CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-PAS-HIG-17-024
Search for the exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two b quarks and two $\tau$ leptons
Abstract: A search for the exotic decay of the Higgs boson to a pair of light pseudoscalar bosons is performed in the final state with two b jets and two $\tau$ leptons. The motivation lies in models beyond the standard model (SM), such as two-Higgs- models extended with a complex scalar singlet, which include the next-to-minimal supersymmetric SM (NMSSM). The results are based on an integrated luminosity of 35.9 fb$^{-1}$, accumulated by the CMS experiment at the LHC in 2016 at 13 TeV center-of-mass energy. Masses of the pseudoscalar boson between 15 and 60 GeV are probed, and upper limits as low as 23% are set on the branching fraction of the Higgs boson to two light pseudoscalar bosons in the NMSSM, assuming that the production cross section of the Higgs boson is the one predicted in the SM. No mass constraint is set on the b jet pair, making this search sensitive to Higgs boson decays to two scalars with different masses.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
Predicted $\mathcal{B}(aa\rightarrow bb {\tau} {\tau})$ for $m_{\mathrm{a}}= $ 40 GeV in the different models of 2HDM+S, for various values of $\tan \beta $. The picture is essentially the same for all $ m_{\mathrm{a}} $ hypotheses considered in this paper. The branching fractions are computed following the formulae in Ref. [15].

png pdf
Figure 2:
Visible invariant mass of the leptons and the leading b jet, $ {m_{{\mathrm{b}} {\tau} {\tau}}^{\mathrm{vis}}} $, after the baseline selection, in the $ {{\mu}} {{\tau}_{\rm h}} $ final state.

png pdf
Figure 3:
Distributions of $ {m_{{\tau} {\tau}}^{\mathrm{vis}}} $ in the four categories of the $ {\mathrm{e}} {{\mu}}$ channel. The "Others" contribution includes events from single top quark, diboson, SM Higgs boson, and $ {\mathrm{W}}+\textrm {jets}$ productions. The signal histogram corresponds to the production cross section predicted in the SM for the $ {\mathrm{g}} {\mathrm{g}} {{\mathrm{h}}} $, VBF, and V$ {{\mathrm{h}}} $ productions, and assumes $\mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})= $ 10%. The normalization of the predicted background distributions corresponds to the result of the global fit.

png pdf
Figure 3-a:
Distributions of $ {m_{{\tau} {\tau}}^{\mathrm{vis}}} $ in the four categories of the $ {\mathrm{e}} {{\mu}}$ channel. The "Others" contribution includes events from single top quark, diboson, SM Higgs boson, and $ {\mathrm{W}}+\textrm {jets}$ productions. The signal histogram corresponds to the production cross section predicted in the SM for the $ {\mathrm{g}} {\mathrm{g}} {{\mathrm{h}}} $, VBF, and V$ {{\mathrm{h}}} $ productions, and assumes $\mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})= $ 10%. The normalization of the predicted background distributions corresponds to the result of the global fit.

png pdf
Figure 3-b:
Distributions of $ {m_{{\tau} {\tau}}^{\mathrm{vis}}} $ in the four categories of the $ {\mathrm{e}} {{\mu}}$ channel. The "Others" contribution includes events from single top quark, diboson, SM Higgs boson, and $ {\mathrm{W}}+\textrm {jets}$ productions. The signal histogram corresponds to the production cross section predicted in the SM for the $ {\mathrm{g}} {\mathrm{g}} {{\mathrm{h}}} $, VBF, and V$ {{\mathrm{h}}} $ productions, and assumes $\mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})= $ 10%. The normalization of the predicted background distributions corresponds to the result of the global fit.

png pdf
Figure 3-c:
Distributions of $ {m_{{\tau} {\tau}}^{\mathrm{vis}}} $ in the four categories of the $ {\mathrm{e}} {{\mu}}$ channel. The "Others" contribution includes events from single top quark, diboson, SM Higgs boson, and $ {\mathrm{W}}+\textrm {jets}$ productions. The signal histogram corresponds to the production cross section predicted in the SM for the $ {\mathrm{g}} {\mathrm{g}} {{\mathrm{h}}} $, VBF, and V$ {{\mathrm{h}}} $ productions, and assumes $\mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})= $ 10%. The normalization of the predicted background distributions corresponds to the result of the global fit.

