CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-HIG-18-026 ; CERN-EP-2024-028
Search for the decay of the Higgs boson to a pair of light pseudoscalar bosons in the final state with four bottom quarks in proton-proton collisions at $ \sqrt{s} = $ 13 TeV
Submitted to J. High Energy Phys.
Abstract: A search is presented for the decay of the 125 GeV Higgs boson (H) to a pair of new light pseudoscalar bosons ($ \mathrm{a} $), followed by the prompt decay of each a boson to a bottom quark-antiquark pair, $ \mathrm{H}\to\mathrm{a}\mathrm{a}\to\mathrm{b}\bar{\mathrm{b}}\mathrm{b}\bar{\mathrm{b}} $. The analysis is performed using a data sample of proton-proton collisions collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb$^{-1}$. To reduce the background from standard model processes, the search requires the Higgs boson to be produced in association with a leptonically decaying W or Z boson. The analysis probes the production of new light bosons in a 15 $ < m_{\mathrm{a}} < $ 60 GeV mass range. Assuming the standard model predictions for the Higgs boson production cross sections for pp $\to$ WH and ZH, model independent upper limits at 95% confidence level are derived for the branching fraction $ \mathcal{B}(\mathrm{H}\to\mathrm{a}\mathrm{a}\to\mathrm{b}\bar{\mathrm{b}}\mathrm{b}\bar{\mathrm{b}}) $. The combined WH and ZH observed upper limit on the branching fraction ranges from 1.10 for $ m_{\mathrm{a}} = $ 20 GeV to 0.36 for $ m_{\mathrm{a}} = $ 60 GeV, complementing other measurements in the $ \mu\mu\tau\tau $, $ \tau\tau\tau\tau $ and $ \mathrm{b}\mathrm{b}\ell\ell $ ($ \ell=\mu$, $\tau $) channels.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
Post-fit BDT distributions in the WH channel extracted with the $ m_{\mathrm{a}}= $ 60 GeV signal hypothesis. Signal regions for the 3b (upper) and 4b (lower) event categories are shown separately for the electron (left) and muon (right) channels. The dotted lines $ \mathrm{W}\mathrm{H}^{20\,\text{GeV}} $, $ \mathrm{W}\mathrm{H}^{60\,\text{GeV}} $, illustrate the shapes of the signal template normalised to the SM cross section times a branching fraction $ \mathcal{B}(\mathrm{H}\to\mathrm{a}\mathrm{a}\to\mathrm{b}\bar{\mathrm{b}}\mathrm{b}\bar{\mathrm{b}}) = $ 1 and scaled by the factors indicated in the figure. The horizontal error bars indicate the bin width.

png pdf
Figure 1-a:
Post-fit BDT distributions in the WH channel extracted with the $ m_{\mathrm{a}}= $ 60 GeV signal hypothesis. Signal regions for the 3b (upper) and 4b (lower) event categories are shown separately for the electron (left) and muon (right) channels. The dotted lines $ \mathrm{W}\mathrm{H}^{20\,\text{GeV}} $, $ \mathrm{W}\mathrm{H}^{60\,\text{GeV}} $, illustrate the shapes of the signal template normalised to the SM cross section times a branching fraction $ \mathcal{B}(\mathrm{H}\to\mathrm{a}\mathrm{a}\to\mathrm{b}\bar{\mathrm{b}}\mathrm{b}\bar{\mathrm{b}}) = $ 1 and scaled by the factors indicated in the figure. The horizontal error bars indicate the bin width.

png pdf
Figure 1-b:
Post-fit BDT distributions in the WH channel extracted with the $ m_{\mathrm{a}}= $ 60 GeV signal hypothesis. Signal regions for the 3b (upper) and 4b (lower) event categories are shown separately for the electron (left) and muon (right) channels. The dotted lines $ \mathrm{W}\mathrm{H}^{20\,\text{GeV}} $, $ \mathrm{W}\mathrm{H}^{60\,\text{GeV}} $, illustrate the shapes of the signal template normalised to the SM cross section times a branching fraction $ \mathcal{B}(\mathrm{H}\to\mathrm{a}\mathrm{a}\to\mathrm{b}\bar{\mathrm{b}}\mathrm{b}\bar{\mathrm{b}}) = $ 1 and scaled by the factors indicated in the figure. The horizontal error bars indicate the bin width.

