CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-EXO-21-012 ; CERN-EP-2023-216
Search for dark matter particles in W$^{+}$W$^{-}$ events with transverse momentum imbalance in proton-proton collisions at $ \sqrt{s} = $ 13 TeV
JHEP 03 (2024) 134
Abstract: A search for dark matter particles is performed using events with a pair of W bosons and large missing transverse momentum. Candidate events are selected by requiring one or two leptons ($ \ell = $ electrons or muons). The analysis is based on proton-proton collision data collected at a center-of-mass energy of 13 TeV by the CMS experiment at the LHC and corresponding to an integrated luminosity of 138 fb$ ^{-1} $. No significant excess over the expected standard model background is observed in the $ \ell\nu\mathrm{q}\mathrm{q} $ and 2$ \ell$2$\nu $ final states of the W$^{+}$W$^{-}$ boson pair. Limits are set on dark matter production in the context of a simplified dark Higgs model, with a dark Higgs boson mass above the W$^{+}$W$^{-}$ mass threshold. The dark matter phase space is probed in the mass range 100-300 GeV, extending the scope of previous searches. Current exclusion limits are improved in the range of dark Higgs masses from 160 to 250 GeV, for a dark matter mass of 200 GeV.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
Representative Born-level Feynman diagrams for the benchmark signal model considered in this paper: $ \mathrm{q}\overline{\mathrm{q}} \to \mathrm{Z}^{'} \to \mathrm{s} \chi \chi $, and $ \mathrm{s} \to \mathrm{W^+}\mathrm{W^-} $.

png pdf
Figure 1-a:
Representative Born-level Feynman diagram for the benchmark signal model considered in this paper: $ \mathrm{q}\overline{\mathrm{q}} \to \mathrm{Z}^{'} \to \mathrm{s} \chi \chi $, and $ \mathrm{s} \to \mathrm{W^+}\mathrm{W^-} $.

png pdf
Figure 1-b:
Representative Born-level Feynman diagram for the benchmark signal model considered in this paper: $ \mathrm{q}\overline{\mathrm{q}} \to \mathrm{Z}^{'} \to \mathrm{s} \chi \chi $, and $ \mathrm{s} \to \mathrm{W^+}\mathrm{W^-} $.

png pdf
Figure 2:
Normalized $ m_{\mathrm{T}}^{\ell_{\text{min}}, p_{\mathrm{T}}^\text{miss}} $ distribution in the 2$\ell$2$\nu $ channel for a signal with $ m_{\mathrm{s}} = $ 160 GeV, $ m_{\chi} = $ 100 GeV, $ m_{\mathrm{Z}^{'}} = $ 500 GeV (black), after the event selection criteria are applied. Predictions for the two main backgrounds of the analysis, WW and t\text{production}, are shown as blue and yellow solid lines respectively. The last bin includes the overflow.

png pdf
Figure 3:
Unrolled ($ m_{\ell\ell} $,$ m_{\mathrm{T}}^{\ell_{\text{min}}, p_{\mathrm{T}}^\text{miss}} $) post-fit distributions in the 2$\ell$2$\nu $ channel in a given $ \Delta R_{\ell\ell} $ region SR1 (upper left), SR2 (upper right), and SR3 (lower), for the full data set. The histogram bins are spaced uniformly. Each group of five bins (from left to right) corresponds to the $ m_{\mathrm{T}}^{\ell_{\text{min}}, p_{\mathrm{T}}^\text{miss}} $ distribution in a $ m_{\ell\ell} $ region, placed in ascending order. The black line indicates the signal prediction for $ m_{\mathrm{s}} = $ 160 GeV, $ m_{\chi} = $ 100 GeV, $ m_{\mathrm{Z}^{'}} = $ 500 GeV. In the lower panel of each plot, the ratio between the data and the background prediction is shown.