png pdf
Figure 3-d:
Distributions of $ {m_{{\tau} {\tau}}^{\mathrm{vis}}} $ in the four categories of the $ {\mathrm{e}} {{\mu}}$ channel. The "Others" contribution includes events from single top quark, diboson, SM Higgs boson, and $ {\mathrm{W}}+\textrm {jets}$ productions. The signal histogram corresponds to the production cross section predicted in the SM for the $ {\mathrm{g}} {\mathrm{g}} {{\mathrm{h}}} $, VBF, and V$ {{\mathrm{h}}} $ productions, and assumes $\mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})= $ 10%. The normalization of the predicted background distributions corresponds to the result of the global fit.

png pdf
Figure 4:
Distributions of $ {m_{{\tau} {\tau}}^{\mathrm{vis}}} $ in the four categories of the $ {\mathrm{e}} {{\tau}_{\rm h}} $ channel. The "jet$\rightarrow {{\tau}_{\rm h}} $" contribution includes all events with a jet misidentified as a $ {{\tau}_{\rm h}} $ candidate, whereas the other contributions only include events where the reconstructed $ {{\tau}_{\rm h}} $ corresponds to a $ {{\tau}_{\rm h}} $, a muon, or an electron, at generated level. The "Others" contribution includes events from single top quark, diboson, and SM Higgs boson productions. The signal histogram corresponds to the production cross section predicted in the SM for the $ {\mathrm{g}} {\mathrm{g}} {{\mathrm{h}}} $, VBF, and V$ {{\mathrm{h}}} $ productions, and assumes $\mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})= $ 10%. The normalization of the predicted background distributions corresponds to the result of the global fit.

png pdf
Figure 4-a:
Distributions of $ {m_{{\tau} {\tau}}^{\mathrm{vis}}} $ in the four categories of the $ {\mathrm{e}} {{\tau}_{\rm h}} $ channel. The "jet$\rightarrow {{\tau}_{\rm h}} $" contribution includes all events with a jet misidentified as a $ {{\tau}_{\rm h}} $ candidate, whereas the other contributions only include events where the reconstructed $ {{\tau}_{\rm h}} $ corresponds to a $ {{\tau}_{\rm h}} $, a muon, or an electron, at generated level. The "Others" contribution includes events from single top quark, diboson, and SM Higgs boson productions. The signal histogram corresponds to the production cross section predicted in the SM for the $ {\mathrm{g}} {\mathrm{g}} {{\mathrm{h}}} $, VBF, and V$ {{\mathrm{h}}} $ productions, and assumes $\mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})= $ 10%. The normalization of the predicted background distributions corresponds to the result of the global fit.

png pdf
Figure 4-b:
Distributions of $ {m_{{\tau} {\tau}}^{\mathrm{vis}}} $ in the four categories of the $ {\mathrm{e}} {{\tau}_{\rm h}} $ channel. The "jet$\rightarrow {{\tau}_{\rm h}} $" contribution includes all events with a jet misidentified as a $ {{\tau}_{\rm h}} $ candidate, whereas the other contributions only include events where the reconstructed $ {{\tau}_{\rm h}} $ corresponds to a $ {{\tau}_{\rm h}} $, a muon, or an electron, at generated level. The "Others" contribution includes events from single top quark, diboson, and SM Higgs boson productions. The signal histogram corresponds to the production cross section predicted in the SM for the $ {\mathrm{g}} {\mathrm{g}} {{\mathrm{h}}} $, VBF, and V$ {{\mathrm{h}}} $ productions, and assumes $\mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})= $ 10%. The normalization of the predicted background distributions corresponds to the result of the global fit.