png pdf
Figure 1-c:
Post-fit BDT distributions in the WH channel extracted with the $ m_{\mathrm{a}}= $ 60 GeV signal hypothesis. Signal regions for the 3b (upper) and 4b (lower) event categories are shown separately for the electron (left) and muon (right) channels. The dotted lines $ \mathrm{W}\mathrm{H}^{20\,\text{GeV}} $, $ \mathrm{W}\mathrm{H}^{60\,\text{GeV}} $, illustrate the shapes of the signal template normalised to the SM cross section times a branching fraction $ \mathcal{B}(\mathrm{H}\to\mathrm{a}\mathrm{a}\to\mathrm{b}\bar{\mathrm{b}}\mathrm{b}\bar{\mathrm{b}}) = $ 1 and scaled by the factors indicated in the figure. The horizontal error bars indicate the bin width.

png pdf
Figure 1-d:
Post-fit BDT distributions in the WH channel extracted with the $ m_{\mathrm{a}}= $ 60 GeV signal hypothesis. Signal regions for the 3b (upper) and 4b (lower) event categories are shown separately for the electron (left) and muon (right) channels. The dotted lines $ \mathrm{W}\mathrm{H}^{20\,\text{GeV}} $, $ \mathrm{W}\mathrm{H}^{60\,\text{GeV}} $, illustrate the shapes of the signal template normalised to the SM cross section times a branching fraction $ \mathcal{B}(\mathrm{H}\to\mathrm{a}\mathrm{a}\to\mathrm{b}\bar{\mathrm{b}}\mathrm{b}\bar{\mathrm{b}}) = $ 1 and scaled by the factors indicated in the figure. The horizontal error bars indicate the bin width.

png pdf
Figure 2:
Post-fit BDT distributions in the ZH channel extracted with the $ m_{\mathrm{a}}= $ 60 GeV signal hypothesis. Signal regions for the 3b (upper) and 4b (lower) event categories are shown separately for the electron (left) and muon (right) channels. The dotted lines $ \mathrm{Z}\mathrm{H}^{20\,\text{GeV}} $ and $ \mathrm{Z}\mathrm{H}^{60\,\text{GeV}} $, illustrate the shapes of the signal template normalised to the SM cross section times a branching fraction $ \mathcal{B}(\mathrm{H}\to\mathrm{a}\mathrm{a}\to\mathrm{b}\bar{\mathrm{b}}\mathrm{b}\bar{\mathrm{b}}) = $ 1 and scaled by the factors indicated in the figure. The horizontal error bars indicate the bin width.

png pdf
Figure 2-a:
Post-fit BDT distributions in the ZH channel extracted with the $ m_{\mathrm{a}}= $ 60 GeV signal hypothesis. Signal regions for the 3b (upper) and 4b (lower) event categories are shown separately for the electron (left) and muon (right) channels. The dotted lines $ \mathrm{Z}\mathrm{H}^{20\,\text{GeV}} $ and $ \mathrm{Z}\mathrm{H}^{60\,\text{GeV}} $, illustrate the shapes of the signal template normalised to the SM cross section times a branching fraction $ \mathcal{B}(\mathrm{H}\to\mathrm{a}\mathrm{a}\to\mathrm{b}\bar{\mathrm{b}}\mathrm{b}\bar{\mathrm{b}}) = $ 1 and scaled by the factors indicated in the figure. The horizontal error bars indicate the bin width.

png pdf
Figure 2-b:
Post-fit BDT distributions in the ZH channel extracted with the $ m_{\mathrm{a}}= $ 60 GeV signal hypothesis. Signal regions for the 3b (upper) and 4b (lower) event categories are shown separately for the electron (left) and muon (right) channels. The dotted lines $ \mathrm{Z}\mathrm{H}^{20\,\text{GeV}} $ and $ \mathrm{Z}\mathrm{H}^{60\,\text{GeV}} $, illustrate the shapes of the signal template normalised to the SM cross section times a branching fraction $ \mathcal{B}(\mathrm{H}\to\mathrm{a}\mathrm{a}\to\mathrm{b}\bar{\mathrm{b}}\mathrm{b}\bar{\mathrm{b}}) = $ 1 and scaled by the factors indicated in the figure. The horizontal error bars indicate the bin width.