png pdf
Figure 3-a:
Unrolled ($ m_{\ell\ell} $,$ m_{\mathrm{T}}^{\ell_{\text{min}}, p_{\mathrm{T}}^\text{miss}} $) post-fit distributions in the 2$\ell$2$\nu $ channel in a given $ \Delta R_{\ell\ell} $ region SR1, for the full data set. The histogram bins are spaced uniformly. Each group of five bins (from left to right) corresponds to the $ m_{\mathrm{T}}^{\ell_{\text{min}}, p_{\mathrm{T}}^\text{miss}} $ distribution in a $ m_{\ell\ell} $ region, placed in ascending order. The black line indicates the signal prediction for $ m_{\mathrm{s}} = $ 160 GeV, $ m_{\chi} = $ 100 GeV, $ m_{\mathrm{Z}^{'}} = $ 500 GeV. In the lower panel, the ratio between the data and the background prediction is shown.

png pdf
Figure 3-b:
Unrolled ($ m_{\ell\ell} $,$ m_{\mathrm{T}}^{\ell_{\text{min}}, p_{\mathrm{T}}^\text{miss}} $) post-fit distributions in the 2$\ell$2$\nu $ channel in a given $ \Delta R_{\ell\ell} $ region SR2, for the full data set. The histogram bins are spaced uniformly. Each group of five bins (from left to right) corresponds to the $ m_{\mathrm{T}}^{\ell_{\text{min}}, p_{\mathrm{T}}^\text{miss}} $ distribution in a $ m_{\ell\ell} $ region, placed in ascending order. The black line indicates the signal prediction for $ m_{\mathrm{s}} = $ 160 GeV, $ m_{\chi} = $ 100 GeV, $ m_{\mathrm{Z}^{'}} = $ 500 GeV. In the lower panel, the ratio between the data and the background prediction is shown.

png pdf
Figure 3-c:
Unrolled ($ m_{\ell\ell} $,$ m_{\mathrm{T}}^{\ell_{\text{min}}, p_{\mathrm{T}}^\text{miss}} $) post-fit distributions in the 2$\ell$2$\nu $ channel in a given $ \Delta R_{\ell\ell} $ region SR3, for the full data set. The histogram bins are spaced uniformly. Each group of five bins (from left to right) corresponds to the $ m_{\mathrm{T}}^{\ell_{\text{min}}, p_{\mathrm{T}}^\text{miss}} $ distribution in a $ m_{\ell\ell} $ region, placed in ascending order. The black line indicates the signal prediction for $ m_{\mathrm{s}} = $ 160 GeV, $ m_{\chi} = $ 100 GeV, $ m_{\mathrm{Z}^{'}} = $ 500 GeV. In the lower panel, the ratio between the data and the background prediction is shown.

png pdf
Figure 4:
Post-fit BDT distributions in the $ \ell\nu\mathrm{q}\mathrm{q} $ channel for the full data set in the t quark CR (upper left) and W$ {+} $jets CR (upper right). The SR of the 2016 data set (lower left) and the 2017-2018 data set (lower right). The black line indicates the signal prediction with $ m_{\mathrm{s}} = $ 160 GeV, $ m_{\chi} = $ 100 GeV, $ m_{\mathrm{Z}^{'}} = $ 500 GeV. In the lower panel of each plot, the ratio between the data and the background prediction is shown.

png pdf
Figure 4-a:
Post-fit BDT distribution in the $ \ell\nu\mathrm{q}\mathrm{q} $ channel for the full data set in the t quark CR. The black line indicates the signal prediction with $ m_{\mathrm{s}} = $ 160 GeV, $ m_{\chi} = $ 100 GeV, $ m_{\mathrm{Z}^{'}} = $ 500 GeV. In the lower panel, the ratio between the data and the background prediction is shown.

png pdf
Figure 4-b:
Post-fit BDT distribution in the $ \ell\nu\mathrm{q}\mathrm{q} $ channel for the full data set in the W$ {+} $jets CR. The black line indicates the signal prediction with $ m_{\mathrm{s}} = $ 160 GeV, $ m_{\chi} = $ 100 GeV, $ m_{\mathrm{Z}^{'}} = $ 500 GeV. In the lower panel, the ratio between the data and the background prediction is shown.