png pdf
Figure 4-c:
Distributions of $ {m_{{\tau} {\tau}}^{\mathrm{vis}}} $ in the four categories of the $ {\mathrm{e}} {{\tau}_{\rm h}} $ channel. The "jet$\rightarrow {{\tau}_{\rm h}} $" contribution includes all events with a jet misidentified as a $ {{\tau}_{\rm h}} $ candidate, whereas the other contributions only include events where the reconstructed $ {{\tau}_{\rm h}} $ corresponds to a $ {{\tau}_{\rm h}} $, a muon, or an electron, at generated level. The "Others" contribution includes events from single top quark, diboson, and SM Higgs boson productions. The signal histogram corresponds to the production cross section predicted in the SM for the $ {\mathrm{g}} {\mathrm{g}} {{\mathrm{h}}} $, VBF, and V$ {{\mathrm{h}}} $ productions, and assumes $\mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})= $ 10%. The normalization of the predicted background distributions corresponds to the result of the global fit.

png pdf
Figure 4-d:
Distributions of $ {m_{{\tau} {\tau}}^{\mathrm{vis}}} $ in the four categories of the $ {\mathrm{e}} {{\tau}_{\rm h}} $ channel. The "jet$\rightarrow {{\tau}_{\rm h}} $" contribution includes all events with a jet misidentified as a $ {{\tau}_{\rm h}} $ candidate, whereas the other contributions only include events where the reconstructed $ {{\tau}_{\rm h}} $ corresponds to a $ {{\tau}_{\rm h}} $, a muon, or an electron, at generated level. The "Others" contribution includes events from single top quark, diboson, and SM Higgs boson productions. The signal histogram corresponds to the production cross section predicted in the SM for the $ {\mathrm{g}} {\mathrm{g}} {{\mathrm{h}}} $, VBF, and V$ {{\mathrm{h}}} $ productions, and assumes $\mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})= $ 10%. The normalization of the predicted background distributions corresponds to the result of the global fit.

png pdf
Figure 5:
Distributions of $ {m_{{\tau} {\tau}}^{\mathrm{vis}}} $ in the four categories of the $ {{\mu}} {{\tau}_{\rm h}} $ channel. The "jet$\rightarrow {{\tau}_{\rm h}} $" contribution includes all events with a jet misidentified as a $ {{\tau}_{\rm h}} $ candidate, whereas the other contributions only include events where the reconstructed $ {{\tau}_{\rm h}} $ corresponds to a $ {{\tau}_{\rm h}} $, a muon, or an electron, at generated level. The "Others" contribution includes events from single top quark, diboson, and SM Higgs boson productions. The signal histogram corresponds to the production cross section predicted in the SM for the $ {\mathrm{g}} {\mathrm{g}} {{\mathrm{h}}} $, VBF, and V$ {{\mathrm{h}}} $ productions, and assumes $\mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})= $ 10%. The normalization of the predicted background distributions corresponds to the result of the global fit.

png pdf
Figure 5-a:
Distributions of $ {m_{{\tau} {\tau}}^{\mathrm{vis}}} $ in the four categories of the $ {{\mu}} {{\tau}_{\rm h}} $ channel. The "jet$\rightarrow {{\tau}_{\rm h}} $" contribution includes all events with a jet misidentified as a $ {{\tau}_{\rm h}} $ candidate, whereas the other contributions only include events where the reconstructed $ {{\tau}_{\rm h}} $ corresponds to a $ {{\tau}_{\rm h}} $, a muon, or an electron, at generated level. The "Others" contribution includes events from single top quark, diboson, and SM Higgs boson productions. The signal histogram corresponds to the production cross section predicted in the SM for the $ {\mathrm{g}} {\mathrm{g}} {{\mathrm{h}}} $, VBF, and V$ {{\mathrm{h}}} $ productions, and assumes $\mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})= $ 10%. The normalization of the predicted background distributions corresponds to the result of the global fit.

png pdf
Figure 5-b:
Distributions of $ {m_{{\tau} {\tau}}^{\mathrm{vis}}} $ in the four categories of the $ {{\mu}} {{\tau}_{\rm h}} $ channel. The "jet$\rightarrow {{\tau}_{\rm h}} $" contribution includes all events with a jet misidentified as a $ {{\tau}_{\rm h}} $ candidate, whereas the other contributions only include events where the reconstructed $ {{\tau}_{\rm h}} $ corresponds to a $ {{\tau}_{\rm h}} $, a muon, or an electron, at generated level. The "Others" contribution includes events from single top quark, diboson, and SM Higgs boson productions. The signal histogram corresponds to the production cross section predicted in the SM for the $ {\mathrm{g}} {\mathrm{g}} {{\mathrm{h}}} $, VBF, and V$ {{\mathrm{h}}} $ productions, and assumes $\mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})= $ 10%. The normalization of the predicted background distributions corresponds to the result of the global fit.