png pdf
Figure 2-c:
Post-fit BDT distributions in the ZH channel extracted with the $ m_{\mathrm{a}}= $ 60 GeV signal hypothesis. Signal regions for the 3b (upper) and 4b (lower) event categories are shown separately for the electron (left) and muon (right) channels. The dotted lines $ \mathrm{Z}\mathrm{H}^{20\,\text{GeV}} $ and $ \mathrm{Z}\mathrm{H}^{60\,\text{GeV}} $, illustrate the shapes of the signal template normalised to the SM cross section times a branching fraction $ \mathcal{B}(\mathrm{H}\to\mathrm{a}\mathrm{a}\to\mathrm{b}\bar{\mathrm{b}}\mathrm{b}\bar{\mathrm{b}}) = $ 1 and scaled by the factors indicated in the figure. The horizontal error bars indicate the bin width.

png pdf
Figure 2-d:
Post-fit BDT distributions in the ZH channel extracted with the $ m_{\mathrm{a}}= $ 60 GeV signal hypothesis. Signal regions for the 3b (upper) and 4b (lower) event categories are shown separately for the electron (left) and muon (right) channels. The dotted lines $ \mathrm{Z}\mathrm{H}^{20\,\text{GeV}} $ and $ \mathrm{Z}\mathrm{H}^{60\,\text{GeV}} $, illustrate the shapes of the signal template normalised to the SM cross section times a branching fraction $ \mathcal{B}(\mathrm{H}\to\mathrm{a}\mathrm{a}\to\mathrm{b}\bar{\mathrm{b}}\mathrm{b}\bar{\mathrm{b}}) = $ 1 and scaled by the factors indicated in the figure. The horizontal error bars indicate the bin width.

png pdf
Figure 3:
Model independent 95% CL upper limits on $ \sigma_{\mathrm{V}\mathrm{H}} \mathcal{B}(\mathrm{H}\to\mathrm{a}\mathrm{a}\to\mathrm{b}\bar{\mathrm{b}}\mathrm{b}\bar{\mathrm{b}}) / \sigma_{\mathrm{SM}} $ for the WH channel (upper), the ZH channel (middle), and the combination of both channels (lower), where ``a'' is a new pseudoscalar particle decaying through $ \mathrm{a}\to\mathrm{b}\bar{\mathrm{b}} $, and $ \sigma_{\mathrm{SM}} $ is the SM Higgs boson production cross section.

png pdf
Figure 3-a:
Model independent 95% CL upper limits on $ \sigma_{\mathrm{V}\mathrm{H}} \mathcal{B}(\mathrm{H}\to\mathrm{a}\mathrm{a}\to\mathrm{b}\bar{\mathrm{b}}\mathrm{b}\bar{\mathrm{b}}) / \sigma_{\mathrm{SM}} $ for the WH channel (upper), the ZH channel (middle), and the combination of both channels (lower), where ``a'' is a new pseudoscalar particle decaying through $ \mathrm{a}\to\mathrm{b}\bar{\mathrm{b}} $, and $ \sigma_{\mathrm{SM}} $ is the SM Higgs boson production cross section.

png pdf
Figure 3-b:
Model independent 95% CL upper limits on $ \sigma_{\mathrm{V}\mathrm{H}} \mathcal{B}(\mathrm{H}\to\mathrm{a}\mathrm{a}\to\mathrm{b}\bar{\mathrm{b}}\mathrm{b}\bar{\mathrm{b}}) / \sigma_{\mathrm{SM}} $ for the WH channel (upper), the ZH channel (middle), and the combination of both channels (lower), where ``a'' is a new pseudoscalar particle decaying through $ \mathrm{a}\to\mathrm{b}\bar{\mathrm{b}} $, and $ \sigma_{\mathrm{SM}} $ is the SM Higgs boson production cross section.

png pdf
Figure 3-c:
Model independent 95% CL upper limits on $ \sigma_{\mathrm{V}\mathrm{H}} \mathcal{B}(\mathrm{H}\to\mathrm{a}\mathrm{a}\to\mathrm{b}\bar{\mathrm{b}}\mathrm{b}\bar{\mathrm{b}}) / \sigma_{\mathrm{SM}} $ for the WH channel (upper), the ZH channel (middle), and the combination of both channels (lower), where ``a'' is a new pseudoscalar particle decaying through $ \mathrm{a}\to\mathrm{b}\bar{\mathrm{b}} $, and $ \sigma_{\mathrm{SM}} $ is the SM Higgs boson production cross section.
Tables

png pdf
Table 1:
Signal region (SR) and control region (CR) requirements in ($ N_{\mathrm{b}} $, $ N_{\text{j}} $) for the WH and ZH channels, where $ N_{\mathrm{b}} $ is the number of $ \mathrm{b}\text{-tagged} $ jets in an event and $ N_{\text{j}} $ is the total number of jets in an event.