png pdf
Figure 4-c:
Post-fit BDT distribution in the $ \ell\nu\mathrm{q}\mathrm{q} $ channel in the SR of the 2016 data set. The black line indicates the signal prediction with $ m_{\mathrm{s}} = $ 160 GeV, $ m_{\chi} = $ 100 GeV, $ m_{\mathrm{Z}^{'}} = $ 500 GeV. In the lower panel, the ratio between the data and the background prediction is shown.

png pdf
Figure 4-d:
Post-fit BDT distribution in the $ \ell\nu\mathrm{q}\mathrm{q} $ channel in the SR of the 2017-2018 data set. The black line indicates the signal prediction with $ m_{\mathrm{s}} = $ 160 GeV, $ m_{\chi} = $ 100 GeV, $ m_{\mathrm{Z}^{'}} = $ 500 GeV. In the lower panel, the ratio between the data and the background prediction is shown.

png pdf
Figure 5:
Observed (expected) exclusion regions at 95% CL for the dark Higgs model in the ($ m_{\mathrm{s}} $, $ m_{\mathrm{Z}^{'}} $) plane, marked by the solid red (black) line. The expected $ \pm $1$\sigma $ (68% CL) and $ \pm $2$\sigma $ (95% CL) bands are shown as the thinner black lines. The bar on the righthand side of each figure maps the displayed colors to the corresponding limit values. Upper left: $ m_{\chi} = $ 100 GeV, upper right: $ m_{\chi} = $ 150 GeV, lower left: $ m_{\chi} = $ 200 GeV, lower right: $ m_{\chi} = $ 300 GeV. The gray line indicates were the model parameters produce exactly the observed relic density $ \Omega_{\mathrm{c}} h^2 = $ 0.12 [7].

png pdf
Figure 5-a:
Observed (expected) exclusion regions at 95% CL for the dark Higgs model with $ m_{\chi} = $ 100 GeV in the ($ m_{\mathrm{s}} $, $ m_{\mathrm{Z}^{'}} $) plane, marked by the solid red (black) line. The expected $ \pm $1$\sigma $ (68% CL) and $ \pm $2$\sigma $ (95% CL) bands are shown as the thinner black lines. The bar on the righthand side of the figure maps the displayed colors to the corresponding limit values. The gray line indicates were the model parameters produce exactly the observed relic density $ \Omega_{\mathrm{c}} h^2 = $ 0.12 [7].

png pdf
Figure 5-b:
Observed (expected) exclusion regions at 95% CL for the dark Higgs model with $ m_{\chi} = $ 150 GeV in the ($ m_{\mathrm{s}} $, $ m_{\mathrm{Z}^{'}} $) plane, marked by the solid red (black) line. The expected $ \pm $1$\sigma $ (68% CL) and $ \pm $2$\sigma $ (95% CL) bands are shown as the thinner black lines. The bar on the righthand side of the figure maps the displayed colors to the corresponding limit values. The gray line indicates were the model parameters produce exactly the observed relic density $ \Omega_{\mathrm{c}} h^2 = $ 0.12 [7].

png pdf
Figure 5-c:
Observed (expected) exclusion regions at 95% CL for the dark Higgs model with $ m_{\chi} = $ 200 GeV in the ($ m_{\mathrm{s}} $, $ m_{\mathrm{Z}^{'}} $) plane, marked by the solid red (black) line. The expected $ \pm $1$\sigma $ (68% CL) and $ \pm $2$\sigma $ (95% CL) bands are shown as the thinner black lines. The bar on the righthand side of the figure maps the displayed colors to the corresponding limit values. The gray line indicates were the model parameters produce exactly the observed relic density $ \Omega_{\mathrm{c}} h^2 = $ 0.12 [7].