png pdf
Figure 5-c:
Distributions of $ {m_{{\tau} {\tau}}^{\mathrm{vis}}} $ in the four categories of the $ {{\mu}} {{\tau}_{\rm h}} $ channel. The "jet$\rightarrow {{\tau}_{\rm h}} $" contribution includes all events with a jet misidentified as a $ {{\tau}_{\rm h}} $ candidate, whereas the other contributions only include events where the reconstructed $ {{\tau}_{\rm h}} $ corresponds to a $ {{\tau}_{\rm h}} $, a muon, or an electron, at generated level. The "Others" contribution includes events from single top quark, diboson, and SM Higgs boson productions. The signal histogram corresponds to the production cross section predicted in the SM for the $ {\mathrm{g}} {\mathrm{g}} {{\mathrm{h}}} $, VBF, and V$ {{\mathrm{h}}} $ productions, and assumes $\mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})= $ 10%. The normalization of the predicted background distributions corresponds to the result of the global fit.

png pdf
Figure 5-d:
Distributions of $ {m_{{\tau} {\tau}}^{\mathrm{vis}}} $ in the four categories of the $ {{\mu}} {{\tau}_{\rm h}} $ channel. The "jet$\rightarrow {{\tau}_{\rm h}} $" contribution includes all events with a jet misidentified as a $ {{\tau}_{\rm h}} $ candidate, whereas the other contributions only include events where the reconstructed $ {{\tau}_{\rm h}} $ corresponds to a $ {{\tau}_{\rm h}} $, a muon, or an electron, at generated level. The "Others" contribution includes events from single top quark, diboson, and SM Higgs boson productions. The signal histogram corresponds to the production cross section predicted in the SM for the $ {\mathrm{g}} {\mathrm{g}} {{\mathrm{h}}} $, VBF, and V$ {{\mathrm{h}}} $ productions, and assumes $\mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})= $ 10%. The normalization of the predicted background distributions corresponds to the result of the global fit.

png pdf
Figure 6:
Expected and observed 95% CL limits on $\frac {\sigma ({{\mathrm{h}}})}{\sigma _{SM}} \mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})$ in%. The $ {\mathrm{e}} {{\mu}}$ results are shown in the top left panel, $ {\mathrm{e}} {{\tau}_{\rm h}} $ in the top right, $ {{\mu}} {{\tau}_{\rm h}} $ in the bottom left, and the combination in the bottom right. The inner (green) band and the outer (yellow) band indicate the regions containing 68 and 95%, respectively, of the distribution of limits expected under the background-only hypothesis.

png pdf
Figure 6-a:
Expected and observed 95% CL limits on $\frac {\sigma ({{\mathrm{h}}})}{\sigma _{SM}} \mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})$ in%. The $ {\mathrm{e}} {{\mu}}$ results are shown in the top left panel, $ {\mathrm{e}} {{\tau}_{\rm h}} $ in the top right, $ {{\mu}} {{\tau}_{\rm h}} $ in the bottom left, and the combination in the bottom right. The inner (green) band and the outer (yellow) band indicate the regions containing 68 and 95%, respectively, of the distribution of limits expected under the background-only hypothesis.

png pdf
Figure 6-b:
Expected and observed 95% CL limits on $\frac {\sigma ({{\mathrm{h}}})}{\sigma _{SM}} \mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})$ in%. The $ {\mathrm{e}} {{\mu}}$ results are shown in the top left panel, $ {\mathrm{e}} {{\tau}_{\rm h}} $ in the top right, $ {{\mu}} {{\tau}_{\rm h}} $ in the bottom left, and the combination in the bottom right. The inner (green) band and the outer (yellow) band indicate the regions containing 68 and 95%, respectively, of the distribution of limits expected under the background-only hypothesis.