png pdf
Table 2:
Summary of systematic uncertainties and their effect on the background and signal event yields in the WH channel. Uncertainties that are negligible are indicated with a dash ($ \text{---} $).

png pdf
Table 3:
Summary of systematic uncertainties and their effect on the background and signal event yields in the ZH channel. Uncertainties that are negligible are indicated with a dash ($ \text{---} $).

png pdf
Table 4:
Signal-plus-background fit results for the 3b WH and ZH signal regions extracted with the $ m_{\mathrm{a}}= $ 60 GeV signal hypothesis. The lepton flavor (e or $ \mu $) and BDT bin range (in square brackets) are indicated in the column headings. Signal yields corresponding to the expectation for SM VH production and $ \mathcal{B}(\mathrm{H}\to\mathrm{a}\mathrm{a}\to\mathrm{b}\bar{\mathrm{b}}\mathrm{b}\bar{\mathrm{b}}) = $ 1 are shown for the $ m_{\mathrm{a}}= $ 20 and 60 GeV hypotheses. The background uncertainties account for both systematic and statistical sources.

png pdf
Table 5:
Signal-plus-background fit results for the 4b WH and ZH signal regions extracted with the $ m_{\mathrm{a}}=$ 60 GeV signal hypothesis. The lepton flavor (e or $ \mu $) and BDT bin range (in square brackets) are indicated in the column headings. Signal yields corresponding to the expectation for SM VH production and $ \mathcal{B}(\mathrm{H}\to\mathrm{a}\mathrm{a}\to\mathrm{b}\bar{\mathrm{b}}\mathrm{b}\bar{\mathrm{b}}) = $ 1 are shown for the $ m_{\mathrm{a}}= $ 20 and 60 GeV hypotheses. The background uncertainties account for both systematic and statistical sources.
Summary
A search for exotic decays of the 125 GeV Higgs boson (H) to a pair of new light pseudoscalar bosons ($ \mathrm{a} $), followed by decay to four b quark jets, $ \mathrm{H}\to\mathrm{a}\mathrm{a}\to\mathrm{b}\bar{\mathrm{b}}\mathrm{b}\bar{\mathrm{b}} $, is presented, using data recorded with the CMS detector. The analysis is based on an integrated luminosity of 138 fb$^{-1}$ collected at a center-of-mass energy of 13 TeV in 2016--2018. The search is performed in the context of the associated WH and ZH production in which the W or Z boson decays leptonically, $ \mathrm{W}\to\ell\nu $ or $ \mathrm{Z}\to\ell^+\ell^- $, with $ \ell $ an electron or muon. No evidence for the targeted decay mode is observed. The analysis obtains model independent upper limits at 95% confidence level on the branching fraction $ \mathcal{B}(\mathrm{H}\to\mathrm{a}\mathrm{a}\to\mathrm{b}\bar{\mathrm{b}}\mathrm{b}\bar{\mathrm{b}}) $ of a SM-like Higgs boson. The combined result for the associated WH and ZH Higgs boson production excludes branching fractions as low as 0.36 in the mass range $ m_{\mathrm{a}} $ between about 25 GeV and 60 GeV, assuming the SM WH and ZH cross-sections. These results provide enhanced sensitivity, in the mass range $ m_{\mathrm{a}} \gtrsim $ 20 GeV, in complementary regions of the 2HDM+S model parameter space compared to CMS searches in the $ \mu\mu\tau\tau $ and $ \mathrm{b}\mathrm{b}\ell\ell $ ($ \ell=\mu, \tau $) final states.
References
1 ATLAS Collaboration Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC PLB 716 (2012) 1 1207.7214
2 CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC PLB 716 (2012) 30 CMS-HIG-12-028
1207.7235
3 CMS Collaboration Observation of a new boson with mass near 125 GeV in pp collisions at $ \sqrt{s} = $ 7 and 8 TeV JHEP 06 (2013) 081 CMS-HIG-12-036
1303.4571
4 ATLAS Collaboration A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery Nature 607 (2022) 52 2207.00092
5 CMS Collaboration A portrait of the Higgs boson by the CMS experiment ten years after the discovery. Nature 607 (2022) 60 CMS-HIG-22-001
2207.00043