png pdf
Figure 5-d:
Observed (expected) exclusion regions at 95% CL for the dark Higgs model with $ m_{\chi} = $ 300 GeV in the ($ m_{\mathrm{s}} $, $ m_{\mathrm{Z}^{'}} $) plane, marked by the solid red (black) line. The expected $ \pm $1$\sigma $ (68% CL) and $ \pm $2$\sigma $ (95% CL) bands are shown as the thinner black lines. The bar on the righthand side of the figure maps the displayed colors to the corresponding limit values. The gray line indicates were the model parameters produce exactly the observed relic density $ \Omega_{\mathrm{c}} h^2 = $ 0.12 [7].
Tables

png pdf
Table 1:
Summary of all selected variables considered in the BDT for the $ \ell\nu\mathrm{q}\mathrm{q} $ channel.

png pdf
Table 2:
Summary of the event selection criteria in the 2$\ell$2$\nu $ channel.

png pdf
Table 3:
Selection criteria for the leptons for 2016-2018 data in the $ \ell\nu\mathrm{q}\mathrm{q} $ channel. The $ p_{\mathrm{T}} $ thresholds are chosen to be equal to the corresponding single-lepton trigger threshold.

png pdf
Table 4:
Summary of the event selection criteria for the $ \ell\nu\mathrm{q}\mathrm{q} $ channel.

png pdf
Table 5:
Data and background yields for each analysis region in the 2$\ell$2$\nu $ channel. Central values and uncertainties for the background contributions are the post-fit values. For the signal prediction from simulation, with the associated uncertainties, values are given for a sample with $ m_{\mathrm{s}} = $ 160 GeV, $ m_{\chi} = $ 100 GeV, $ m_{\mathrm{Z}^{'}} = $ 500 GeV.