png pdf
Figure 6-c:
Expected and observed 95% CL limits on $\frac {\sigma ({{\mathrm{h}}})}{\sigma _{SM}} \mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})$ in%. The $ {\mathrm{e}} {{\mu}}$ results are shown in the top left panel, $ {\mathrm{e}} {{\tau}_{\rm h}} $ in the top right, $ {{\mu}} {{\tau}_{\rm h}} $ in the bottom left, and the combination in the bottom right. The inner (green) band and the outer (yellow) band indicate the regions containing 68 and 95%, respectively, of the distribution of limits expected under the background-only hypothesis.

png pdf
Figure 6-d:
Expected and observed 95% CL limits on $\frac {\sigma ({{\mathrm{h}}})}{\sigma _{SM}} \mathcal{B}({{{{\mathrm{h}}}}\to {{\mathrm{a}} {\mathrm{a}}}\to 2 {\tau} 2{{\mathrm{b}}}})$ in%. The $ {\mathrm{e}} {{\mu}}$ results are shown in the top left panel, $ {\mathrm{e}} {{\tau}_{\rm h}} $ in the top right, $ {{\mu}} {{\tau}_{\rm h}} $ in the bottom left, and the combination in the bottom right. The inner (green) band and the outer (yellow) band indicate the regions containing 68 and 95%, respectively, of the distribution of limits expected under the background-only hypothesis.

png pdf
Figure 7:
Observed 95% CL on $\frac {\sigma ({{\mathrm{h}}})}{\sigma _{SM}}\mathcal{B}({{\mathrm{h}}} \rightarrow {\mathrm{a}} {\mathrm{a}})$ in 2HDM+S of type III (left), and type IV (right). The contours corresponding to a 95% CL exclusion of $\frac {\sigma ({{\mathrm{h}}})}{\sigma _{SM}}\mathcal{B}({{\mathrm{h}}} \rightarrow {\mathrm{a}} {\mathrm{a}})= $ 1.00 and 0.34 are drawn with dashed lines. The number 34% corresponds to the limit on the branching fraction of the Higgs boson to BSM particles at the 95% CL obtained with data collected at a center-of-mass energy of 8 TeV by the CMS and ATLAS experiments [10].

png pdf
Figure 7-a:
Observed 95% CL on $\frac {\sigma ({{\mathrm{h}}})}{\sigma _{SM}}\mathcal{B}({{\mathrm{h}}} \rightarrow {\mathrm{a}} {\mathrm{a}})$ in 2HDM+S of type III (left), and type IV (right). The contours corresponding to a 95% CL exclusion of $\frac {\sigma ({{\mathrm{h}}})}{\sigma _{SM}}\mathcal{B}({{\mathrm{h}}} \rightarrow {\mathrm{a}} {\mathrm{a}})= $ 1.00 and 0.34 are drawn with dashed lines. The number 34% corresponds to the limit on the branching fraction of the Higgs boson to BSM particles at the 95% CL obtained with data collected at a center-of-mass energy of 8 TeV by the CMS and ATLAS experiments [10].

png pdf
Figure 7-b:
Observed 95% CL on $\frac {\sigma ({{\mathrm{h}}})}{\sigma _{SM}}\mathcal{B}({{\mathrm{h}}} \rightarrow {\mathrm{a}} {\mathrm{a}})$ in 2HDM+S of type III (left), and type IV (right). The contours corresponding to a 95% CL exclusion of $\frac {\sigma ({{\mathrm{h}}})}{\sigma _{SM}}\mathcal{B}({{\mathrm{h}}} \rightarrow {\mathrm{a}} {\mathrm{a}})= $ 1.00 and 0.34 are drawn with dashed lines. The number 34% corresponds to the limit on the branching fraction of the Higgs boson to BSM particles at the 95% CL obtained with data collected at a center-of-mass energy of 8 TeV by the CMS and ATLAS experiments [10].

png pdf
Figure 8:
Observed 95% CL on $\frac {\sigma ({{\mathrm{h}}})}{\sigma _{SM}}\mathcal{B}({{\mathrm{h}}} \rightarrow {\mathrm{a}} {\mathrm{a}})$ for various scenarios of 2HDM+S.
Tables

png pdf
Table 1:
Baseline selection criteria on the objects selected in the various final states. The numbers given for the $ p_{\mathrm{T}} $ thresholds of the electron and muon in the $ {\mathrm{e}} {{\mu}}$ correspond to a combination of asymmetric electron-plus-muon triggers. The $ p_{\mathrm{T}} $ threshold for the $ {{\tau}_{\rm h}} $ candidates is the result of an optimization of the expected exclusion limits of the signal.