6 G. C. Branco et al. Theory and phenomenology of two-Higgs-doublet models Phys. Rept. 516 (2012) 1 1106.0034
7 D. Curtin et al. Exotic decays of the 125 GeV Higgs boson PRD 90 (2014) 075004 1312.4992
8 U. Ellwanger, C. Hugonie, and A. M. Teixeira The next-to-minimal supersymmetric standard model Phys. Rept. 496 (2010) 1 0910.1785
9 ATLAS Collaboration Search for the Higgs boson produced in association with a $ W $ boson and decaying to four $ b $-quarks via two spin-zero particles in $ pp $ collisions at 13 TeV with the ATLAS detector EPJC 76 (2016) 605 1606.08391
10 ATLAS Collaboration Search for the Higgs boson produced in association with a vector boson and decaying into two spin-zero particles in the $ H \rightarrow aa \rightarrow 4b $ channel in $ pp $ collisions at $ \sqrt{s} = $ 13 TeV with the ATLAS detector JHEP 10 (2018) 031 1806.07355
11 ATLAS Collaboration Search for Higgs boson decays into two new low-mass spin-0 particles in the 4$ b $ channel with the ATLAS detector using $ pp $ collisions at $ \sqrt{s}= $ 13 TeV PRD 102 (2020) 112006 2005.12236
12 ATLAS Collaboration Search for new light gauge bosons in Higgs boson decays to four-lepton final states in $ pp $ collisions at $ \sqrt{s}= $ 8 TeV with the ATLAS detector at the LHC PRD 92 (2015) 092001 1505.07645
13 CMS Collaboration Search for a non-standard-model Higgs boson decaying to a pair of new light bosons in four-muon final states PLB 726 (2013) 564 CMS-EXO-12-012
1210.7619
14 CMS Collaboration A search for pair production of new light bosons decaying into muons PLB 752 (2016) 146 CMS-HIG-13-010
1506.00424
15 CMS Collaboration Search for light bosons in decays of the 125 GeV Higgs boson in proton-proton collisions at $ \sqrt{s}= $ 8 TeV JHEP 10 (2017) 076 CMS-HIG-16-015
1701.02032
16 CMS Collaboration Search for a very light NMSSM Higgs boson produced in decays of the 125 GeV scalar boson and decaying into $ \tau $ leptons in pp collisions at $ \sqrt{s}= $ 8 TeV JHEP 01 (2016) 079 CMS-HIG-14-019
1510.06534
17 ATLAS Collaboration Search for new phenomena in events with at least three photons collected in $ pp $ collisions at $ \sqrt{s} = $ 8 TeV with the ATLAS detector EPJC 76 (2016) 210 1509.05051
18 ATLAS Collaboration Search for Higgs boson decays to beyond-the-standard-model light bosons in four-lepton events with the ATLAS detector at $ \sqrt{s}= $ 13 TeV JHEP 06 (2018) 166 1802.03388
19 CMS Collaboration A search for pair production of new light bosons decaying into muons in proton-proton collisions at 13 TeV PLB 796 (2019) 131 CMS-HIG-18-003
1812.00380
20 ATLAS Collaboration Search for Higgs bosons decaying to aa in the $ \mu\mu\tau\tau $ final state in pp collisions at $ \sqrt{s} = $ 8 TeV with the ATLAS experiment PRD 92 (2015) 052002 1505.01609
21 CMS Collaboration Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state of two muons and two $ \tau $ leptons in proton-proton collisions at $ \sqrt{s}= $ 13 TeV JHEP 11 (2018) 018 CMS-HIG-17-029
1805.04865
22 CMS Collaboration Search for a light pseudoscalar Higgs boson in the boosted $ \mu\mu\tau\tau $ final state in proton-proton collisions at $ \sqrt{s}= $ 13 TeV JHEP 08 (2020) 139 CMS-HIG-18-024
2005.08694
23 ATLAS Collaboration Search for Higgs boson decays into a pair of light bosons in the $ bb\mu\mu $ final state in $ pp $ collision at $ \sqrt{s} = $ 13 TeV with the ATLAS detector PLB 790 (2019) 1 1807.00539
24 CMS Collaboration Search for exotic decays of the Higgs boson to a pair of pseudoscalars in the $ \mu\mu $bb and $ \tau\tau $bb final states Submitted to Eur. Phys. J. C, 2024 CMS-HIG-22-007
2402.13358
25 CMS Collaboration Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two b quarks and two $ \tau $ leptons in proton-proton collisions at $ \sqrt{s}= $ 13 TeV PLB 785 (2018) 462 CMS-HIG-17-024
