun. 191 (2015) 159 1410.3012
41 D. J. Lange The EvtGen particle decay simulation package NIM A 462 (2001) 152
42 CMS Collaboration Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements EPJC 80 (2020) 4 CMS-GEN-17-001
1903.12179
43 NNPDF Collaboration Parton distributions from high-precision collider data EPJC 77 (2017) 663 1706.00428
44 E. Barberio and Z. Was PHOTOS: a universal Monte Carlo for QED radiative corrections. Version 2.0 Comput. Phys. Commun. 79 (1994) 291
45 P. Ball and R. Zwicky $ B_{d,s} \to \rho, \omega, K^*, \phi $ decay form-factors from light-cone sum rules revisited PRD 71 (2005) 014029 hep-ph/0412079
46 GEANT4 Collaboration GEANT 4---a simulation toolkit NIM A 506 (2003) 250
47 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
48 T. Chen and C. Guestrin XGBoost: a scalable tree boosting system 1603.02754
49 CMS Collaboration Measurements of inclusive W and Z cross sections in pp collisions at $ \sqrt{s}= $ 7 TeV JHEP 01 (2011) 080 CMS-EWK-10-002
1012.2466
50 CMS Collaboration CMS tracking performance results from early LHC operation EPJC 70 (2010) 1165 CMS-TRK-10-001
1007.1988
51 K. Prokofiev and T. Speer A kinematic fit and a decay chain reconstruction library in Vol1 Proceedings of Computing in High Energy and Nuclear Physics 2004
CERN-2005-002
52 M. Pivk and F. R. Le Diberder $ _{s}\mathcal{P}\text{lot} $: a statistical tool to unfold data distributions NIM A 555 (2005) 356 physics/0402083
53 M. Cacciari, M. Greco, and P. Nason The $ p_{\mathrm{T}} $ spectrum in heavy-flavour hadroproduction JHEP 05 (1998) 007 hep-ph/9803400
54 M. Cacciari, S. Frixione, and P. Nason The $ p_{\mathrm{T}} $ spectrum in heavy-flavour photoproduction JHEP 03 (2001) 006 hep-ph/0102134
55 M. Cacciari et al. Theoretical predictions for charm and bottom production at the LHC JHEP 10 (2012) 137 1205.6344
56 M. Cacciari, M. L. Mangano, and P. Nason Gluon PDF constraints from the ratio of forward heavy-quark production at the LHC at $ \sqrt{s}= $ 7 and 13 TeV EPJC 75 (2015) 610 1507.06197
57 M. J. Oreglia A study of the reactions $ \psi^\prime \to \gamma \gamma \psi $ PhD thesis, Stanford University, SLAC Report SLAC-R-236, 1980
link
58 J. E. Gaiser Charmonium spectroscopy from radiative decays of $ \mathrm{J}/\psi $ and $ \psi' $ PhD thesis, Stanford University, SLAC Report SLAC-R-255, 1982
link
59 K. S. Cranmer Kernel estimation in high-energy physics Comput. Phys. Commun. 136 (2001) 198 hep-ex/0011057
60 CMS Collaboration Measurement of the inelastic proton-proton cross section at $ \sqrt{s}= $ 13 TeV JHEP 07 (2018) 161 CMS-FSQ-15-005
1802.02613
61 J. de Blas et al. \textttHEPfit: a code for the combination of indirect and direct constraints on high energy physics models EPJC 80 (2020) 456 1910.14012
62 L. Alasfar et al. $ B $ anomalies under the lens of electroweak precision JHEP 12 (2020) 016 2007.04400
63 M. Ciuchini et al. Constraints on lepton universality violation from rare $ {\mathrm{B}} $ decays PRD 107 (2023) 055036 2212.10516
64 F. Mahmoudi SuperIso: a program for calculating the isospin asymmetry of $ B \to K^* \gamma $ in the MSSM Comput. Phys. Commun. 178 (2008) 745 0710.2067
65 F. Mahmoudi SuperIso v2.3: a program for calculating flavor physics observables in supersymmetry Comput. Phys. Commun. 180 (2009) 1579 0808.3144
66 D. M. Straub flavio: a Python package for flavour and precision phenomenology in the Standard Model and beyond 1810.08132
67 EOS Collaboration EOS: a software for flavor physics phenomenology EPJC 82 (2022) 569 2111.15428
68 N. Gubernari, M. Reboud, D. van Dyk, and J. Virto Improved theory predictions and global analysis of exclusive $ b \to s\mu^+\mu^- $ processes JHEP 09 (2022) 133 2206.03797
69 N. Gubernari, M. Reboud, D. van Dyk, and J. Virto Dispersive analysis of $ B\to K^{(*)} $ and $ B_s\to \phi $ form factors 2305.06301
70 LHCb Collaboration Measurement of the phase difference between short- and long-distance amplitudes in the $ B^+\to K^+\mu^+\mu^- $ decay EPJC 77 (2017) 161 1612.06764
71 BaBar Collaboration Measurement of branching fractions and rate asymmetries in the rare decays $ B \to K^{(*)} \ell^+ \ell^- $ PRD 86 (2012) 032012 1204.3933
72 BELLE Collaboration Test of lepton flavor universality and search for lepton flavor violation in $ B \to K\ell \ell $ decays JHEP 03 (2021) 105 1908.01848
Compact Muon Solenoid
LHC, CERN