png pdf
Table 2:
Optimized selection and categorization in the various final states.
Summary
The first search for exotic decays of the Higgs boson to pairs of light bosons with two b quark jets and two $\tau$ leptons in the final state, has been performed with data collected at 13 TeV center-of-mass energy in 2016. This decay channel has a large branching fraction in many models where the couplings to fermions are proportional to the fermion mass, and can be triggered in the dominant gluon fusion production mode because of the presence of light leptons from leptonic $\tau$ decays. No excess of events is found on top of the expected standard model background. Upper limits are set on $\mathcal{B}({{\mathrm{h}}} \rightarrow {\mathrm{a}} {\mathrm{a}} )$ assuming particular scenarios of two Higgs doublet models augmented with a scalar singlet (2HDM+S); they are, by several factors, the most stringent limits in 2HDM+S type II for 15 $ < {m_{{\mathrm{a}} }} < $ 62.5 GeV at the LHC so far.
References
1 F. Englert and R. Brout Broken symmetry and the mass of gauge vector mesons PRL 13 (1964) 321
2 P. W. Higgs Broken symmetries, massless particles and gauge fields PL12 (1964) 132
3 P. W. Higgs Broken symmetries and the masses of gauge bosons PRL 13 (1964) 508
4 G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble Global conservation laws and massless particles PRL 13 (1964) 585
5 P. W. Higgs Spontaneous symmetry breakdown without massless bosons PR145 (1966) 1156
6 T. W. B. Kibble Symmetry Breaking in Non-Abelian Gauge Theories PR155 (1967) 1554
7 ATLAS Collaboration Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC PLB 716 (2012) 1207.7214
8 CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC PLB 716 (2012) CMS-HIG-12-028
1207.7235
9 CMS Collaboration Observation of a new boson with mass near 125 GeV in pp collisions at $ \sqrt{s} = $ 7 and 8 TeV JHEP 06 (2013) 081 CMS-HIG-12-036
1303.4571
10 ATLAS and CMS Collaborations Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at $ \sqrt{s}= $ 7 and 8 TeV JHEP 08 (2016) 045 1606.02266
11 ATLAS and CMS Collaborations Combined measurement of the Higgs boson mass in $ pp $ collisions at $ \sqrt{s}= $ 7 and 8 TeV with the ATLAS and CMS experiments PRL 114 (2015) 191803 1503.07589
12 R. Dermisek and J. F. Gunion Escaping the large fine tuning and little hierarchy problems in the next to minimal supersymmetric model and $ h \rightarrow aa $ decays PRL 95 (2005) 041801 hep-ph/0502105
13 R. Dermisek and J. F. Gunion The NMSSM close to the R-symmetry limit and naturalness in $ h \rightarrow aa $ decays for $ m_a < 2 m_b $ PRD 75 (2007) 075019 hep-ph/0611142
14 S. Chang, R. Dermisek, J. F. Gunion, and N. Weiner Nonstandard Higgs boson decays Ann. Rev. Nucl. Part. Sci. 58 (2008) 75 0801.4554
15 D. Curtin et al. Exotic decays of the 125 GeV Higgs boson PRD 90 (2014) 075004 1312.4992
16 CMS Collaboration Search for neutral mssm higgs bosons decaying to a pair of tau leptons in pp colllisions JHEP 10 (2014) 160 CMS-HIG-13-021
1408.3316
17 CMS Collaboration Search for neutral MSSM Higgs bosons decaying into a pair of bottom quarks JHEP 11 (2015) 071 CMS-HIG-14-017
1506.08329
18 CMS Collaboration Search for neutral MSSM Higgs bosons decaying to $ \mu^{+} \mu^{-} $ in pp collisions at $ \sqrt{s} = $ 7 and 8 TeV PLB 752 (2016) 221 CMS-HIG-13-024
1508.01437
19 CMS Collaboration Search for a charged Higgs boson in pp collisions at $ \sqrt{s}= $ 8 TeV JHEP 11 (2015) 018 CMS-HIG-14-023
1508.07774
20 CMS Collaboration Search for Higgs boson pair production in events with two bottom quarks and two tau leptons in proton-proton collisions at sqrt(s) = 13 TeV CMS-HIG-17-002