1805.10191
26 ATLAS Collaboration Search for Higgs boson decays into pairs of light (pseudo)scalar particles in the $ \gamma\gamma jj $ final state in pp collisions at $ \sqrt{s}= $ 13 TeV with the ATLAS detector PLB 782 (2018) 750 1803.11145
27 M. Cepeda, S. Gori, V. M. Outschoorn, and J. Shelton Exotic Higgs decays Ann. Rev. Nucl. Part. Sci. 72 (2022) 119 2111.12751
28 CMS Collaboration HEPData record for this analysis link
29 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004
30 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
31 CMS Collaboration Performance of the CMS level-1 trigger in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 15 (2020) P10017 CMS-TRG-17-001
2006.10165
32 P. Nason A new method for combining NLO QCD with shower Monte Carlo algorithms JHEP 11 (2004) 040 hep-ph/0409146
33 S. Frixione, P. Nason, and C. Oleari Matching NLO QCD computations with parton shower simulations: the POWHEG method JHEP 11 (2007) 070 0709.2092
34 S. Alioli, P. Nason, C. Oleari, and E. Re A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX JHEP 06 (2010) 043 1002.2581
35 CMS Collaboration Measurement of differential cross sections for top quark pair production using the lepton+jets final state in proton-proton collisions at 13 TeV PRD 95 (2017) 092001 CMS-TOP-16-008
1610.04191
36 J. Alwall et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations JHEP 07 (2014) 079 1405.0301
37 CMS Collaboration Observation of Higgs boson decay to bottom quarks PRL 121 (2018) 121801 CMS-HIG-18-016
1808.08242
38 J. Alwall et al. Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions EPJC 53 (2008) 473 0706.2569
39 R. Frederix and S. Frixione Merging meets matching in MC@NLO JHEP 12 (2012) 061 1209.6215
40 LHC Higgs Cross Section Working Group Handbook of LHC Higgs cross sections: 1. Inclusive observables CERN Report CERN-2011-002, 2011
link
1101.0593
41 LHC Higgs Cross Section Working Group Handbook of LHC Higgs cross sections: 2. Differential distributions CERN Report CERN-2012-002, 2012
link
1201.3084
42 LHC Higgs Cross Section Working Group Handbook of LHC Higgs cross sections: 3. Higgs properties CERN Report CERN-2013-004, 2013
link
1307.1347
43 LHC Higgs Cross Section Working Group Handbook of LHC Higgs cross sections: 4. deciphering the nature of the Higgs sector CERN Report CERN-2017-002-M, 2016
link
1610.07922
44 NNPDF Collaboration Parton distributions from high-precision collider data EPJC 77 (2017) 663 1706.00428
45 P. Skands, S. Carrazza, and J. Rojo Tuning PYTHIA 8.1: the Monash 2013 Tune EPJC 74 (2014) 3024 1404.5630
46 CMS Collaboration Event generator tunes obtained from underlying event and multiparton scattering measurements EPJC 76 (2016) 155 CMS-GEN-14-001
1512.00815
47 CMS Collaboration Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements EPJC 80 (2020) 4 CMS-GEN-17-001
1903.12179
48 GEANT4 Collaboration GEANT 4---a simulation toolkit NIM A 506 (2003) 250
49 CMS Collaboration Particle-flow reconstruction and global event description with the CMS detector JINST 12 (2017) P10003 CMS-PRF-14-001
1706.04965
50 CMS Collaboration Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at $ \sqrt{s} = $ 8 TeV JINST 10 (2015) P06005 CMS-EGM-13-001
1502.02701
51 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
52 CMS Collaboration Technical proposal for the Phase-II upgrade of the Compact Muon Solenoid CMS Technical Proposal CERN-LHCC-2015-010, CMS-TDR-15-02, 2015
CDS
53 M. Cacciari and G. P. Salam Pileup subtraction using jet areas PLB 659 (2008) 119 0707.1378
54 CMS Collaboration Measurement of the inclusive W and Z production cross sections in pp collisions at $ \sqrt{s} = $ 7 TeV JHEP 10 (2011) 132 CMS-EWK-10-005