png pdf
Table 6:
Data and background yields for the $ \ell\nu\mathrm{q}\mathrm{q} $ channel with a BDT discriminator score above 0.6. Central values and uncertainties for the background contributions are the post-fit values. For the signal prediction from simulation, with the associated uncertainties, values are given for a sample with $ m_{\mathrm{s}} = $ 160 GeV, $ m_{\chi} = $ 100 GeV, $ m_{\mathrm{Z}^{'}} = $ 500 GeV.
Summary
A search for dark matter particles $ \chi $ produced in association with a dark Higgs boson (s) has been presented. Proton-proton collision data at a center-of-mass energy of 13 TeV are used, corresponding to an integrated luminosity of 138 fb$ ^{-1} $. The decay mode of the dark Higgs boson to a W$^{+}$W$^{-}$ pair is explored. Results are presented from a combination of the 2$\ell$2$\nu $ and $ \ell\nu\mathrm{q}\mathrm{q} $ decay channels of the W$^{+}$W$^{-}$ pair (where $ \ell = $ electrons or muons). No significant deviation from the standard model prediction is observed. Upper limits at 95% confidence level on the production cross section for dark matter particles are set and translated into bounds on dark Higgs model parameters. This analysis investigates a dark matter mass range 100-300 GeV, which is wider than in previous searches and extends the limit on the Z' boson mass $ m_{\mathrm{Z}^{'}} $ in the region of the s mass 160 $ < m_{\mathrm{s}} \lesssim $ 250 GeV for $ m_{\chi} = $ 200 GeV. The most stringent limit is set for $ m_{\chi} = $ 200 GeV, excluding $ m_{\mathrm{s}} $ masses up to $ {\approx} $ 350 GeV at $ m_{\mathrm{Z}^{'}} = $ 700 GeV, and up to $ m_{\mathrm{Z}^{'}} \approx $ 2200 GeV for $ m_{\mathrm{s}} = $ 160 GeV.
References
1 R. J. Gaitskell Direct detection of dark matter Ann. Rev. Nucl. Part. Sci. 54 (2004) 315
2 V. Trimble Existence and nature of dark matter in the universe Ann. Rev. Astron. Astrophys. 25 (1987) 425
3 T. A. Porter, R. P. Johnson, and P. W. Graham Dark matter searches with astroparticle data Ann. Rev. Astron. Astrophys. 49 (2011) 155 1104.2836
4 G. Bertone, D. Hooper, and J. Silk Particle dark matter: evidence,candidates and constraints Phys. Rept. 405 (2005) 279 hep-ph/0404175
5 J. L. Feng Dark matter candidates from particle physics and methods of detection Ann. Rev. Astron. Astrophys. 48 (2010) 495 1003.0904
6 R. J. Scherrer and M. S. Turner On the relic,cosmic abundance of stable,weakly interacting massive particles PRD 33 (1986) 1585
7 Planck Collaboration Planck 2018 results. VI. cosmological parameters Astron. Astrophys. 641 (2020) A6 1807.06209
8 G. Steigman and M. S. Turner Cosmological constraints on the properties of weakly interacting massive particles NPB 253 (1985) 375
9 ATLAS Collaboration Search for dark matter and other new phenomena in events with an energetic jet and large missing transverse momentum using the ATLAS detector JHEP 01 (2018) 126 1711.03301
10 CMS Collaboration Search for new physics in final states with an energetic jet or a hadronically decaying W or Z boson and transverse momentum imbalance at $ \sqrt{s}= $ 13 TeV PRD 97 (2018) 092005 CMS-EXO-16-048
1712.02345
11 ATLAS Collaboration Search for dark matter produced in association with bottom or top quarks in $ \sqrt{s} = $ 13 TeV pp collisions with the ATLAS detector EPJC 78 (2018) 18 1710.11412
12 CMS Collaboration Search for dark matter in events with energetic,hadronically decaying top quarks and missing transverse momentum at $ \sqrt{s}= $ 13 TeV JHEP 06 (2018) 027 CMS-EXO-16-051
1801.08427
13 ATLAS Collaboration Search for dark matter at $ \sqrt{s}= $ 13 TeV in final states containing an energetic photon and large missing transverse momentum with the ATLAS detector EPJC 77 (2017) 393 1704.03848
14 CMS Collaboration Search for new physics in the monophoton final state in proton-proton collisions at $ \sqrt{s}= $ 13 TeV JHEP 10 (2017) 073 CMS-EXO-16-039
1706.03794
15 ATLAS Collaboration Search for an invisibly decaying higgs boson or dark matter candidates produced in association with a $ z $ boson in pp collisions at $ \sqrt{s} = $ 13 TeV with the ATLAS detector PLB 776 (2018) 318 1708.09624
16 CMS Collaboration Search for new physics in events with a leptonically decaying Z boson and a large transverse momentum imbalance in proton-proton collisions at $ \sqrt{s} = $ 13 TeV EPJC 78 (2018) 291 CMS-EXO-16-052
1711.00431