1707.02909
21 CMS Collaboration Searches for a heavy scalar boson H decaying to a pair of 125 GeV Higgs bosons hh or for a heavy pseudoscalar boson A decaying to Zh, in the final states with $ h \to \tau \tau $ PLB 755 (2016) 217 CMS-HIG-14-034
1510.01181
22 S. Heinemeyer, O. Stal, and G. Weiglein Interpreting the LHC Higgs search results in the MSSM PLB 710 (2012) 201 1112.3026
23 G. C. Branco et al. Theory and phenomenology of two-Higgs-doublet models Phys. Rep. 516 (2012) 1 1106.0034
24 S. Ramos-Sanchez The mu-problem, the nmssm and string theory Fortsch.Phys.58:748-752,2010 58 (2010) 748--752 1003.1307
25 CMS Collaboration Search for light bosons in decays of the 125 GeV Higgs boson in proton-proton collisions at $ \sqrt{s}= $ 8 TeV JHEP 10 (2017) 076 CMS-HIG-16-015
1701.02032
26 CMS Collaboration Search for a very light NMSSM Higgs boson produced in decays of the 125 GeV scalar boson and decaying into $ \tau $ leptons in pp collisions at $ \sqrt{s}= $ 8 TeV JHEP 01 (2016) 079 CMS-HIG-14-019
1510.06534
27 CMS Collaboration A search for pair production of new light bosons decaying into muons PLB 752 (2016) 146 CMS-HIG-13-010
1506.00424
28 ATLAS Collaboration Search for the Higgs boson produced in association with a $ W $ boson and decaying to four $ b $-quarks via two spin-zero particles in $ pp $ collisions at 13 TeV with the ATLAS detector EPJC 76 (2016) 605 1606.08391
29 ATLAS Collaboration Search for new light gauge bosons in Higgs boson decays to four-lepton final states in $ pp $ collisions at $ \sqrt{s}= $ 8 TeV with the ATLAS detector at the LHC PRD 92 (2015) 092001 1505.07645
30 ATLAS Collaboration Search for Higgs boson decays to beyond-the-Standard-Model light bosons in four-lepton events with the ATLAS detector at $ \sqrt{s}= $ 13 TeV 1802.03388
31 ATLAS Collaboration Search for new phenomena in events with at least three photons collected in $ pp $ collisions at $ \sqrt{s} = $ 8 TeV with the ATLAS detector EPJC 76 (2016) 210 1509.05051
32 ATLAS Collaboration Search for Higgs bosons decaying to $ aa $ in the $ \mu\mu\tau\tau $ final state in $ pp $ collisions at $ \sqrt{s} = $ 8 TeV with the ATLAS experiment PRD 92 (2015) 052002 1505.01609
33 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
34 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004 CMS-00-001
35 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
36 J. Alwall et al. Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions EPJC 53 (2008) 473 0706.2569
37 P. Nason A new method for combining NLO QCD with shower Monte Carlo algorithms JHEP 11 (2004) 040 hep-ph/0409146
38 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
39 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX JHEP 06 (2010) 043 1002.2581
40 S. Alioli et al. Jet pair production in POWHEG JHEP 04 (2011) 081 1012.3380
41 S. Alioli, P. Nason, C. Oleari, and E. Re NLO Higgs boson production via gluon fusion matched with shower in POWHEG JHEP 04 (2009) 002 0812.0578
42 G. Luisoni, P. Nason, C. Oleari, and F. Tramontano $ HW^{\pm}/HZ + 0 $ and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO JHEP 10 (2013) 083 1306.2542
43 T. Sjostrand et al. An introduction to PYTHIA 8.2 CPC 191 (2015) 159 1410.3012
44 CMS Collaboration Event generator tunes obtained from underlying event and multiparton scattering measurements EPJC 76 (2016) 155 CMS-GEN-14-001
1512.00815
45 M. Czakon, P. Fiedler, and A. Mitov Total Top-Quark Pair-Production Cross Section at Hadron Colliders Through O($ \alpha_S^4 $) PRL 110 (2013) 252004 1303.6254