1107.4789
55 M. Cacciari, G. P. Salam, and G. Soyez The anti-$ k_{\mathrm{T}} $ jet clustering algorithm JHEP 04 (2008) 063 0802.1189
56 M. Cacciari, G. P. Salam, and G. Soyez FastJet user manual EPJC 72 (2012) 1896 1111.6097
57 CMS Collaboration Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV JINST 12 (2017) P02014 CMS-JME-13-004
1607.03663
58 CMS Collaboration Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV JINST 13 (2018) P05011 CMS-BTV-16-002
1712.07158
59 CMS Collaboration Performance of missing transverse momentum reconstruction in proton-proton collisions at $ \sqrt{s} = $ 13 TeV using the CMS detector JINST 14 (2019) P07004 CMS-JME-17-001
1903.06078
60 UA1 Collaboration Experimental observation of isolated large transverse energy electrons with associated missing energy at $ \sqrt{s} = $ 540 GeV PLB 122 (1983) 103
61 H. Voss, A. Höcker, J. Stelzer, and F. Tegenfeldt TMVA, the toolkit for multivariate data analysis with ROOT in XIth International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT), [PoS(ACAT)040], 2007
link
physics/0703039
62 ATLAS Collaboration Measurement of the $ b\overline{b} $ dijet cross section in pp collisions at $ \sqrt{s} = $ 7 TeV with the ATLAS detector EPJC 76 (2016) 670 1607.08430
63 ATLAS Collaboration Measurement of differential production cross-sections for a $ Z $ boson in association with $ b $-jets in 7 TeV proton-proton collisions with the ATLAS detector JHEP 10 (2014) 141 1407.3643
64 CMS Collaboration Measurement of the associated production of a Z boson with charm or bottom quark jets in proton-proton collisions at $ \sqrt {s}= $ 13 TeV PRD 102 (2020) 032007 CMS-SMP-19-004
2001.06899
65 CMS Collaboration Precision luminosity measurement in proton-proton collisions at $ \sqrt{s} = $ 13 TeV in 2015 and 2016 at CMS EPJC 81 (2021) 800 CMS-LUM-17-003
2104.01927
66 CMS Collaboration CMS luminosity measurement for the 2017 data-taking period at $ \sqrt{s} = $ 13 TeV CMS Physics Analysis Summary, 2018
CMS-PAS-LUM-17-004
CMS-PAS-LUM-17-004
67 CMS Collaboration CMS luminosity measurement for the 2018 data-taking period at $ \sqrt{s}= $ 13 TeV CMS Physics Analysis Summary, 2019
CMS-PAS-LUM-18-002
CMS-PAS-LUM-18-002
68 J. Butterworth et al. PDF4LHC recommendations for LHC Run II JPG 43 (2016) 023001 1510.03865
69 M. Czakon, P. Fiedler, and A. Mitov Total top-quark pair-production cross section at hadron colliders through $ O(\alpha^4_S) $ PRL 110 (2013) 252004 1303.6254
70 N. Kidonakis Two-loop soft anomalous dimensions for single top quark associated production with a $ W^- $ or $ H^- $ PRD 82 (2010) 054018 1005.4451
71 N. Kidonakis Top quark production in Helmholtz International Summer School on Physics of Heavy Quarks and Hadrons, 2014
link
1311.0283
72 T. Gehrmann et al. $ W^+W^- $ production at hadron colliders in next to next to leading order QCD PRL 113 (2014) 212001 1408.5243
73 F. Cascioli et al. ZZ production at hadron colliders in NNLO QCD PLB 735 (2014) 311 1405.2219
74 CMS Collaboration Measurement of the differential Drell-Yan cross section in proton-proton collisions at $ \sqrt{\mathrm{s}} = $ 13 TeV JHEP 12 (2019) 059 CMS-SMP-17-001
1812.10529
75 CMS Collaboration Measurement of the inelastic proton-proton cross section at $ \sqrt{s}= $ 13 TeV JHEP 07 (2018) 161 CMS-FSQ-15-005
1802.02613
76 R. J. Barlow and C. Beeston Fitting using finite Monte Carlo samples Comput. Phys. Commun. 77 (1993) 219
77 A. L. Read Presentation of search results: The $ \text{CL}_\text{s} $ technique JPG 28 (2002) 2693
78 G. Cowan, K. Cranmer, E. Gross, and O. Vitells Asymptotic formulae for likelihood-based tests of new physics EPJC 71 (2011) 1554 1007.1727
Compact Muon Solenoid
LHC, CERN