17 ATLAS Collaboration Search for dark matter in events with a hadronically decaying vector boson and missing transverse momentum in pp collisions at $ \sqrt{s} = $ 13 TeV with the ATLAS detector JHEP 10 (2018) 180 1807.11471
18 CMS Collaboration Search for dark matter particles produced in association with a Higgs boson in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JHEP 03 (2020) 25 CMS-EXO-18-011
1908.01713
19 M. Duerr et al. Hunting the dark Higgs JHEP 04 (2017) 143 1701.08780
20 M. Duerr et al. How to save the WIMP: global analysis of a dark matter model with two $ s $-channel mediators JHEP 09 (2016) 42 1606.07609
21 N. F. Bell, Y. Cai, and R. K. Leane Dark forces in the sky: signals from Z' and the dark Higgs JCAP 08 (2016) 001 1605.09382
22 ATLAS Collaboration RECAST framework reinterpretation of an ATLAS dark matter search constraining a model of a dark Higgs boson decaying to two $ b $-quarks technical report, CERN, ATLAS Notes,ATL-PHYS-PUB-2019-032, 2019
23 ATLAS Collaboration Search for dark matter produced in association with a dark Higgs boson decaying into $ \mathrm{W^+}\mathrm{W^-} $ or ZZ in fully hadronic final states from $ \sqrt{s} = $ 13 TeV $ pp $ collisions recorded with the ATLAS detector PRL 126 (2021) 121802 2010.06548
24 ATLAS Collaboration Search for dark matter produced in association with a dark Higgs boson decaying into $ W^{+}W^{-} $ in the one-lepton final state at $ \sqrt{s} = $ 13 TeV using 139 fb$ ^{-1} $ of $ pp $ collisions recorded with the ATLAS detector JHEP 07 (2023) 116 2211.07175
25 CMS Collaboration HEPData record for this analysis link
26 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
27 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004
28 CMS Collaboration Precision luminosity measurement in proton-proton collisions at $ \sqrt{s} = $ 13 TeV in 2015 and 2016 at CMS EPJC 81 (2021) 800 CMS-LUM-17-003
2104.01927
29 CMS Collaboration CMS luminosity measurement for the 2017 data-taking period at $ \sqrt{s} = $ 13 TeV Technical Report , CERN, CMS Physics Analysis Summary,CMS-PAS-LUM-17-004, 2018
CMS-PAS-LUM-17-004
CMS-PAS-LUM-17-004
30 CMS Collaboration CMS luminosity measurement for the 2018 data-taking period at $ \sqrt{s} = $ 13 TeV Technical Report , CERN, CMS Physics Analysis Summary,CMS-PAS-LUM-18-002, 2019
CMS-PAS-LUM-18-002
CMS-PAS-LUM-18-002
31 T. Sjöstrand et al. An introduction to PYTHIA 8.2 Comput. Phys. Commun. 191 (2015) 159 1410.3012
32 CMS Collaboration Event generator tunes obtained from underlying event and multiparton scattering measurements EPJC 76 (2016) 155 CMS-GEN-14-001
1512.00815
33 CMS Collaboration Extraction and validation of a new set of CMS \textscPYTHIA8 tunes from underlying-event measurements EPJC 80 (2020) 4 CMS-GEN-17-001
1903.12179
34 NNPDF Collaboration Parton distributions with QED corrections NPB 877 (2013) 290 1308.0598
35 NNPDF Collaboration Unbiased global determination of parton distributions and their uncertainties at NNLO and at LO NPB 855 (2012) 153 1107.2652
36 NNPDF Collaboration Parton distributions from high-precision collider data EPJC 77 (2017) 663 1706.00428
37 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections,and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
38 D. Abercrombie et al. Dark matter benchmark models for early LHC Run-2 searches: Report of the ATLAS/CMS dark matter forum Phys. Dark Univ. 27 (2020) 100371 1507.00966
39 T. Melia, P. Nason, R. Röntsch, and G. Zanderighi W$ ^{+}$W$^{-} $,WZ and ZZ production in the POWHEG BOX JHEP 11 (2011) 078 1107.5051
40 J. M. Campbell, R. K. Ellis, and C. Williams Vector boson pair production at the LHC JHEP 07 (2011) 018 1105.0020
41 J. M. Campbell, R. K. Ellis, and W. T. Giele A multi-threaded version of MCFM EPJC 75 (2015) 246 1503.06182
42 P. Meade, H. Ramani, and M. Zeng Transverse momentum resummation effects in $ \mathrm{W}^+\mathrm{W}^- $ measurements PRD 90 (2014) 114006 1407.4481
43 P. Jaiswal and T. Okui Explanation of the ww excess at the LHC by jet-veto resummation PRD 90 (2014) 073009 1407.4537
44 S. Gieseke, T. Kasprzik, and J. H. K \"u hn Vector-boson pair production and electroweak corrections in HERWIG++ EPJC 74 (2014) 2988 1401.3964
45 F. Caola, K. Melnikov, R. Röntsch, and L. Tancredi QCD corrections to $ \mathrm{W}^+\mathrm{W}^- $ production through gluon fusion PLB 754 (2016) 275 1511.08617