46 M. Czakon and A. Mitov Top++: A Program for the Calculation of the Top-Pair Cross-Section at Hadron Colliders CPC 185 (2014) 2930 1112.5675
47 S. Alekhin et al. The PDF4LHC Working Group Interim Report 1101.0536
48 M. Botje et al. The PDF4LHC Working Group Interim Recommendations 1101.0538
49 H.-L. Lai et al. New parton distributions for collider physics PRD 82 (2010) 074024 1007.2241
50 J. Gao et al. CT10 next-to-next-to-leading order global analysis of QCD PRD 89 (2014) 033009 1302.6246
51 NNPDF Collaboration Parton distributions with LHC data NPB 867 (2013) 244 1207.1303
52 GEANT4 Collaboration GEANT4 --- a simulation toolkit NIMA 506 (2003) 250
53 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector Submitted to J. Instrum CMS-PRF-14-001
1706.04965
54 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_t $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
55 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual EPJC 72 (2012) 1896 1111.6097
56 M. Cacciari and G. P. Salam Dispelling the $ N^{3} $ myth for the $ k_t $ jet-finder PLB 641 (2006) 57 hep-ph/0512210
57 CMS Collaboration Determination of jet energy calibration and transverse momentum resolution in CMS JINST 6 (2011) 11002 CMS-JME-10-011
1107.4277
58 CMS Collaboration Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV CMS-BTV-16-002
1712.07158
59 CMS Collaboration Reconstruction and identification of $ \tau $ lepton decays to hadrons and $ \nu_\tau $ at CMS JINST 11 (2016) P01019 CMS-TAU-14-001
1510.07488
60 CMS Collaboration Performance of reconstruction and identification of tau leptons in their decays to hadrons and tau neutrino in LHC Run-2 CMS-PAS-TAU-16-002 CMS-PAS-TAU-16-002
61 CMS Collaboration Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at $ \sqrt{s} = $ 8 TeV JINST 10 (2015) P06005 CMS-EGM-13-001
1502.02701
62 CMS Collaboration Performance of CMS muon reconstruction in pp collision events at $ \sqrt{s}= $ 7 TeV JINST 7 (2012) P10002 CMS-MUO-10-004
1206.4071
63 CMS Collaboration Search for neutral MSSM Higgs bosons decaying to a pair of tau leptons in pp collisions JHEP 10 (2014) 160 CMS-HIG-13-021
1408.3316
64 J. S. Conway Incorporating nuisance parameters in likelihoods for multisource spectra in Proceedings of PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, p. 115 CERN-2011-006
65 CMS Collaboration Performance of missing transverse momentum reconstruction algorithms in proton-proton collisions at $ \sqrt{s}= $ 8 TeV with the CMS detector CMS-PAS-JME-12-002 CMS-PAS-JME-12-002
66 CMS Collaboration Measurements of the pp$ \to $ZZ production cross section and the Z$ \to 4\ell $ branching fraction, and constraints on anomalous triple gauge couplings at $ \sqrt{s} = $ 13 TeV Submitted to EPJC CMS-SMP-16-017
1709.08601
67 CMS Collaboration Cross section measurement of $ t $-channel single top quark production in pp collisions at $ \sqrt s = $ 13 TeV PLB 772 (2017) 752 CMS-TOP-16-003
1610.00678
68 CMS Collaboration Measurements of the associated production of a Z boson and b jets in pp collisions at $ {\sqrt{s}} = $ 8 TeV EPJC 77 (2017), no. 11, 751 CMS-SMP-14-010
1611.06507
69 D. de Florian et al. Handbook of LHC Higgs cross sections: 4. deciphering the nature of the Higgs sector CERN-2017-002-M 1610.07922
70 CMS Collaboration CMS luminosity measurements for the 2016 data taking period CMS-PAS-LUM-17-001 CMS-PAS-LUM-17-001
71 T. Junk Confidence level computation for combining searches with small statistics NIMA 434 (1999) 435 hep-ex/9902006
72 A. Djouadi The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the standard model Phys. Rep. 457 (2008) 1 hep-ph/0503172
Compact Muon Solenoid
LHC, CERN