46 P. Nason A new method for combining NLO QCD with shower Monte Carlo algorithms JHEP 11 (2004) 040 hep-ph/0409146
47 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
48 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX JHEP 06 (2010) 043 1002.2581
49 E. Bagnaschi, G. Degrassi, P. Slavich, and A. Vicini Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM JHEP 02 (2012) 088 1111.2854
50 P. Nason and C. Oleari NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG JHEP 02 (2010) 037 0911.5299
51 G. Luisoni, P. Nason, C. Oleari, and F. Tramontano HW$ ^{\pm}$/HZ + 0 and 1-jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO JHEP 10 (2013) 083 1306.2542
52 H. B. Hartanto, B. Jager, L. Reina, and D. Wackeroth Higgs boson production in association with top quarks in the POWHEG BOX PRD 91 (2015) 094003 1501.04498
53 S. Bolognesi et al. On the spin and parity of a single-produced resonance at the LHC PRD 86 (2012) 095031 1208.4018
54 M. Czakon et al. Top-pair production at the LHC through NNLO QCD and NLO EW JHEP 10 (2017) 186 1705.04105
55 J. M. Lindert et al. Precise predictions for V+jets dark matter backgrounds EPJC 77 (2017) 829 1705.04664
56 K. Melnikov and F. Petriello Electroweak gauge boson production at hadron colliders through $ o(\alpha_s^2) $ PRD 74 (2006) 114017 hep-ph/0609070
57 GEANT4 Collaboration GEANT 4---a simulation toolkit NIM A 506 (2003) 250
58 CMS Collaboration Technical proposal for the Phase-II upgrade of the Compact Muon Solenoid CMS Technical Proposal CERN-LHCC-2015-010,CMS-TDR-15-02, 2015
CDS
59 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
60 CMS Collaboration Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at $ \sqrt{s} = $ 8 TeV JINST 10 (2015) P06005 CMS-EGM-13-001
1502.02701
61 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
62 CMS Collaboration Performance of the reconstruction and identification of high-momentum muons in proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 15 (2020) P02027 CMS-MUO-17-001
1912.03516
63 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_{\mathrm{T}} $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
64 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual EPJC 72 (2012) 1896 1111.6097
65 CMS Collaboration Jet algorithms performance in 13 TeV data technical report, CERN, CMS Physics Analysis Summary, 2017
CMS-PAS-JME-16-003
CMS-PAS-JME-16-003
66 CMS Collaboration Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV JINST 12 (2017) P02014 CMS-JME-13-004
1607.03663
67 CMS Collaboration Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV JINST 13 (2018) P05011 CMS-BTV-16-002
1712.07158
68 CMS Collaboration Performance of missing transverse momentum reconstruction in proton-proton collisions at $ \sqrt{s} = $ 13 TeV using the CMS detector JINST 14 (2019) P07004 CMS-JME-17-001
1903.06078
69 D. Bertolini, P. Harris, M. Low, and N. Tran Pileup per particle identification JHEP 10 (2014) 059 1407.6013
70 L. Moneta et al. The RooStats project PoS ACAT 057, 2010
link
1009.1003
71 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics EPJC 71 (2011) 1554 1007.1727
72 CMS Collaboration Measurements of properties of the Higgs boson decaying to a W boson pair in pp collisions at $ \sqrt{s}= $ 13 TeV PLB 791 (2019) 96 CMS-HIG-16-042
1806.05246
73 CMS Collaboration Measurement of the inelastic proton-proton cross section at $ \sqrt{s}= $ 13 TeV JHEP 07 (2018) 161 CMS-FSQ-15-005
1802.02613
74 J. Butterworth et al. PDF4LHC recommendations for LHC Run II JPG 43 (2016) 023001 1510.03865
75 CMS Collaboration Measurements of the higgs boson production cross section and couplings in the w boson pair decay channel in proton-proton collisions at $ \sqrt{s}= $ 13 TeV EPJC 83 (2023) 667 CMS-HIG-20-013
2206.09466
76 F. Caola et al. QCD corrections to vector boson pair production in gluon fusion including interference effects with off-shell Higgs at the LHC JHEP 07 (2016) 087 1605.04610
77 R. Barlow and C. Beeston Fitting using finite Monte Carlo samples Computer Physics Communications 77 (1993) 219
78 T. Junk Confidence level computation for combining searches with small statistics NIM A 434 (1999) 435
79 A. L. Read Presentation of search results: the $ \text{CL}_\text{s} $ technique JPG 28 (2002) 2693
80 C. Arina et al. Indirect dark-matter detection with MadDM v3.2 - lines and loops EPJC 83 (2023) 241 2107.04598
Compact Muon Solenoid
LHC, CERN